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8.5 Vector spaces and unitary transforms

8.5.1 Introduction

An N ×M digital image has NM individual pixels that can take arbitrary

values. Thus it has NM degrees of freedom. Without mentioning it

explicitly, we thought of an image as being composed of individual

pixels. Thus, we can compose each image of basis images m,nP where

just one pixel has a value of one while all other pixels are zero:

m,nPm′,n′ = δm−m′δn−n′ =

{

1 if m = m′ ∧n = n′

0 otherwise
(8.40)

Any arbitrary image can then be composed of all basis images in Eq. (8.40)

by

G =

M−1
∑

m=0

N−1
∑

n=0

Gm,n
m,n

P (8.41)

where Gm,n denotes the gray value at the position [m, n]. The inner

product (also known as scalar product ) of two “vectors” in this space

can be defined similarly to the scalar product for vectors and is given

by

(G,H) =

M−1
∑

m=0

N−1
∑

n=0

Gm,nHm,n (8.42)

where the parenthesis notation (·, ·) is used for the inner product in

order to distinguish it from matrix multiplication. The basis images
m,nP form an orthonormal base for an N ×M-dimensional vector space.

From Eq. (8.42), we can immediately derive the orthonormality relation

for the basis images m,nP:

M−1
∑

m=0

N−1
∑

n=0

m′,n′

Pm,n
m′′,n′′

Pm,n = δm′−m′′δn′−n′′ (8.43)

This states that the inner product between two base images is zero if

two different basis images are taken. The scalar product of a basis

image with itself is one. The MN basis images thus span an M ×N-

dimensional vector space RN×M over the set of real numbers.

An M ×N image represents a point in the M ×N vector space. If

we change the coordinate system, the image remains the same but its

coordinates change. This means that we just observe the same piece of

information from a different point of view. All these representations

are equivalent to each other and each gives a complete representation
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of the image. A coordinate transformation leads us from one represen-

tation to the other and back again. An important property of such a

transform is that the length or (magnitude) of a vector

‖G‖2 = (G,G)
1/2

(8.44)

is not changed and that orthogonal vectors remain orthogonal. Both

requirements are met if the coordinate transform preserves the inner

product. A transform with this property is known as a unitary trans-

form.

Physicists will be reminded of the theoretical foundations of quan-

tum mechanics, which are formulated in an inner product vector space

of infinite dimension, the Hilbert space.

8.5.2 Basic properties of unitary transforms

The two most important properties of a unitary transform are [4]:

Theorem 8.2 (Unitary transform) Let V be a finite-dimensional inner

product vector space. Let U be a one-one linear transformation of V

onto itself. Then

1. U preserves the inner product, that is, (G,H) = (UG,UH), ∀G,H ∈

V .

2. The inverse of U , U−1, is the adjoin U∗T

of U : UU∗T

= I.

Rotation in R2 or R3 is an example of a transform where the preser-

vation of the length of vectors is obvious.

The product of two unitary transforms U1U2 is unitary. Because

the identity operator I is unitary, as is the inverse of a unitary operator,

the set of all unitary transforms on an inner product space is a group

under the operation of composition. In practice, this means that we

can compose/decompose complex unitary transforms of/into simpler

or elementary transforms.

8.5.3 Significance of the Fourier transform (FT)

A number of unitary transforms have gained importance for digital

signal processing including the cosine, sine, Hartley, slant, Haar, and

Walsh transforms [5, 6, 7]. But none of these transforms matches the

Fourier transform in importance.

The uniqueness of the Fourier transform is related to a property

expressed by the shift theorem. If a signal is shifted in space, its Fourier

transform does not change in amplitude but only in phase, that is, it

is multiplied with a complex phase factor. Mathematically, this means
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that all base functions of the Fourier transform are eigenvectors of the

shift operator S(s):

S(s)exp(−2π ikx) = exp(−2π iks)exp(−2π ikx) (8.45)

The phase factor exp(−2π iks) is the eigenvalue and the complex ex-

ponentials exp(−2π ikx) are the base functions of the Fourier trans-

form spanning the infinite-dimensional vector space of the square in-

tegrable complex-valued functions over R. For all other transforms,

various base functions are mixed with each other if one base function

is shifted. Therefore, the base functions of all these transforms are not

an eigenvector of the shift operator.

The base functions of the Fourier space are the eigenfunctions of

all linear shift-invariant operators or convolution operators. If an op-

erator is shift-invariant, the result is the same at whichever point in

space it is applied. Therefore, a periodic function such as the complex

exponential is not changed in period and does not become an aperiodic

function. If a convolution operator is applied to a periodic signal, only

its phase and amplitude change, which can be expressed by a complex

factor. This complex factor is the (wave-number dependent) eigenvalue

or transfer function of the convolution operator.

At this point, it is also obvious why the Fourier transform is com-

plex valued. For a real periodic function, that is, a pure sine or co-

sine function, it is not possible to formulate a shift theorem, as both

functions are required to express a shift. The complex exponential

exp(ikx) = coskx+i sinkx contains both functions and a shift by a dis-

tance s can simply be expressed by the complex phase factor exp(iks).

Each base function and thus each point in the Fourier domain con-

tains two pieces of information: the amplitude and the phase, that is,

relative position, of a periodic structure. Given this composition, we

ask whether the phase or the amplitude contains the more significant

information on the structure in the image, or whether both are of equal

importance.

In order to answer this question, we perform a simple experiment.

Figure 8.9 shows two images of a street close to Heidelberg University

taken at different times. Both images are Fourier transformed and then

the phase and amplitude are interchanged as illustrated in Fig. 8.9c, d.

The result of this interchange is surprising. It is the phase that deter-

mines the content of an image. Both images look somewhat patchy but

the significant information is preserved.

From this experiment, we can conclude that the phase of the Fourier

transform carries essential information about the image structure. The

amplitude alone implies only that such a periodic structure is contained

in the image but not where.
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a b

c d

Figure 8.9: Importance of phase and amplitude in Fourier space for the image

content: a, b two images of a traffic scene taken at different times; c compos-

ite image using the phase from image b and the amplitude from image a; d

composite image using the phase from image a and the amplitude from image

b.

8.5.4 Dynamical range and resolution of the FT

While in most cases it is sufficient to represent an image with rather few

quantization levels, for example, 256 values or one byte per pixel, the

Fourier transform of an image needs a much larger dynamical range.

Typically, we observe a strong decrease of the Fourier components with

themagnitude of the wave number, so that a dynamical range of at least

3–4 decades is required. Consequently, at least 16-bit integers or 32-

bit floating-point numbers are necessary to represent an image in the

Fourier domain without significant rounding errors.
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Figure 8.10: Tessellation of the 2-D Fourier domain into: a Cartesian; and b

logarithmic-polar lattices.

The reason for this behavior is not the insignificance of high wave

numbers in images. If we simply omitted them, we would blur the

image. The decrease is caused by the fact that the relative resolution is

increasing with the wave number. With the discrete Fourier transform

(see Section 8.7), the Fourier transform contains only wave numbers

that fit exactly integer times into the image:

kvp =
v

dp
(8.46)

where d = [d1, . . . , dD]
T
is the size of the D-dimensional signal. There-

fore, the absolute wave number resolution ∆k = 1/∆x is constant,

equivalent to a Cartesian tessellation of the Fourier space (Fig. 8.10a).

Thus the smallest wave number (v = 1) has a wavelength of the size

of the image, and the next coarse wave number has a wavelength of

half the size of the image. This is a very low resolution for large wave-

lengths. The smaller the wavelength, the better the resolution.

This ever increasing relative resolution is not natural. We can, for

example, easily see the difference of 10 cm in 1m, but not in 1km. It

is more natural to think of relative resolutions, because we are better

able to distinguish relative distance differences than absolute ones. If

we apply this concept to the Fourier domain, it seems to be more nat-

ural to tessellate the Fourier domain in intervals increasing with the

wave number, a log-polar coordinate system, as illustrated in Fig. 8.10b.

Such a lattice partitions the space into angular and lnk intervals. Thus,

the cell area is proportional to k2. In order to preserve the norm, or—

physically speaking—the energy, of the signal in this representation,
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the increase in the area of the cells proportional to k2 must be consid-

ered:

∞
∫

−∞

|ĝ(k)|2 dk1 dk2 =

∞
∫

−∞

k2|ĝ(k)|2 d lnkdϕ (8.47)

Thus, the power spectrum |ĝ(k)|2 in the log-polar representation is

multiplied by k2 and falls off much less steep than in the Cartesian

representation. The representation in a log-polar coordinate system al-

lows a much better evaluation of the directions of the spatial structures

and of the smaller scales. Moreover, a change in scale or orientation just

causes a shift of the signal in the log-polar representation. Therefore,

it has gained importance in representation object for shape analysis

([CVA3, Chapter 8]).

8.6 Continuous Fourier transform (FT)

In this section, we give a brief survey of the continuous Fourier trans-

form and we point out the properties that are most important for signal

processing. Extensive and excellent reviews of the Fourier transform

are given by Bracewell [8], Poularikas [7, Chapter 2], or Madisetti and

Williams [9, Chapter 1]

8.6.1 One-dimensional FT

Definition 8.1 (1-D FT) If g(x) : R ֏ C is a square integrable function,

that is,

∞
∫

−∞

∣

∣g(x)
∣

∣ dx < ∞ (8.48)

then the Fourier transform of g(x), ĝ(k) is given by

ĝ(k) =

∞
∫

−∞

g(x)exp (−2π ikx) dx (8.49)

The Fourier transform maps the vector space of absolutely integrable

functions onto itself. The inverse Fourier transform of ĝ(k) results in

the original function g(x):

g(x) =

∞
∫

−∞

ĝ(k)exp (2π ikx) dk (8.50)
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