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This leads to the following iteration scheme for computing a discrete

scale space:

g(x, ξ +∆ξ) = ∆ξg(x +∆x, ξ)+ (1− 2∆ξ)g(x, ξ)+∆ξg(x −∆x, ξ)

(8.138)

or written with discrete coordinates

gn,ξ+1 = ∆ξgn+1,ξ + (1− 2∆ξ)gn,ξ +∆ξgn−1,ξ (8.139)

Lindeberg [16] shows that this iteration results in a discrete scale

space that meets the minimum-maximum principle and the semi-group

property if and only if

∆ξ ≤
1

4
(8.140)

The limit case of ∆ξ = 1/4 leads to the especially simple iteration

gn,ξ+1 = 1/4gn+1,ξ + 1/2gn,ξ + 1/4gn−1,ξ (8.141)

Each step of the scale-space computation is given by a smoothing of

the signal with the binomial mask B2 = [1/4 1/2 1/4] (Section 9.5.4).

We can also formulate the general scale-space generating operator in

Eq. (8.139) using the convolution operator B. Written in the operator

notation introduced in Section 9.1.3, the operator for one iteration step

to generate the discrete scale space is

(1− ǫ)I + ǫB2 with ǫ ≤ 1 (8.142)

where I denotes the identy operator.

This expression is significant, as it can be extended directly to higher

dimensions by replacing B2 with a correspondingly higher-dimensional

smoothing operator. The convolution mask B2 is the simplest mask in

the class of smoothing binomial filters. These filters will be discussed

in Section 9.5.4. A detailed discussion of discrete linear scale spaces is

given by Lindeberg [16, Chapters 3 and 4].

8.10 Multigrid representations

8.10.1 Basics

The scale space discussed in Section 8.9 has one significant disadvan-

tage. The use of the additional scale parameter adds a new dimension

to the images and thus leads to an explosion of the data storage re-

quirements and, in turn, the computational overhead for generating

the scale space and for analyzing it. Thus, it is not surprising that be-

fore the evolution of the scale space more efficient multiscale storage
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schemes, especially pyramids, found widespread application in image

processing. With data structures of this type, the resolution of the im-

ages decreases to such an extent as the scale increases. In this way

an optimum balance between spatial and wave-number resolution is

achieved in the sense of the uncertainty relation (Section 8.6.3). Data

structures of this type are known as multiresolution representations

[15].

The basic idea is quite simple. While the representation of fine scales

requires the full resolution, coarser scales can be represented at lower

resolution. This leads to a scale space with smaller and smaller im-

ages as the scale parameter increases. In the following two sections we

will discuss the Gaussian pyramid (Section 8.10.2) and the Laplacian

pyramid (Section 8.10.3) as efficient discrete implementations of dis-

crete scale spaces. In addition, while the Gaussian pyramid constitutes

a standard scale space, the Laplacian pyramid is a discrete version of

a differential scale space (Section 8.9.3). The Gaussian and Laplacian

pyramids are examples of multigrid data structures, which were intro-

duced into digital image processing in the early 1980s and since then

have led to a tremendous increase in speed of image-processing algo-

rithms. A new research area, multiresolutional image processing, was

established [15].

8.10.2 Gaussian pyramid

When subsampling an image, for example, by taking every second pixel

in every second line it is important to consider the sampling theorem

(Section 8.4.2). Before subsampling, the image must be smoothed to an

extent that no aliasing occurs in the subsampled image. Consequently,

for subsampling by a factor two, we must ensure that all structures,

which are sampled less than four times per wavelength, are suppressed

by an appropriate smoothing filter. This means that size reduction

must go hand-in-hand with appropriate smoothing.

Generally, the requirement for the smoothing filter can be formu-

lated as

B̂(k̃) = 0 ∀k̃d ≥
1

rd
(8.143)

where rd is the subsampling rate in the direction of the dth coordinate.

The combined smoothing and size reduction can be expressed in a

single operator by using the following notation to compute the q+1th

level of the Gaussian pyramid from the qth level:

G
(q+1)

= B↓2G
(q) (8.144)

The number behind the ↓ in the index denotes the subsampling rate.

Level 0 of the pyramid is the original image: G(0)
= G.
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If we repeat the smoothing and subsampling operations iteratively,

we obtain a series of images, which is called the Gaussian pyramid .

From level to level, the resolution decreases by a factor of two; the size

of the images decreases correspondingly. Consequently, we can think

of the series of images as being arranged in the form of a pyramid.

The pyramid does not require much storage space. Generally, if we

consider the formation of a pyramid from a D-dimensional image with

a subsampling factor of two and N pixels in each coordinate direction,

the total number of pixels is given by

ND

(

1+
1

2D
+

1

22D
+ . . .

)

< ND 2D

2D − 1
(8.145)

For a 2-D image, the whole pyramid needs just 1/3 more space than

the original image, for a 3-D image only 1/7 more. Likewise, the com-

putation of the pyramid is equally effective. The same smoothing filter

is applied to each level of the pyramid. Thus the computation of the

whole pyramid needs only 4/3 and 8/7 times more operations than for

the first level of a 2-D and 3-D image, respectively.

The pyramid brings large scales into the range of local neighbor-

hood operations with small kernels. Moreover, these operations are

performed efficiently. Once the pyramid has been computed, we can

perform neighborhood operations on large scales in the upper levels

of the pyramid—because of the smaller image sizes—much more effi-

ciently than for finer scales.

The Gaussian pyramid constitutes a series of low-pass filtered im-

ages in which the cutoff wave numbers decrease by a factor of two (an

octave) from level to level. Thus the Gaussian pyramid resembles a

logarithmic scale space. Only a few levels of the pyramid are necessary

to span a wide range of wave numbers. If we stop the pyramid at an

8×8 image, we can usefully compute only a seven-level pyramid from

a 512×512 image.

8.10.3 Laplacian pyramid

From the Gaussian pyramid, another pyramid type can be derived, that

is, the Laplacian pyramid . This type of pyramid is the discrete counter-

part to the differential scale space discussed in Section 8.9.3 and leads

to a sequence of bandpass-filtered images. In contrast to the Fourier

transform, the Laplacian pyramid leads only to a coarse wave-number

decompositionwithout a directional decomposition. All wave numbers,

independently of their direction, within the range of about an octave

(factor of two) are contained in one level of the pyramid.

Because of the coarse wave number resolution, we can preserve a

good spatial resolution. Each level of the pyramid contains only match-

ing scales, which are sampled a few times (two to six) per wavelength.
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Figure 8.17: Construction of the Laplacian pyramid (right column) from the

Gaussian pyramid (left column) by subtracting two consecutive planes of the

Gaussian pyramid.

In this way, the Laplacian pyramid is an efficient data structure well

adapted to the limits of the product of wave number and spatial reso-

lution set by the uncertainty relation (Section 8.6.3).

The differentiation in scale direction in the continuous scale space

is approximated by subtracting two levels of the Gaussian pyramid in

the discrete scale space. In order to do so, first the image at the coarser

level must be expanded. This operation is performed by an expansion

operator E↑2. As with the reducing smoothing operator, the degree of

expansion is denoted by the figure after the ↑ in the index.

The expansion is significantly more difficult than the size reduction

because the missing information must be interpolated. For a size in-

crease of two in all directions, first, every second pixel in each rowmust

be interpolated and then every second row. Interpolation is discussed

in detail in Section 9.6. With the introduced notation, the generation of
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the pth level of the Laplacian pyramid can be written as:

L
(p)

= G
(p)
−E↑2G

(p+1) (8.146)

The Laplacian pyramid is an effective scheme for a bandpass decom-

position of an image. The center wave number is halved from level to

level. The last image of the Laplacian pyramid is a low-pass-filtered

image containing only the coarsest structures.

The Laplacian pyramid has the significant advantage that the origi-

nal image can be reconstructed quickly from the sequence of images in

the Laplacian pyramid by recursively expanding the images and sum-

ming them up. In a Laplacian pyramid with p + 1 levels, the level p

(counting starts with zero!) is the coarsest level of the Gaussian pyra-

mid. Then the level p−1 of the Gaussian pyramid can be reconstructed

by

G
(p−1)

= L
(p−1)

+E↑2G
p (8.147)

Note that this is just the inversion of the construction scheme for the

Laplacian pyramid. This means that even if the interpolation algo-

rithms required to expand the image contain errors, they affect only the

Laplacian pyramid and not the reconstruction of the Gaussian pyramid

from the Laplacian pyramid, because the same algorithm is used. The

recursion in Eq. (8.147) is repeated with lower levels until level 0, that

is, the original image, is reached again. As illustrated in Fig. 8.17, finer

and finer details become visible during the reconstruction process.
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