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We examine the ratio of the output of two different radial center

frequencies k1 and k2 and obtain:

r̂2
r̂1

= exp

[

−
(lnk− lnk2)2 − (lnk− lnk1)2

2σ 2 ln2

]

= exp

[

2(lnk2 − lnk1) lnk+ ln
2

k2 − ln
2

k1

2σ 2 ln2

]

= exp

[

(lnk2 − lnk1)[lnk− 1/2(lnk2 + lnk1)]

σ 2 ln2

]

= exp

[

ln(k/
√

k2k1) ln(k2/k1)

σ 2 ln2

]
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(

k
√

k1k2

)ln(k2/k1)/(σ2 ln2)

Generally, the ratio of two different radial filters is directly related

to the local wave number. The relation becomes particularly simple if

the exponent in the last expression is one. This is the case, for example,

if the wave-number ratio of the two filters is two (k2/k1 = 2 and σ = 1).

Then

r̂2
r̂1
=

k
√

k1k2

(8.109)

8.9 Scale space and diffusion

As we have seen with the example of the windowed Fourier transform

in the previous section, the introduction of a characteristic scale adds a

new coordinate to the representation of image data. Besides the spatial

resolution, we have a new parameter that characterizes the current res-

olution level of the image data. The scale parameter is denoted by ξ. A

data structure that consists of a sequence of images with different res-

olutions is known as a scale space; we write g(x, ξ) to indicate the scale

space of the image g(x). Such a sequence of images can be generated

by repeated convolution with an appropriate smoothing filter kernel.

This section is considered a brief introduction into scale spaces. For

an authoritative monograph on scale spaces, see Lindeberg [16].

8.9.1 General properties of a scale space

In this section, we discuss some general conditions that must be met

by a filter kernel generating a scale space. We will discuss two basic

requirements. First, new details must not be added with increasing

scale parameter. From the perspective of information theory, we may
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say that the information content in the signal should continuously de-

crease with the scale parameter.

The second property is related to the general principle of scale in-

variance. This basically means that we can start smoothing the signal

at any scale parameter in the scale space and still obtain the same scale

space.

Minimum-maximum principle. The information-decreasing property

of the scale space with ξ can be formulated mathematically in different

ways. We express it here with the minimum-maximum principle, which

states that local extrema must not be enhanced. This means that the

gray value at a local maximum or minimum must not increase or de-

crease, respectively. For the physical process of diffusion this is an

intuitive property. For example, in a heat transfer problem, a hot spot

must not become hotter or a cool spot cooler.

Semigroup property. The second important property of the scale

space is related to the scale invariance principle. We want to start the

generating process at any scale parameter and still obtain the same

scale space. More quantitatively, we can formulate this property as

B(ξ2)B(ξ1) = B(ξ1 + ξ2) (8.110)

This means that the smoothing of the scale space at the scale ξ1 by an

operator with the scale ξ2 is equivalent to the application of the scale

space operator with the scale ξ1 + ξ2 to the original image. Alterna-

tively, we can state that the representation at the coarser level ξ2 can

be computed from the representation at the finer level ξ1 by applying

B(ξ2) = B(ξ2 − ξ1)B(ξ1) with ξ2 > ξ1 (8.111)

In mathematics the properties Eqs. (8.110) and (8.111) are referred to

as the semigroup property .

Conversely, we can ask what scale space generating kernels exist

that meet both the minimum-maximum principle and the semigroup

property. The answer to this question may be surprising. As shown by

Lindeberg [16, Chapter 2], the Gaussian kernel is the only convolution

kernel that meets both criteria and is in addition isotropic and homo-

geneous. From yet another perspective this feature puts the Gaussian

convolution kernel into a unique position for signal processing. With

respect to the Fourier transform we have already discussed that the

Gaussian function is one of the few functions with a shape that is in-

variant under the Fourier transform (Table 8.5) and optimal in the sense

of the uncertainty relation (Section 8.6.3). In Section 9.5.4 we will see

in addition that the Gaussian function is the only function that is sep-

arable and isotropic.



262 8 Representation of Multidimensional Signals

8.9.2 Linear scale spaces

Generation by a diffusion process. The generation of a scale space

requires a process that can blur images to a controllable degree. Dif-

fusion is a transport process that tends to level out concentration dif-

ferences. In physics, diffusion processes govern the transport of heat,

matter, and momentum [20] leading to an ever increasing equalization

of spatial concentration differences. If we identify the time with the

scale parameter ξ, the diffusion process thus establishes a scale space.

To apply a diffusion process to an image, we regard the gray value g

as the concentration of a scalar property. The elementary law of diffu-

sion states that the flux density j is directed against the concentration

gradient ∇g and is proportional to it:

j = −D∇g (8.112)

where the constant D is known as the diffusion coefficient . Using the

continuity equation

∂g

∂t
+∇j = 0 (8.113)

the diffusion equation is

∂g

∂t
=∇(D∇g) (8.114)

For the case of a homogeneous diffusion process (D does not depend

on the position), the equation reduces to

∂g

∂t
= D∆g where ∆ =

D
∑

d=1

∂2

∂x2
d

(8.115)

It is easy to show that the general solution to this equation is equivalent

to a convolution with a smoothing mask. To this end, we perform a

spatial Fourier transform that results in

∂ĝ(k)

∂t
= −4π2D|k|2ĝ(k) (8.116)

reducing the equation to a linear first-order differential equation with

the general solution

ĝ(k, t) = exp(−4π2Dt|k|2)ĝ(k,0) (8.117)

where ĝ(k,0) is the Fourier-transformed image at time zero.

Multiplication of the image in Fourier space with the Gaussian func-

tion in Eq. (8.117) is equivalent to a convolution with the same function

but of reciprocal width. Using

exp
(

−πa |k|
2
)

⇐⇒
1

ad/2
exp

(

−
|x|2

a/π

)

(8.118)
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we obtain with a = 4πDt for a d-dimensional space

g(x, t) =
1

(2π)d/2σ d(t)
exp

(

−
|x|2

2σ 2(t)

)

∗ g(x,0) (8.119)

with

σ(t) =
√

2Dt (8.120)

Nowwe can replace the physical time coordinate by the scale parameter

ξ with

ξ = 2Dt = σ 2 (8.121)

and finally obtain

g(x, ξ) =
1

(2πξ)d/2
exp

(

−
|x|2

2ξ

)

∗ g(x,0) (8.122)

We have written all equations in such a way that they can be used

for signals of any dimension. Thus, Eqs. (8.117) and (8.119) can also

be applied to scale spaces of image sequences. The scale parameter is

not identical to the time although we used a physical diffusion process

that proceeds with time to derive it. If we compute a scale-space repre-

sentation of an image sequence, it is useful to scale the time coordinate

with a characteristic velocity u0 so that it has the same dimension as

the spatial coordinates: t′ = u0t. For digital signals (Section 8.3), of

course, no such scaling is required. It is automatically fixed by the

spatial and temporal sampling intervals: u0 = ∆x/∆t.

As an illustration, Fig. 8.16 shows some individual images of the

scale space of a 2-D image at values of ξ as indicated. This example

nicely demonstrates a general property of scale spaces. With increas-

ing scale parameter ξ, the signals become increasingly blurred, more

and more details are lost. This feature can be most easily seen by the

transfer function of the scale-space representation in Eq. (8.117). The

transfer function is always positive and monotonically decreasing with

the increasing scale parameter ξ for all wave numbers. This means that

no structure is amplified. All structures are attenuated with increasing

ξ, and smaller structures always faster than coarser structures. In the

limit of ξ → ∞ the scale space converges to a constant image with the

mean gray value. A certain feature exists only over a certain scale range.

We can observe that edges and lines disappear and two objects merge

into one.

Accelerated scale spaces. Despite the mathematical beauty of scale-

space generation with a Gaussian convolution kernel, this approach has
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a b

c d

Figure 8.16: Scale space of a 2-D image: a original image; b, c, and d at scale

parameters σ 1, 2, and 4, respectively.

one significant disadvantage. The standard deviation of the smooth-

ing increases only with the square root of the scale parameter ξ (see

Eq. (8.121)). While smoothing goes fast for fine scales, it becomes in-

creasingly slower for larger scales.

There is a simple cure for this problem. We need a diffusion process

where the diffusion constant increases with time. We first discuss a

diffusion coefficient that increases linearly with time. This approach

results in the differential equation

∂g

∂t
= D0t∆g (8.123)

A spatial Fourier transform results in

∂ĝ(k)

∂t
= −4π2D0t|k|2ĝ(k) (8.124)

This equation has the general solution

ĝ(k, t) = exp(−2π2D0t2|k|2)ĝ(k,0) (8.125)
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which is equivalent to a convolution in the spatial domain as in Eq. (8.121)

with ξ = σ 2 = D0t2. Now the standard deviation for the smoothing is

proportional to time for a diffusion process with a diffusion coefficient

that increases linearly in time. As the scale parameter ξ is proportional

to the time squared, we denote this scale space as the quadratic scale

space. This modified scale space still meets the minimum-maximum

principle and the semigroup property.

For even more accelerated smoothing, we can construct a logarith-

mic scale space, that is, a scale space where the scale parameter in-

creases logarithmically with time. We use a diffusion coefficient that

increases exponentially in time:

∂g

∂t
= D0 exp(t/τ)∆g (8.126)

A spatial Fourier transform results in

∂ĝ(k)

∂t
= −4π2D0 exp(t/τ)|k|2ĝ(k) (8.127)

The general solution of this equation in the Fourier domain is

ĝ(k, t) = exp(−4π2D0(exp(t/τ)/τ)|k|2)ĝ(k,0) (8.128)

Again,the transfer function and thus the convolution kernel have the

same form as in Eqs. (8.117) and (8.125), now with the scale parameter

ξl = σ 2 =
2D0

τ
exp(t/τ) (8.129)

This means that the logarithm of the scale parameter ξ is now propor-

tional to the limiting scales still contained in the scale space. Essen-

tially, we can think of the quadratic and logarithmic scale spaces as a

coordinate transform of the scale parameter that efficiently compresses

the scale space coordinate:

ξq ∝

√

ξ, ξl ∝ ln(ξ) (8.130)

8.9.3 Differential scale spaces

The interest in a differential scale space stems from the fact that we

want to select optimum scales for processing of features in images. In

a differential scale space, the change of the image with scale is empha-

sized. We use the transfer function of the scale-space kernel Equa-

tion (8.117), which is also valid for quadratic and logarithmic scale

spaces. The general solution for the scale space can be written in the

Fourier space as

ĝ(k, ξ) = exp(−2π2 |k|
2

ξ)ĝ(k,0) (8.131)
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Differentiating this signal with respect to the scale parameter ξ yields

∂ĝ(k, ξ)

∂ξ
= −2π2 |k|

2
exp(−2π2 |k|

2
ξ)ĝ(k,0)

= −2π2 |k|
2

ĝ(k, ξ)
(8.132)

The multiplication with −4π2|k|2 is equivalent to a second-order spa-

tial derivative (Table 8.4), the Laplacian operator . Thus we can write in

the spatial domain

∂g(x, ξ)

∂ξ
=
1

2
∆g(x, ξ) (8.133)

Equations (8.132) and (8.133) constitute a basic property of the dif-

ferential scale space. The differential scale space is equivalent to a

second-order spatial derivation with the Laplacian operator and thus

leads to an isotropic bandpass decomposition of the image. This is, of

course, not surprising as the diffusion equation in Eq. (8.115) relates

just the first-order temporal derivative with the second-order spatial

derivative. The transfer function at the scale ξ is

−2π2 |k|
2
exp(−2π2ξ |k|

2
) (8.134)

For small wave numbers, the transfer function is proportional to −|k|2.

It reaches a maximum at

kmax =
1

√

2π2ξ
(8.135)

and then decays exponentially.

8.9.4 Discrete scale spaces

The construction of a discrete scale space requires a discretization of

the diffusion equation and not of the convolution kernel [16]. We start

with a discretization of the 1-D diffusion equation

∂g(x, ξ)

∂ξ
=

∂2g(x, ξ)

∂x2
(8.136)

The derivatives are replaced by discrete differences in the following

way:

∂g(x, ξ)

∂ξ
≈

g(x, ξ +∆ξ)− g(x, ξ)

∆ξ

∂2g(x, ξ)

∂x2
≈

g(x +∆x, ξ)− 2g(x, ξ)+ g(x −∆x, ξ)

∆x2

(8.137)
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This leads to the following iteration scheme for computing a discrete

scale space:

g(x, ξ +∆ξ) = ∆ξg(x +∆x, ξ)+ (1− 2∆ξ)g(x, ξ)+∆ξg(x −∆x, ξ)

(8.138)

or written with discrete coordinates

gn,ξ+1 = ∆ξgn+1,ξ + (1− 2∆ξ)gn,ξ +∆ξgn−1,ξ (8.139)

Lindeberg [16] shows that this iteration results in a discrete scale

space that meets the minimum-maximum principle and the semi-group

property if and only if

∆ξ ≤
1

4
(8.140)

The limit case of ∆ξ = 1/4 leads to the especially simple iteration

gn,ξ+1 = 1/4gn+1,ξ + 1/2gn,ξ + 1/4gn−1,ξ (8.141)

Each step of the scale-space computation is given by a smoothing of

the signal with the binomial mask B2 = [1/4 1/2 1/4] (Section 9.5.4).

We can also formulate the general scale-space generating operator in

Eq. (8.139) using the convolution operator B. Written in the operator

notation introduced in Section 9.1.3, the operator for one iteration step

to generate the discrete scale space is

(1− ǫ)I + ǫB2 with ǫ ≤ 1 (8.142)

where I denotes the identy operator.

This expression is significant, as it can be extended directly to higher

dimensions by replacing B2 with a correspondingly higher-dimensional

smoothing operator. The convolution mask B2 is the simplest mask in

the class of smoothing binomial filters. These filters will be discussed

in Section 9.5.4. A detailed discussion of discrete linear scale spaces is

given by Lindeberg [16, Chapters 3 and 4].

8.10 Multigrid representations

8.10.1 Basics

The scale space discussed in Section 8.9 has one significant disadvan-

tage. The use of the additional scale parameter adds a new dimension

to the images and thus leads to an explosion of the data storage re-

quirements and, in turn, the computational overhead for generating

the scale space and for analyzing it. Thus, it is not surprising that be-

fore the evolution of the scale space more efficient multiscale storage
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