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Figure 8.12: Illustration of the interdependence of resolution in the spatial and

wave-number domain in one dimension. Representations in the space domain,

the wave-number domain, and the space/wave-number domain (2 planes of

pyramid with half and quarter resolution) are shown.

8.8 Scale of signals

8.8.1 Basics

In Sections 8.5 and 8.7 the representation of images in the spatial and

wave-number domain were discussed. If an image is represented in the

spatial domain, we do not have any information at all about the wave

numbers contained at a point in the image. We know the position with

an accuracy of the lattice constant∆x, but the local wave number at this

position may be anywhere in the range of the possible wave numbers

from −1/(2∆x) to 1/(2∆x) (Fig. 8.12).

In the wave-number domain we have the reverse case. Each pixel

in this domain represents one wave number with the highest wave-

number resolution possible for the given image size, which is−1/(N∆x)

for an image with N pixels in each coordinate. But any positional in-

formation is lost, as one point in the wave-number space represents a

periodic structure that is spread over the whole image (Fig. 8.12). Thus,

the position uncertainty is the linear dimension of the image N∆x. In

this section we will revisit both representations under the perspective

of how to generate a multiscale representation of an image.

The foregoing discussion shows that the representations of an im-

age in either the spatial or wave-number domain constitute two oppo-

site extremes. Although the understanding of both domains is essential

for any type of signal processing, the representation in either of these

domains is inadequate to analyze objects in images.

In the wave-number representation the spatial structures from var-

ious independent objects are mixed up because the extracted periodic
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structures cover the whole image. In the spatial representation we have

no information about the spatial structures contained in an object, we

just know the local pixel gray values.

What we thus really need is a type of joint representation that allows

for a separation into different wave-number ranges (scales) but still

preserves as much spatial resolution as possible. Such a representation

is called a multiscale or multiresolution representation.

The limits of the joint spatial/wave-number resolution are given by

the uncertainty relation discussed in Section 8.6.3. It states that the

product of the resolutions in the spatial and wave-number domain can-

not be beyond a certain threshold. This is exactly what we observed

already in the spatial and wave-number domains. However, besides

these two domains any other combination of resolutions that meets

the uncertainty relation can be chosen. Thus the resolution in wave

numbers, that is, the distinction of various scales in an image, can be

set to any value with a corresponding spatial resolution (Fig. 8.12). As

the uncertainty relation gives only the lower limit of the joint resolu-

tion, it is important to devise efficient data structures that approach

this limit.

In the last two decades a number of various concepts have been

developed for multiresolution signal processing. Some trace back to

the early roots of signal processing. This includes various techniques

to filter signals for certain scale ranges such as the windowed Fourier

transform, Gabor filters, polar separable quadrature filters, and filters

steerable in scale (Section 8.8).

Some of these techniques are directly suitable to compute a local

wave number that reflects the dominant scale in a local neighborhood.

Multigrid image structures in the form of pyramids are another early

and efficient multiresolution [12]. More recent developments are the

scale space (Section 8.8) and wavelets [13, 14].

Although all of these techniques seem to be quite different at first

glance, this it not the case. They have much in common; they merely

look at the question of multiresolutional signal representation from a

different point of view. Thus an important issue in this chapter is to

work out the relations between the various approaches.

An early account onmultiresolution imaging was given by Rosenfeld

[15]. The standard work on linear scale space theory is by Lindeberg

[16] (see also CVA2 [Chapter 11]), and nonlinear scale space theory is

treated by Weickert [17] (see also Chapter 12).

8.8.2 Windowed Fourier transform

One way to a multiresolutional signal representation starts with the

Fourier transform. If the Fourier transform is applied only to a sec-

tion of the image and this section is moved around through the whole
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image, then a joint spatial/wave-number resolution is achieved. The

spatial resolution is given by the size of the window and due to the

uncertainty relation (Section 8.6.3), the wave-number resolution is re-

duced by the ratio of the image size to the window size. The window

function w(x) must not be a box function. Generally, a useful window

function has a maximum at the origin, is even and isotropic, and de-

creases monotonically with increasing distance from the origin. This

approach to a joint space/wave-number representation is thewindowed

Fourier transform. It is defined by

ĝ(x,k0) =

∞
∫

−∞

g(x′)w(x′ −x)exp(−2π ik0x
′)dx′2 (8.91)

The integral in Eq. (8.91) looks almost like a convolution integral (Sec-

tion 8.6.3). To convert it into a convolution integral we make use of the

fact that the window function is even (w(−k) = w(k)) and rearrange

the second part of Eq. (8.91):

w(x′ −x)exp(−2π ik0x′) =

w(x −x′)exp(2π ik0(x −x′))exp(−2π ik0x)

Then we can write Eq. (8.91) as a convolution:

ĝ(x,k0) = [g(x)∗w(x)exp(2π ik0x)] exp(−2π ik0x) (8.92)

This means that the local Fourier transform corresponds to a convo-

lution with the complex convolution kernel w(x)exp(2π ik0x) except

for a phase factor exp(−2π ik0x). Using the shift theorem (Table 8.4),

the transfer function of the convolution kernel can be computed to be

w(x)exp(2π ik0x) ⇐⇒ ŵ(k− k0) (8.93)

This means that the convolution kernel is a bandpass filter with a peak

wave number ofk0. The width of the bandpass is inversely proportional

to the width of the window function. In this way, the spatial and wave-

number resolutions are interrelated to each other. As an example, we

take a Gaussian window function

w(x) =
1

σ D
exp

(

−π
|x|2

σ 2

)

⇐⇒ ŵ(k) = exp

(

−π
|k|

2

σ−2

)

(8.94)

The Gaussian window function reaches the theoretical limit set by

the uncertainty relation and is thus an optimal choice; a better wave-

number resolution cannot be achieved with a given spatial resolution.

The windowed Fourier transform Equation (8.91) delivers a complex

filter response. This has the advantage that both the phase and the

amplitude of a bandpass-filtered signal are retrieved.
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Figure 8.13: a Transfer function (Eq. (8.95)); b even; and c odd part of the filter

mask (Eq. (8.97)) of a Gabor filter.

8.8.3 Gabor filter

Definition. A Gabor filter is a bandpass filter that selects a certain

wavelength range around the center wavelength k0 using the Gaussian

function. The Gabor filter is very similar to the windowed Fourier trans-

form if the latter is used with a Gaussian window function. The transfer

function of the Gabor filter is real but asymmetric and defined as

Ĝ(k) = exp
(

−π|k− k0)|2σ 2
x

)

(8.95)

From this equation it is obvious that a Gabor filter is only a useful

bandpass filter if it does not include the origin, that is, it is Ĝ(0) = 0.

This condition is met in good approximation if |k0|σx > 3.

The filter mask (point spread function) of these filters can be com-

puted easily with the shift theorem (Table 8.4):

G(x) =
1

σ D
exp(2π ik0x)exp

(

−
π|x|2

σ 2
x

)

(8.96)
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The complex filter mask can be split into an even real and an odd imag-

inary part:

G+(x) =
1

σ D
cos(k0x)exp

(

−
π|x|2

σ 2
x

)

G−(x) =
1

σ D
sin(k0x)exp

(

−
π|x|2

σ 2
x

)

(8.97)

Quadrature filters and analytic signals. Gabor filters are examples

of quadrature filters. This general class of filters generates a special

type of signal known as the analytic signal from a real-valued signal.

It is the easiest way to introduce the quadrature filter with the com-

plex form of its transfer function. Essentially, the transfer function

of a D-dimensional quadrature filter is zero for one half-space of the

Fourier domain parted by the hyperplane k
T
n̄ = 0:

q̂(k) =

{

2h(k) k
T
n̄ > 0

0 otherwise
(8.98)

where h(k) is a real-valued function. Equation (8.98) can be separated

into an even and odd function:

q̂+(k) = (q̂(k)+ q̂(−k))/2

q̂−(k) = (q̂(k)− q̂(−k))/2
(8.99)

The relation between the even and odd part of the signal response can

be described by the Hilbert transform:

q̂−(k) = i sgn(k
T
n̄)q̂+(k) ⇐⇒ q−(x) =

i

π

∞
∫

−∞

q+(x′)

(x′ −x)Tn̄
dD
x
′ (8.100)

The even and odd part of a quadrature filter can be combined into

a complex-valued signal by

qA = q+ − iq− (8.101)

From Eq. (8.100) we can then see that this combination is consistent

with the definition of the transfer function of the quadrature filter in

Eq. (8.98).

The basic characteristic of the analytic filter is that its even and odd

part have the same magnitude of the transfer function but that one

is even and real and the other is odd and imaginary. Thus the filter

responses of the even and odd part are shifted in phase by 90°. Thus

the even part is cosine-like and the odd part is sine-like—as can be seen
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Figure 8.14: Representation of a filtered 1-D signal as an analytic signal: Signal

filtered with a the even and b the odd part of a quadrature filter; c amplitude;

and d phase signal.

from the Gabor filter (Fig. 8.13b and c)—and they are shifted in phase

by 90° (Fig. 8.14).

Although the transfer function of the analytic filter is real, it results

in a complex signal because it is asymmetric. For a real signal no in-

formation is lost by suppressing the negative wave numbers. They can

be reconstructed as the Fourier transform of a real signal is Hermitian

(Section 8.6.3).

The analytic signal can be regarded as just another representation

of a real signal with two important properties. The magnitude of the

analytic signal gives the local amplitude (Fig. 8.14c)

∣

∣qA

∣

∣

2
= q2

+ + q2
− (8.102)

and the argument the local phase (Fig. 8.14d)

arg(A) = arctan

(

−H

I

)

(8.103)

While the concept of the analytic signal works with any type of 1-D

signal, it must be used with much more care in higher-dimensional sig-

nals. These problems are related to the fact that an analytical signal

cannot be defined for all wave numbers that lie on the hyperplane de-

fined by k
T
n̄ = 0 partitioning the Fourier domain in two half-spaces.
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For these wave numbers the odd part of the quadrature filter is zero.

Thus it is not possible to compute the local amplitude nor the local

phase of the signal. This problem can only be avoided if the transfer

function of the quadrature filter is zero at the hyperplane. For a phase

definition in two dimensions that does not show these restrictions, see

CVA3 [Chapter 10].

8.8.4 Local wave number

The key to determining the local wave number is the phase of the signal.

As an introduction we discuss a simple example and consider the 1-D

periodic signal g(x) = g0 cos(kx). The argument of the cosine function

is known as the phase φ(x) = kx of the periodic signal. This is a linear

function of the position and the wave number. Thus, we obtain the

wave number of the periodic signal by computing the first-order spatial

derivative of the phase signal

∂φ(x)

∂x
= k (8.104)

These simple considerations emphasize the significant role of the

phase in signal processing.

Local wave number from phase gradients. In order to determine the

local wave number, we need to compute just the first spatial derivative

of the phase signal. This derivative has to be applied in the same di-

rection as the Hilbert or quadrature filter. The phase is given by

φ(x) = arctan

(

−g+(x)

g−(x)

)

(8.105)

Direct computation of the partial derivatives from Eq. (8.105) is not

advisable, however, because of the inherent discontinuities in the phase

signal. A phase computed with the inverse tangent restricts the phase

to the main interval [−π, π[ and thus inevitably leads to a wrapping of

the phase signal from π to −π with the corresponding discontinuities.

As pointed out by Fleet [18], this problem can be avoided by comput-

ing the phase gradient directly from the gradients of q+(x) and q−(x):

kp =
∂φ(x)

∂xp

=
∂

∂xp
arctan(−q+(x)/q−(x))

=
1

q2
+(x)+ q2

−(x)

(

∂q+(x)

∂xp
q−(x)−

∂q−(x)

∂xp
q+(x)

)

(8.106)
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Figure 8.15: a Radial and b angular part of quadrature filter according to

Eq. (8.107) with l = 2 and B = 2 in different directions and with different peak

wave numbers.

This formulation of the phase gradient also eliminates the need for us-

ing trigonometric functions to compute the phase signal and is, there-

fore, significantly faster.

Local wave number from filter ratios. With polar separable quadra-

ture filters (r̂ (k)d̂(φ)) as introduced by Knutsson [19] another scheme

for computation of the local scale is possible. These classes of filters

are defined by

r̂ (k) = exp

[

−
(lnk− lnk0)2

(B/2)2 ln2

]

d̂(φ) =

{

cos2l(φ−φk) |φ−φk| < π/2

0 otherwise

(8.107)

In this equation, the complex notation for quadrature filters is used as

introduced at the beginning of this section. The filter is directed into

the angle φk.

The filter is continuous, as the cosine function is zero in the partition

plane for the two half-spaces (|φ−φk| = π/2). The constant k0 denotes

the peak wave number. The constant B determines the half-width of the

wave number in number of octaves and l the angular resolution of the

filter. In a logarithmic wave-number scale, the filter has the shape of

a Gaussian function. Therefore, the radial part has a lognormal shape.

Figure 8.15 shows the radial and angular part of the transfer function.

The lognormal form of the radial part of the quadrature filter sets is

the key for a direct estimate of the local wave number of a narrowband

signal. According to Eq. (8.107), we can write the radial part of the

transfer function as

r̂l(k) = exp

[

−
(lnk− lnkl)

2

2σ 2 ln2

]

(8.108)
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We examine the ratio of the output of two different radial center

frequencies k1 and k2 and obtain:

r̂2
r̂1

= exp

[

−
(lnk− lnk2)2 − (lnk− lnk1)2

2σ 2 ln2

]

= exp

[

2(lnk2 − lnk1) lnk+ ln
2

k2 − ln
2

k1

2σ 2 ln2

]

= exp

[

(lnk2 − lnk1)[lnk− 1/2(lnk2 + lnk1)]

σ 2 ln2

]

= exp

[

ln(k/
√

k2k1) ln(k2/k1)

σ 2 ln2

]

=

(

k
√

k1k2

)ln(k2/k1)/(σ2 ln2)

Generally, the ratio of two different radial filters is directly related

to the local wave number. The relation becomes particularly simple if

the exponent in the last expression is one. This is the case, for example,

if the wave-number ratio of the two filters is two (k2/k1 = 2 and σ = 1).

Then

r̂2
r̂1
=

k
√

k1k2

(8.109)

8.9 Scale space and diffusion

As we have seen with the example of the windowed Fourier transform

in the previous section, the introduction of a characteristic scale adds a

new coordinate to the representation of image data. Besides the spatial

resolution, we have a new parameter that characterizes the current res-

olution level of the image data. The scale parameter is denoted by ξ. A

data structure that consists of a sequence of images with different res-

olutions is known as a scale space; we write g(x, ξ) to indicate the scale

space of the image g(x). Such a sequence of images can be generated

by repeated convolution with an appropriate smoothing filter kernel.

This section is considered a brief introduction into scale spaces. For

an authoritative monograph on scale spaces, see Lindeberg [16].

8.9.1 General properties of a scale space

In this section, we discuss some general conditions that must be met

by a filter kernel generating a scale space. We will discuss two basic

requirements. First, new details must not be added with increasing

scale parameter. From the perspective of information theory, we may
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