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the increase in the area of the cells proportional to k2 must be consid-

ered:

∞
∫

−∞

|ĝ(k)|2 dk1 dk2 =
∞
∫

−∞

k2|ĝ(k)|2 d lnkdϕ (8.47)

Thus, the power spectrum |ĝ(k)|2 in the log-polar representation is

multiplied by k2 and falls off much less steep than in the Cartesian

representation. The representation in a log-polar coordinate system al-

lows a much better evaluation of the directions of the spatial structures

and of the smaller scales. Moreover, a change in scale or orientation just

causes a shift of the signal in the log-polar representation. Therefore,

it has gained importance in representation object for shape analysis

([CVA3, Chapter 8]).

8.6 Continuous Fourier transform (FT)

In this section, we give a brief survey of the continuous Fourier trans-

form and we point out the properties that are most important for signal

processing. Extensive and excellent reviews of the Fourier transform

are given by Bracewell [8], Poularikas [7, Chapter 2], or Madisetti and

Williams [9, Chapter 1]

8.6.1 One-dimensional FT

Definition 8.1 (1-D FT) If g(x) : R ֏ C is a square integrable function,

that is,

∞
∫

−∞

∣

∣g(x)
∣

∣ dx < ∞ (8.48)

then the Fourier transform of g(x), ĝ(k) is given by

ĝ(k) =
∞
∫

−∞

g(x)exp (−2π ikx) dx (8.49)

The Fourier transform maps the vector space of absolutely integrable

functions onto itself. The inverse Fourier transform of ĝ(k) results in

the original function g(x):

g(x) =
∞
∫

−∞

ĝ(k)exp (2π ikx) dk (8.50)
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It is convenient to use an operator notation for the Fourier trans-

form. With this notation, the Fourier transform and its inverse are

simply written as

ĝ(k) = Fg(x) and g(x) = F−1ĝ(k) (8.51)

A function and its transform, a Fourier transform pair is simply de-

noted by g(x) ⇐⇒ ĝ(k).

In Eqs. (8.49) and (8.50) a definition of the wave number without the

factor 2π is used, that is k = 1/λ, in contrast to the notation often

used in physics with k′ = 2π/λ. For signal processing, the first notion

is more useful, because k directly gives the number of periods per unit

length.

With the notation that includes the factor 2π in the wave number,

two forms of the Fourier transform are common: the asymmetric form

ĝ(k′) =
∞
∫

−∞

g(x)exp(−ik′x)dx

g(x) = 1

2π

∞
∫

−∞

ĝ(k)exp(ik′x)dk

(8.52)

and the symmetric form

ĝ(k′) = 1√
2π

∞
∫

−∞

g(x)exp(−ik′x)dx

g(x) = 1√
2π

∞
∫

−∞

ĝ(k′)exp(ik′x)dk′

(8.53)

As the definition of the Fourier transform takes the simplest form

in Eqs. (8.49) and (8.50), most other relations and equations also be-

come simpler than with the definitions in Eqs. (8.52) and (8.53). In

addition, the relation of the continuous Fourier transform with the dis-

crete Fourier transform (Section 8.7) and the Fourier series (Table 8.3)

becomes more straightforward.

Because all three versions of the Fourier transform are in common

use, it is likely that wrong factors in Fourier transform pairs will be

obtained. The rules for conversion of Fourier transform pairs between

the three versions can directly be inferred from the definitions and are

summarized here:

k without 2π , Eq. (8.49) g(x) ⇐⇒ ĝ(k)

k′ with 2π , Eq. (8.52) g(x) ⇐⇒ ĝ(k′/2π)

k′ with 2π , Eq. (8.53) g(x/
√

(2π)) ⇐⇒ ĝ(k′/
√

(2π))

(8.54)
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Table 8.3: Comparison of the continuous Fourier transform (FT), the Fourier

series (FS), the infinite discrete Fourier transform (IDFT), and the discrete Fourier

transform (DFT) in one dimension

Type Forward transform Backward transform

FT: R⇐⇒ R
∞
∫

−∞

g(x)exp (−2π ikx) dx

∞
∫

−∞

ĝ(k)exp (2π ikx) dk

FS:

[0,∆x] ⇐⇒ Z
1

∆x

∆x
∫

0

g(x)exp

(

−2π i
vx

∆x

)

dx

∞
∑

v=−∞
ĝv exp

(

2π i
vx

∆x

)

IDFT:

Z⇐⇒ [0,1/∆x]

∞
∑

n=−∞
gn exp (−2π in∆xk) ∆x

1/∆x
∫

0

ĝ(k)exp (2π in∆xk) dk

DFT:

NN ⇐⇒ NN

1

N

N−1
∑

n=0
gn exp

(

−2π i
vn

N

) N−1
∑

v=0
ĝv exp

(

2π i
vn

N

)

8.6.2 Multidimensional FT

The Fourier transform can easily be extended to multidimensional sig-

nals.

Definition 8.2 (Multidimensional FT) If g(x) : RD ֏ C is a square in-

tegrable function, that is,

∞
∫

−∞

∣

∣g(x)
∣

∣ dDx < ∞ (8.55)

then the Fourier transform of g(x), ĝ(k) is given by

ĝ(k) =
∞
∫

−∞

g(x)exp
(

−2π ik
T
x
)

dDx (8.56)

and the inverse Fourier transform by

g(x) =
∞
∫

−∞

ĝ(k)exp
(

2π ik
T
x
)

dDk (8.57)

The scalar product in the exponent of the kernel xTk makes the

kernel of the Fourier transform separable, that is, it can be written as

exp
(

−2π ik
T
x
)

=
D
∏

d=1
exp(−ikdxd) (8.58)
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Table 8.4: Summary of the properties of the continuous D-dimensional Fourier

transform; g(x) and h(x) are complex-valued functions, the Fourier trans-

forms of which, ĝ(k) and ĥ(k), do exist; s is a real and a and b are complex con-

stants; A and U are D×D matrices, U is unitary (U−1 = UT , see Section 8.5.2)

Property Spatial domain Fourier domain

Linearity ag(x)+ bh(x) aĝ(k)+ bĥ(k)

Similarity g(sx) ĝ(k/s)/|s|
Similarity g(Ax) ĝ

(

(A
−1

)Tk
)

/|A|
Rotation g(Ux) ĝ (Uk)

Separability

D
∏

d=1
g(xd)

D
∏

d=1
ĝ(kd)

Shift

in x space

g(x −x0) exp(−2π ikx0)ĝ(k)

Shift

in k space

exp(2π ik0x)g(x) ĝ(k− k0)

Differentiation

in x space

∂g(x)

∂xp
2π ikpĝ(k)

Differentiation

in k space

−2π ixpg(x)
∂ĝ(k)

∂kp

Definite

integral

∞
∫

−∞

g(x′)dDx′ ĝ(0)

Moments

∞
∫

−∞

xm
p xn

q g(x)dDx

(

1

−2π i

)m+n
(

∂mĝ(k)

∂km
p

∂nĝ(k)

∂kn
q

)∣

∣

∣

∣

∣

0

Convolution

∞
∫

−∞

h(x′)g(x −x′)dDx′ ĥ(k)ĝ(k)

Multiplication h(x)g(x)

∞
∫

−∞

ĥ(k
′
)ĝ(k− k′)dDk′

Finite differ-

ence

g(x + Vx0)− g(x − Vx0) 2i sin(2πx0k)

Modulation cos(2πk0x)g(x) (ĝ(k− k0)+ ĝ(k+ k0))
/

2

Spatial

correlation

∞
∫

−∞

g(x′)h(x′ +x)dDx′ ĝ(k)ĥ∗(k)

Inner

product

∞
∫

−∞

g(x)h∗(x)dDx

∞
∫

−∞

ĝ(k)ĥ∗(k)dDk
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8.6.3 Basic properties

For reference, the basic properties of the Fourier transform are summa-

rized in Table 8.4. An excellent review of the Fourier transform and its

applications are given by [8]. Here we will point out some of the prop-

erties of the FT that are most significant for multidimensional signal

processing.

Symmetries. Four types of symmetries are important for the Fourier

transform:

even g(−x) = g(x),

odd g(−x) = −g(x),

Hermitian g(−x) = g∗(x),

anti-Hermitian g(−x) = −g∗(x)

(8.59)

Any function g(x) can be split into its even and odd parts by

eg(x) = g(x)+ g(−x)

2
and og(x) = g(x)− g(−x)

2
(8.60)

With this partition, the Fourier transform can be parted into a cosine

and a sine transform:

ĝ(k) = 2

∞
∫

0

eg(x) cos(2πk
T
x)dDx + 2i

∞
∫

0

og(x) sin(2πk
T
x)dDx (8.61)

It follows that if a function is even or odd, its transform is also even or

odd. The full symmetry results are:

real ⇐⇒ Hermitian

real and even ⇐⇒ real and even

real and odd ⇐⇒ imaginary and odd

imaginary ⇐⇒ anti-Hermitian

imaginary and even ⇐⇒ imaginary and even

imaginary and odd ⇐⇒ real and odd

Hermitian ⇐⇒ real

anti-Hermitian ⇐⇒ imaginary

even ⇐⇒ even

odd ⇐⇒ odd

(8.62)

Separability. As the kernel of the Fourier transform (Eq. (8.58)) is sep-

arable, the transform of a separable function is also separable:

D
∏

d=1
g(xd) ⇐⇒

D
∏

d=1
ĝ(kd) (8.63)
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This property is essential to compute transforms of multidimensional

functions efficiently from 1-D transforms because many of them are

separable.

Convolution. Convolution is one of the most important operations

for signal processing. It is defined by

(h∗ g)(x) =
∞
∫

−∞

g(x′)h(x −x′)dDx′ (8.64)

In signal processing, the function h(x) is normally zero except for a

small area around zero and is often denoted as the convolution mask.

Thus, the convolution with h(x) results in a new function g′(x) whose

values are a kind of weighted average of g(x) in a small neighborhood

around x. It changes the signal in a defined way, that is, makes it

smoother, etc. Therefore it is also called a filter operation. The convo-

lution theorem states:

Theorem 8.3 (Convolution) Ifg(x) has the Fourier transform ĝ(k) and

h(x) has the Fourier transform ĥ(k) and if the convolution integral

(Eq. (8.64)) exists, then it has the Fourier transform ĥ(k)ĝ(k).

Thus, convolution of two functions means multiplication of their

transforms. Likewise, convolution of two functions in the Fourier do-

main means multiplication in the space domain. The simplicity of con-

volution in the Fourier space stems from the fact that the base func-

tions of the Fourier domain, the complex exponentials exp
(

2π ik
T
x
)

,

are joint eigenfunctions of all convolution operators. This means that

these functions are not changed by a convolution operator except for

the multiplication by a factor.

From the convolution theorem, the following properties are imme-

diately evident. Convolution is

commutative h∗ g = g ∗h,

associative h1 ∗ (h2 ∗ g) = (h1 ∗h2)∗ g,

distributive over addition (h1 +h2)∗ g = h1 ∗ g +h2 ∗ g

(8.65)

In order to grasp the importance of these properties of convolu-

tion, we note that two operations that do not look so at first glance,

are also convolution operations: the shift operation and all derivative

operators. This can immediately be seen from the shift and derivative

theorems (Table 8.4; [8, Chapters 5 and 6]).

In both cases the Fourier transform is just multiplied by a complex

factor. The convolution mask for a shift operation S is a shifted δ

distribution:

S(s)g(x) = δ(x − s)∗ g(x) (8.66)
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The transform of the first derivative operator in x1 direction is

2π ik1. The corresponding inverse Fourier transform of 2π ik1, that

is, the convolution mask, is no longer an ordinary function (2π ik1 is

not absolutely integrable) but the derivative of the δ distribution:

2π ik1 ⇐⇒ δ′(x) = dδ(x)

dx
= lim

a→0

d

dx

(

exp(−πx2/a2)

a

)

(8.67)

Of course, the derivation of the δ distribution exists—as all properties

of distributions—only in the sense as a limit of a sequence of functions

as shown in the preceding equation.

With the knowledge of derivative and shift operators being convo-

lution operators, we can use the properties summarized in Eq. (8.65) to

draw some important conclusions. As any convolution operator com-

mutes with the shift operator, convolution is a shift-invariant opera-

tion. Furthermore, we can first differentiate a signal and then perform

a convolution operation or vice versa and obtain the same result.

The properties in Eq. (8.65) are essential for an effective compu-

tation of convolution operations [CVA2, Section 5.6]. As we already

discussed qualitatively in Section 8.5.3, the convolution operation is

a linear shift-invariant operator. As the base functions of the Fourier

domain are the common eigenvectors of all linear and shift-invariant

operators, the convolution simplifies to a complex multiplication of the

transforms.

Central-limit theorem. The central-limit theorem is mostly known for

its importance in the theory of probability [2]. It also plays, however, an

important role for signal processing as it is a rigorous statement of the

tendency that cascaded convolution tends to approach Gaussian form

(∝ exp(−ax2)). Because the Fourier transform of the Gaussian is also

a Gaussian (Table 8.5), this means that both the Fourier transform (the

transfer function) and the mask of a convolution approach Gaussian

shape. Thus the central-limit theorem is central to the unique role of

the Gaussian function for signal processing. The sufficient conditions

under which the central-limit theorem is valid can be formulated in

different ways. We use here the conditions from [2] and express the

theorem with respect to convolution.

Theorem 8.4 (Central-limit theorem) Given N functions hn(x) with

zero mean
∫∞
−∞ hn(x)dx and the variance σ 2

n =
∫∞
−∞ x2hn(x)dx with

z = x/σ , σ 2 =
∑N

n=1 σ 2
n then

h = lim
N→∞

h1 ∗h2 ∗ . . .∗hN ∝ exp(−z2/2) (8.68)
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provided that

lim
N→∞

N
∑

n=1
σ 2

n →∞ (8.69)

and there exists a number α > 2 and a finite constant c such that

∞
∫

−∞

xαhn(x)dx < c < ∞ ∀n (8.70)

The theorem is of much practical importance because—especially if

h is smooth—the Gaussian shape is approximated sufficiently accurate

already for values of n as low as 5.

Smoothness and compactness. The smoother a function is, the more

compact is its Fourier transform. This general rule can be formulated

more quantitatively if we express the smoothness by the number of

derivatives that are continuous and the compactness by the asymptotic

behavior for large values of k. Then we can state: If a function g(x) and

its firstn−1 derivatives are continuous, its Fourier transform decreases

at least as rapidly as
∣

∣k
∣

∣

−(n+1)
for large k, that is, lim|k|→∞ |k|ng(k) = 0.

As simple examples we can take the box and triangle functions (see

next section). The box function is discontinuous (n = 0), its Fourier

transform, the sinc function, decays with |k|−1. In contrast, the tri-

angle function is continuous, but its first derivative is discontinuous.

Therefore, its Fourier transform, the sinc2 function, decays steeper with

|k|−2. In order to include also impulsive functions (δ distributions) in

this relation, we note that the derivative of a discontinous function be-

comes impulsive. Therefore, we can state: If the nth derivative of a

function becomes impulsive, the function’s Fourier transform decays

with |k|−n.

The relation between smoothness and compactness is an extension

of reciprocity between the spatial and Fourier domain. What is strongly

localized in one domain is widely extended in the other and vice versa.

Uncertainty relation. This general law of reciprocity finds another

quantitative expression in the classical uncertainty relation or the band-

width-duration product . This theorem relates the mean square width

of a function and its Fourier transform. The mean square width (∆x)2

is defined as

(∆x)2 =

∞
∫

−∞

x2
∣

∣g(x)
∣

∣

2

∞
∫

−∞

∣

∣g(x)
∣

∣

2

−



















∞
∫

−∞

x
∣

∣g(x)
∣

∣

2

∞
∫

−∞

∣

∣g(x)
∣

∣

2



















2

(8.71)
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Table 8.5: Functions and distributions that are invariant under the Fourier

transform; the table contains 1-D and multidimensional functions with the di-

mension D

Space domain Fourier domain

Gauss, exp
(

−πxTx
)

Gauss, exp
(

−πk
T
k
)

sech(πx) = 1

exp(πx)+ exp(−πx)
sech(πk) = 1

exp(πk)+ exp(−πk)

Pole, |x|−D/2 Pole, |k|−D/2

δ comb, III(x/∆x) =
∞
∑

n=−∞
δ(x−n∆x) δ comb, III(k∆x) =

∞
∑

v=−∞
δ(k− v/∆x)

It is essentially the variance of
∣

∣g(x)
∣

∣

2
, a measure of the width of

the distribution of the “energy” of the signal. The uncertainty relation

states:

Theorem 8.5 (Uncertainty relation) The product of the variance of
∣

∣g(x)
∣

∣

2
, (∆x)2, and of the variance of

∣

∣ĝ(k)
∣

∣

2
, (∆k)2, cannot be smaller

than 1/4π :

∆x∆k ≥ 1

4π
(8.72)

The relations between compactness and smoothness and the uncer-

tainty relation give some basic guidance for the design of linear filter

(convolution) operators [CVA2, Chapter 6].

Invariant functions. It is well known that the Fourier transform of a

Gaussian function is again a Gaussian function with reciprocal variance:

exp

(

−πx2

a2

)

⇐⇒ exp

(

−πk2

a−2

)

(8.73)

But it is less well known that there are other functions that are invari-

ant under the Fourier transform (Table 8.5). Each of these functions

has a special meaning for the Fourier transform. The δ-comb function

III is the basis for the sampling theorem and establishes the relation

between the lattice in the spatial domain and the reciprocal lattice in

the Fourier domain. The functions with a pole at the origin, |x|D/2 in a

D-dimensional space, are the limiting signal form for which the integral

over the square of the function diverges (physically speaking, the total

energy of a signal just becomes infinite). Tables with Fourier transform

pairs can be found in Bracewell [8].
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8.7 The discrete Fourier transform (DFT)

8.7.1 One-dimensional DFT

Definition 8.3 (1-D DFT) If g is an N-dimensional complex-valued vec-

tor,

g = [g0, g1, . . . , gN−1]
T

(8.74)

then the discrete Fourier transform of g, ĝ is defined as

ĝv =
1√
N

N−1
∑

n=0
gn exp

(

−2π inv

N

)

, 0 ≤ v < N (8.75)

The DFT maps the vector space of N-dimensional complex-valued

vectors onto itself. The index v denotes how often the wavelength

of the corresponding discrete exponential exp(−2π inv/N) with the

amplitude ĝv fits into the interval [0, N].

The back transformation is given by

gn =
1√
N

N−1
∑

v=0
ĝv exp

(

2π inv

N

)

, 0 ≤ n < N (8.76)

We can consider the DFT as the inner product of the vector g with a set

of M orthonormal basis vectors, the kernel of the DFT:

bv =
1√
N

[

1, W v
N , W 2v

N , . . . , W
(N−1)v
N

]T
with WN = exp

(

2π i

N

)

(8.77)

Using the base vectors bv , the DFT reduces to

ĝv = b∗T
g or ĝ = Fg with F =













b
∗T
0

b
∗T
1

. . .

b
∗T
N−1













(8.78)

This means that the coefficient ĝv in the Fourier space is obtained by

projecting the vector g onto the basis vector bv . The N basis vectors

bv form an orthonormal base of the vector space:

b
∗T
v b

′
v = δv−v ′ =

{

1 if v = v ′

0 otherwise
(8.79)

The real and imaginary parts of the basis vectors are sampled sine

and cosine functions of different wavelengths with a characteristic pe-

riodicity:

exp

(

2π in+pN

N

)

= exp

(

2π in

N

)

, ∀p ∈ Z (8.80)
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The basis vector b0 is a constant real vector.

With this relation and Eqs. (8.75) and (8.76) the DFT and the in-

verse DFT extend the vectors ĝ and g, respectively, periodically over

the whole space:

Fourier domain ĝv+pN = ĝv , ∀p ∈ Z
space domain gn+pN = gn ∀p ∈ Z (8.81)

This periodicity of the DFT gives rise to an interesting geometric inter-

pretation. According to Eq. (8.81) the border points gM−1 and gM = g0

are neighboring points. Thus it is natural to draw the points of the

vector not on a finite line but on a unit circle, or Fourier ring.

With the double periodicity of the DFT, it does not matter which

range of N indices we chose. The most natural choice of wave numbers

is v ∈ [−N/2, N/2−1], N even. With this index range the 1-D DFT and

its inverse are defined as

ĝv =
1√
N

N−1
∑

n=0
gnW−nv

N ⇐⇒ gn =
1√
N

N/2−1
∑

v=−N/2

ĝvW nv
N (8.82)

Then the wave numbers are restricted to values that meet the sam-

pling theorem (Section 8.4.2), that is, are sampled at least two times

per period. Note that the exponentials bN−v = b−v = b∗v according to

Eqs. (8.77) and (8.80).

As in the continuous case further variants for the definition of the

DFT exist that differ by the factors applied to the forward and back-

ward transform. Here again a symmetric definition was chosen that

has the benefit that the base vectors become unit vectors. Other vari-

ants use the factor 1/N either with the forward or backward transform

and not, as we did 1/
√

N with both transforms. The definition with

the factor 1/N has the advantage that the zero coefficient of the DFT,

ĝ0 = (1/N)
∑N−1

n=0 gn, directly gives the mean value of the sequence. The

various definitions in use are problematic because they cause consid-

erable confusion with factors in DFT pairs and DFT theorems.

8.7.2 Multidimensional DFT

As with the continuous FT (Section 8.6.2), it is easy to extend the DFT

to higher dimensions. In order to simplify the equations, we use the

abbreviation for the complex exponentials already used in Eq. (8.77)

WN = exp

(

2π i

N

)

with W
n+pN
N = W n

N , W−n
N = W∗n

N (8.83)

In two dimensions the DFT operates on M ×N matrices.
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Definition 8.4 (2-D DFT) The 2-D DFT: CM×N ֏ CM×N is defined as

Ĝu,v =
1√
MN

M−1
∑

m=0





N−1
∑

n=0
Gm,nW−nv

N



W−mu
M (8.84)

and the inverse DFT as

Gmn =
1√
MN

M−1
∑

u=0

N−1
∑

v=0
Ĝu,vW mu

M W nv
N (8.85)

As in the 1-D case, the DFT expands a matrix into a set of NM or-

thonormal basis matrices Bu,v , which span the N ×M-dimensional vec-

tor space over the field of complex numbers:

Bu,v =
1√
MN

W−nv
N W−mu

M = 1√
MN

bub
T
v (8.86)

In this equation, the basis matrices are expressed as an outer product

of the column and the row vector that form the basis vectors of the 1-D

DFT. Thus as in the continuous case, the kernel of themultidimensional

DFTs are separable.

As in the 1-D case (Section 8.7.1), the definition of the 2-D DFT im-

plies a periodic extension in both domains beyond the original matrices

into the whole 2-D space.

8.7.3 Basic properties

The theorems of the 2-D DFT are summarized in Table 8.6. They are

very similar to the corresponding theorems of the continuous Fourier

transform, which are listed in Table 8.4 for a D-dimensional FT. As in

Section 8.6.3, we discuss some properties that are of importance for

signal processing in more detail.

Symmetry. The DFT shows the same symmetries as the FT (Eq. (8.59)).

In the definition for even and odd functions g(−x) = ±g(x) only the

continuous functions must be replaced by the corresponding vectors

g−n = ±gn or matrices G−m,−n = ±Gm,n. Note that because of the

periodicity of the DFT, these symmetry relations can also be written as

G−m,−n = ±Gm,n ≡ GM−m,N−n = ±Gm,n (8.87)

for even (+ sign) and odd (− sign) functions. This is equivalent to shift-

ing the symmetry center from the origin to the point [M/2, N/2]
T
.

The study of symmetries is important for practical purposes. Care-

ful consideration of symmetry allows storage space to be saved and

algorithms to speed up. Such a case is real-valued images. Real-valued
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Table 8.6: Summary of the properties of the 2-D DFT; G and H are complex-

valuedM ×N matrices, Ĝ and Ĥ their Fourier transforms, anda and b complex-

valued constants; for proofs see Poularikas [7], Cooley and Tukey [10]

Property Space domain Wave-number domain

Mean
1

MN

M−1
∑

m=0

N−1
∑

n=0
Gmn Ĝ0,0/

√
MN

Linearity aG+ bH aĜ+ bĤ

Shifting Gm−m′,n−n′ W−m′u
M W−n′v

N Ĝuv

Modulation W u′m
M W v′n

N Gm,n Ĝu−u′,v−v′

Finite differences
(Gm+1,n −Gm−1,n)/2

(Gm,n+1 −Gm,n−1)/2

i sin(2πu/M)Ĝuv

i sin(2πv/N)Ĝuv

Spatial

stretching

GPm,Qn Ĝuv/(
√

PQ)

Frequency

stretching

Gm,n/(
√

PQ) ĜPu,Qv

Spatial sampling Gm/P,n/Q
1

√

PQ

P−1
∑

p=0

Q−1
∑

q=0
Ĝu+pM/P,v+qN/Q

Frequency

sampling

1
√

PQ

P−1
∑

p=0

Q−1
∑

q=0
Gm+pM/P,n+qN/Q Ĝpu,qv

Convolution

M−1
∑

m′=0

N−1
∑

n′=0
Hm′n′Gm−m′,n−n′

√
MNĤuvĜuv

Multiplication
√

MNGmnHmn

M−1
∑

u′=0

N−1
∑

v′=0
Hu′v′Gu−u′,v−v′

Spatial

correlation

M−1
∑

m′=0

N−1
∑

n′=0
Hm′n′Gm+m′,n+n′

√
NĤuvĜ∗

uv

Inner product

M−1
∑

m=0

N−1
∑

n=0
GmnH∗

mn

M−1
∑

u=0

N−1
∑

v=0
ĜuvĤ∗

uv

Norm

M−1
∑

m=0

N−1
∑

n=0
|Gmn|2

M−1
∑

u=0

N−1
∑

v=0
|Ĝuv |2
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Figure 8.11: a Half-space as computed by an in-place Fourier transform algo-

rithm; the wave number zero is in the upper left corner; b FT with the missing

half appended and remapped so that the wave number zero is in the center.

images can be stored in half of the space as complex-valued images.

From the symmetry relations Eq. (8.62) we can conclude that real-valued

functions exhibit a Hermitian DFT:

Gmn = G∗
mn ⇐⇒ ĜM−u,N−v = Ĝ∗

uv (8.88)

The complex-valued DFT of real-valued matrices is, therefore, com-

pletely determined by the values in one half-space. The other half-space

is obtained by mirroring at the symmetry center (M/2, N/2). Conse-

quently, we need the same amount of storage space for the DFT of a

real image as for the image itself, as only half of the complex spectrum

needs to be stored.

In two and higher dimensions, matters are slightly more complex.

The spectrum of a real-valued image is determined completely by the

values in one half-space, but there are many ways to select the half-

space. This means that all except for one component of the wave num-

ber can be negative, but that we cannot distinguish between k and −k,
that is, between wave numbers that differ only in sign. Therefore, we

can again represent the Fourier transform of real-valued images in a

half-space where only one component of the wave number includes

negative values. For proper representation of the spectra with zero

values of this component in the middle of the image, it is necessary to

interchange the upper (positive) and lower (negative) parts of the image

as illustrated in Fig. 8.11.

For real-valued image sequences, again we need only a half-space to

represent the spectrum. Physically, it makes the most sense to choose

the half-space that contains positive frequencies. In contrast to a single

image, we obtain the full wave-number space. Now we can identify the
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spatially identical wave numbers k and −k as structures propagating

in opposite directions.

Convolution. One- and two-dimensional discrete convolution are de-

fined by

g′n =
N−1
∑

n′=0
hn′gn−n′ , G′

m,n =
M−1
∑

m′=0

N−1
∑

n′=0
Hm′n′Gm−m′,n−n′ (8.89)

The convolution theorem states:

Theorem 8.6 (Discrete convolution) If g (G) has the Fourier transform

ĝ (Ĝ) and h (H) has the Fourier transform ĥ (Ĥ), then h∗g (H ∗G) has
the Fourier transform

√
Nĥĝ (

√
MNĤĜ).

Thus, also in the discrete case convolution of two functions means

multiplication of their transforms. This is true because the shift theo-

rem is still valid, which ensures that the eigenfunctions of all convolu-

tion operators are the basis functions bv of the Fourier transform.

Convolution for arbitrary dimensional signals is also

commutative h∗ g = g ∗h,

associative h1 ∗ (h2 ∗ g) = (h1 ∗h2)∗ g,

distributive over addition (h1 +h2)∗ g = h1 ∗ g +h2 ∗ g
(8.90)

These equations show only the 1-D case.

8.7.4 Fast Fourier transform algorithms (FFT)

Without an effective algorithm to calculate the discrete Fourier trans-

form, it would not be possible to apply the FT to images and other

higher-dimensional signals. Computed directly after Eq. (8.84), the FT

is prohibitively expensive. Not counting the calculations of the cosine

and sine functions in the kernel, which can be precalculated and stored

in a lookup table, the FT of an N ×N image needs in total N4 complex

multiplications and N2(N2 − 1) complex additions. Thus it is an op-

eration of O(N4) and the urgent need arises to minimize the number

of computations by finding a suitable fast algorithm. Indeed, the fast

Fourier transform (FFT) algorithm first published by Cooley and Tukey

[10] is the classical example of a fast algorithm. A detailed discus-

sion on FFT-algorithms can be found in Bracewell [8], Blahut [11], and

Besslich and Lu [6].
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Figure 8.12: Illustration of the interdependence of resolution in the spatial and

wave-number domain in one dimension. Representations in the space domain,

the wave-number domain, and the space/wave-number domain (2 planes of

pyramid with half and quarter resolution) are shown.

8.8 Scale of signals

8.8.1 Basics

In Sections 8.5 and 8.7 the representation of images in the spatial and

wave-number domain were discussed. If an image is represented in the

spatial domain, we do not have any information at all about the wave

numbers contained at a point in the image. We know the position with

an accuracy of the lattice constant∆x, but the local wave number at this

position may be anywhere in the range of the possible wave numbers

from −1/(2∆x) to 1/(2∆x) (Fig. 8.12).

In the wave-number domain we have the reverse case. Each pixel

in this domain represents one wave number with the highest wave-

number resolution possible for the given image size, which is−1/(N∆x)

for an image with N pixels in each coordinate. But any positional in-

formation is lost, as one point in the wave-number space represents a

periodic structure that is spread over the whole image (Fig. 8.12). Thus,

the position uncertainty is the linear dimension of the image N∆x. In

this section we will revisit both representations under the perspective

of how to generate a multiscale representation of an image.

The foregoing discussion shows that the representations of an im-

age in either the spatial or wave-number domain constitute two oppo-

site extremes. Although the understanding of both domains is essential

for any type of signal processing, the representation in either of these

domains is inadequate to analyze objects in images.

In the wave-number representation the spatial structures from var-

ious independent objects are mixed up because the extracted periodic
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