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The computations for the error of the center of gravity are quite

similar. With the same assumptions about the segmentation process,

an unbiased estimate of the center of gravity is given by

xg =
1

N





N−Nb
∑

n=1
xn +

1

2

Nb
∑

n′=1
xn′



 (8.18)

Again the border pixels are counted only half. As the first part of the

estimate with the nonborder pixels is exact, errors are caused only by

the variation in the area of the border pixels. Therefore the variance of

the estimate for each component of the center of gravity is given by

σ 2
g =

Nb

4N2
σ 2 (8.19)

where σ is again the variance in the position of the fractional cells at

the border of the object. Thus the standard deviation of the center of

gravity for a compact object with the diameter of D pixels is

σg ≈
0.3

D3/2
if D ≫ 1 (8.20)

Thus the standard deviation for the center of gravity of an object with

10 pixel diameter is only about 0.01 pixel. For a volumetric object with

a diameter of D pixel, the standard deviation becomes

σgv ≈
0.45

D2
if D ≫ 1 (8.21)

This result clearly shows that the position of objects and all related

geometrical quantities such as the distances can be performed even

with binary images (segmented objects) well into the range of 1/100

pixel. It is interesting that the relative errors for the area and volume

estimates of Eqs. (8.16) and (8.17) are equal to the standard deviation

of the center of gravity Equations (8.20) and (8.21). Note that only the

statistical error has been discussed. A bias in the segmentation might

easily result in much higher systematic errors.

8.4 Relation between continuous and discrete signals

A continuous function g(q) is a useful mathematical description of a

signal as discussed in Section 8.2. Real-world signals, however, can only

be represented and processed as discrete or digital signals. Therefore

a detailed knowledge of the relation between these two types of signals

is required. It is not only necessary to understand the whole chain of

the image-formation process from a continuous spatial radiance distri-

bution to a digital image but also to perform subpixel-accurate image
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Figure 8.7: Steps from a continuous to a discrete signal.

interpolation (Section 9.6) and warping of images [CVA2, Chapter 9]

as it is, for example, required for multiscale image operations [CVA2,

Chapter 14].

The chain of processes that lead from the “true” signal to the digital

signal include all the steps of the image-formation process as illustrated

in Fig. 8.7. First, the signal of interest s(x), such as reflectivity, tem-

perature, etc., of an object, is somehow related to the radiance L(x)

emitted by the object in a generally nonlinear function (Section 2.5).

In some cases this relation is linear (e. g., reflectivity), in others it is

highly nonlinear (e. g., temperature). Often other parameters that are

not controlled or not even known influence the signal as well. As an

example, the radiance of an object is the product of its reflectivity and

the irradiance. Moreover, the radiance of the beam from the object

to the camera may be attenuated by absorption or scattering of radi-

ation (Section 2.5.3). Thus the radiance of the object may vary with

many other unknown parameters until it finally reaches the radiation-

collecting system (optics).

The optical system generates an irradiance E(x) at the image plane

that is proportional to the object radiance (Chapter 4). There is, how-

ever, not a point-to-point correspondence. Because of the limited res-

olution of the optical systems due to physical limitation (e. g., diffrac-

tion) or imperfections of the optical systems (various aberrations; Sec-

tion 3.5). This blurring of the signal is known as the point spread func-

tion (PSF ) of the optical system and described in the Fourier domain by

the optical transfer function. The nonzero area of the individual sensor

elements of the sensor array (or the scanning mechanism) results in

a further spatial and temporal blurring of the irradiance at the image

plane.

The conversion to electrical signal U adds noise and possibly fur-

ther nonlinearities to the signal g(x, t) that is finally measured. In a

last step, the analog electrical signal is converted by an analog-to-digital

converter (ADC) into digital numbers. The basic relation between con-

tinuous and digital signals is established by the sampling theorem. It

describes the effects of spatial and temporal sampling on continuous

signals and thus also tells us how to reconstruct a continuous signal

from its samples.

The image-formation process itself thus includes two essential steps.

First, the whole image-formation process blurs the signal. Second, the
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continuous signal at the image plane is sampled. Although both pro-

cesses often occur together, they can be separated for an easier math-

ematical treatment.

8.4.1 Image formation

If we denote the undistorted original signal projected onto the im-

age plane by g′(x, t), then the signal g(x, t) modified by the image-

formation process is given by

g(x, t) =
∞
∫

−∞

g′(x′, t′)h(x,x′, t, t′) d2x′ dt′ (8.22)

The function h is the PSF. The signal g′(x, t) can be considered as the

image that would be obtained by a perfect system, that is, an optical

system whose PSF is a δ-distribution. Equation (8.22) indicates that the

signal at the point [x, t]
T
in space and time is composed of the radi-

ance of a whole range of points [x′, t′]
T
nearby, which linearly add up

weighted with the signal h at [x′, t′]
T
. The integral can significantly

be simplified if the point-spread function is the same at all points (ho-

mogeneous system or shift-invariant system). Then the point-spread

function h depends only on the distance of [x′, t′]
T
to [x, t]

T
and the

integral in Eq. (8.22) reduces to the convolution integral

g(x, t) =
∞
∫

−∞

g′(x′, t′)h(x −x′, t − t′) d2x′ dt′ = (g′ ∗h)(x, t) (8.23)

For most optical systems the PSF is not strictly shift-invariant because

the degree of blurring is increasing with the distance from the optical

axis (Chapter 3). However, as long as the variation is continuous and

does not change significantly over the width of the PSF, the convolution

integral in Eq. (8.23) still describes the image formation correctly. The

PSF and the system transfer function just become weakly dependent

on x.

8.4.2 Sampling theorem

Sampling means that all information is lost except at the grid points.

Mathematically, this constitutes amultiplication of the continuous func-

tion with a function that is zero everywhere except for the grid points.

This operation can be performed by multiplying the image function

g(x) with the sum of δ distributions located at all lattice vectors rm,n

as in Eq. (8.7). This function is called the two-dimensional δ comb, or
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“nail-board function.” Then sampling can be expressed as

gs(x) = g(x)

m=∞
∑

m=−∞

n=∞
∑

n=−∞
δ(x − rm,n) (8.24)

This equation is only valid as long as the elementary cell of the lattice

contains only one point. This is the case for the square and hexagonal

grids (Fig. 8.2b and c). The elementary cell of the triangular grid, how-

ever, includes two points (Fig. 8.2a). Thus for general regular lattices,

p points per elementary cell must be considered. In this case, a sum

of P δ combs must be considered, each shifted by the offsets sp of the

points of the elementary cells:

gs(x) = g(x)

P
∑

p=1

∞
∑

m=−∞

∞
∑

n=−∞
δ(x − rm,n − sp) (8.25)

It is easy to extend this equation for sampling into higher-dimensional

spaces and into the time domain:

gs(x) = g(x)
∑

p

∑

n

δ(x − rn − sp) (8.26)

In this equation, the summation ranges have been omitted. One of the

coordinates of the D-dimensional space and thus the vector x and the

lattice vector rn

rn = [n1b1, n2b2, . . . , nDbD]
T

with nd ∈ Z (8.27)

is the time coordinate. The set of fundamental translation vectors

{b1,b2, . . . ,bD} form a not necessarily orthogonal base spanning the

D-dimensional space.

The sampling theorem directly results from the Fourier transform

of Eq. (8.26). In this equation the continuous signal g(x) is multiplied

by the sum of delta distributions. According to the convolution theo-

rem of the Fourier transform (Section 8.6), this results in a convolution

of the Fourier transforms of the signal and the sum of delta combs in

Fourier space. The Fourier transform of a delta comb is again a delta

comb (see Table 8.5). As the convolution of a signal with a delta dis-

tribution simply replicates the function value at the zero point of the

delta functions, the Fourier transform of the sampled signal is simply

a sum of shifted copies of the Fourier transform of the signal:

ĝs(k, ν) =
∑

p

∑

v

ĝ(k− r̂v)exp
(

−2π ik
T
sp

)

(8.28)

The phase factor exp(−2π ik
T
sp) results from the shift of the points in

the elementary cell by sp according to the shift theorem of the Fourier
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transform (see Table 8.4). The vectors r̂v

r̂v = v1b̂1 + v2b̂2 + . . .+ vDb̂D with vd ∈ Z (8.29)

are the points of the so-called reciprocal lattice. The fundamental trans-

lation vectors in the space and Fourier domain are related to each other

by
b

T
db̂d′ = δd−d′ (8.30)

This basically means that the fundamental translation vector in the

Fourier domain is perpendicular to all translation vectors in the spatial

domain except for the corresponding one. Furthermore, the distances

are reciprocally related to each other. In 3-D space, the fundamental

translations of the reciprocial lattice can therefore be computed by

b̂d =
bd+1 ×bd+2

b
T
1 (b2 ×b3)

(8.31)

The indices in the preceding equation are computed modulo 3, b
T
1 (b2×

b3) is the volume of the primitive elementary cell in the spatial domain.

All these equations are familiar to solid state physicists or cristallogra-

phers [3]. Mathematicians know the lattice in the Fourier domain as the

dual base or reciprocal base of a vector space spanned by a nonorthogo-

nal base. For an orthogonal base, all vectors of the dual base show into

the same direction as the corresponding vectors and the magnitude is

given by
∣

∣

∣b̂d

∣

∣

∣ = 1/ |bd|. Then often the length of the base vectors is de-
noted by ∆xd, and the length of the reciprocal vectors by ∆kd = 1/∆xd.

Thus an orthonormal base is dual to itself.

For further illustration, Fig. 8.8 shows the lattices in both domains

for a triangular, square, and hexagonal grid. The figure also includes

the primitive cell known as the Wigner-Seitz cell (Section 8.3.1 and

Fig. 8.3) and first Brillouin zone in the spatial and Fourier domain, re-

spectively.

Now we can formulate the condition where we get no distortion of

the signal by sampling, known as the sampling theorem. If the image

spectrum ĝ(k) contains such highwave numbers that parts of it overlap

with the periodically repeated copies, we cannot distinguish whether

the spectral amplitudes come from the original spectrum at the center

or from one of the copies. In other words, a low wave number can be

an alias of a high wave number and assume an incorrect amplitude of

the corresponding wave number. In order to obtain no distortions, we

must avoid overlapping. A safe condition to avoid overlapping is as

follows: the spectrum must be zero outside of the primitive cell of the

reciprocal lattice, that is, the first Brillouin zone.

On a rectangular grid, this results in the simple condition that the

maximum wave number (or frequency) at which the image spectrum
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Figure 8.8: Lattices with the fundamental translation vectors and primitive cell

in the spatial and Fourier domain for a triangular (left), square (middle), and

hexagonal (right) 2-D lattice.

is not equal to zero must be restricted to less than half of the grid

constants of the reciprocal grid. Therefore the sampling theorem is as

follows:

Theorem 8.1 (Sampling Theorem) If the spectrum ĝ(k) of a continu-

ous function g(x) is band-limited, that is,

ĝ(k) = 0 ∀|kd| ≥ ∆kd/2 (8.32)

then it can be reconstructed exactly from samples with a distance

∆xd = 1/∆kd (8.33)

In other words, we will obtain a periodic structure correctly only if

we take at least two samples per wavelength (or period). The maximum

wave number that can be sampled without errors is called the Nyquist

or limiting wave number (or frequency). In the following, we will often

use dimensionless wave numbers (frequencies), which are scaled to the

limiting wave number (frequency). We denote this scaling with a tilde:

k̃d =
kd

∆kd/2
= 2kd∆xd and ν̃ = ν

∆ν/2
= 2ν∆T (8.34)

In this scaling all the components of the wave number k̃d fall into the

interval ]−1, 1[.
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8.4.3 Aliasing

If the conditions of the sampling theorem are not met, it is not only

impossible to reconstruct the original signal exactly but also distortions

are introduced into the signal. This effect is known in signal theory as

aliasing or in imaging as the Moiré effect .

The basic problem with aliasing is that the band limitation intro-

duced by the blurring of the image formation and the nonzero area of

the sensor is generally not sufficient to avoid aliasing. This is illustrated

in the following example with an “ideal” sensor.

Example 8.1: Standard sampling

An “ideal” imaging sensor will have a nonblurring optics (the PSF is the

delta distribution) and a sensor array that has a 100% fill factor, that

is, the sensor elements show a constant sensitivity over the whole area

without gaps inbetween. The PSF of such an imaging sensor is a box

function with the width ∆x of the sensor elements and the transfer

function (TF) is a sinc function:

PSF
1

∆x1
Π(x1/∆x1)

1

∆x2
Π(x2/∆x2)

TF
sin(πk1∆x1)

πk1∆x1

sin(πk2∆x2)

πk2∆x2

(8.35)

The sinc function has its first zero crossings when the argument is

±π . This is when kd = ±∆xd or at twice the Nyquist wave number,

see Eq. (8.34). At the Nyquist wave number the value of the transfer

function is still 1/
√
2. Thus standard sampling is not sufficient to

avoid aliasing. The only safe way to avoid aliasing is to ensure that the

imaged objects do not contain wave numbers and frequencies beyond

the Nyquist limit.

8.4.4 Reconstruction from samples

The sampling theorem ensures the conditions under which we can re-

construct a continuous function from sampled points, but we still do

not know how to perform the reconstruction of the continuous image

from its samples, that is, the inverse operation to sampling.

Reconstruction is performed by a suitable interpolation of the sam-

pled points. Again we use the most general case: a nonorthogonal

primitive cell with P points. Generally, the interpolated points gr (x)

are calculated from the values sampled at rn+sp weighted with suitable

factors that depend on the distance from the interpolated point:

gr (x) =
∑

p

∑

n

gs(rn + sp)h(x − rn − sp) (8.36)

Using the integral property of the δ distributions, we can substitute

the sampled points on the right-hand side by the continuous values
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and then interchange summation and integration:

gr (x) =
∑

p

∑

n

∞
∫

−∞

g(x′)h(x −x′)δ(rn + sp −x′)dDx′

=
∞
∫

−∞

h(x −x′)
∑

p

∑

n

δ(rn + sp −x′)g(x′)dDx′

The latter integral is a convolution of the weighting function h with a

function that is the sum of the product of the image function g with

shifted δ combs. In Fourier space, convolution is replaced by complex

multiplication and vice versa. If we further consider the shift theorem

and that the Fourier transform of a δ comb is again a δ comb, we finally

obtain

ĝr (k) = ĥ(k)
∑

p

∑

v

ĝ(k− r̂v)exp
(

−2π ik
T
sp

)

(8.37)

The interpolated function can only be equal to the original image if

the periodically repeated image spectra are not overlapping. This is

nothing new; it is exactly what the sampling theorem states. The interp-

olated image function is only equal to the original image function if

the weighting function is one within the first Brillouin zone and zero

outside, eliminating all replicated spectra and leaving the original band-

limited spectrum unchanged. On a D-dimensional orthogonal lattice

Eq. (8.37) becomes

ĝr (k) = ĝ(k)

D
∏

d=1
Π(kd∆xd) (8.38)

and the ideal interpolation function h is the sinc function

h(x) =
D
∏

d=1

sin(πxd/∆xd)

πxd/∆xd
(8.39)

Unfortunately, this function decreases only with 1/x towards zero.

Therefore, a correct interpolation requires a large image area; mathe-

matically, it must be infinitely large. This condition can be weakened if

we “overfill” the sampling theorem, that is, ensure that ĝ(k) is already

zero before we reach the Nyquist limit. According to Eq. (8.37), we can

then choose ĥ(k) arbitrarily in the region where ĝ vanishes. We can

use this freedom to construct an interpolation function that decreases

more quickly in the spatial domain, that is, has a minimum-length in-

terpolation mask. We can also start from a given interpolation formula.

Then the deviation of its Fourier transform from a box function tells

us to what extent structures will be distorted as a function of the wave

number. Suitable interpolation functions will be discussed in detail in

Section 9.6.
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