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By contrast, if the edges in the different channels point randomly in

all directions, all diagonal terms will be nonzero and equal. In this way,

it is possible to distinguish random changes by noise from coherent

edges. The trace of the matrix S

trace(S) =

D
∑

d=1

Sdd =

D
∑

d=1

P
∑

p=1

(

∂gp

∂xd

)2

(9.184)

gives a measure of the edge strength that we have already defined in

Eq. (9.179). It is independent of the orientation of the edge because the

trace of a symmetric matrix is invariant to a rotation of the coordinate

system.

In conclusion, the matrix S is the key for edge detection in multi-

channel signals. Note that an arbitrary number of channels can be pro-

cessed and that the number of computations increases only linearly

with the number of channels. The analysis is, however, of order O(D2)

in the dimension of the signal.

9.8 Tensor representation of simple neighborhoods

9.8.1 Simple neighborhoods

The mathematical description of a local neighborhood by continuous

functions has two significant advantages. First, it is much easier to for-

mulate the concepts and to study their properties analytically. As long

as the corresponding discrete image satisfies the sampling theorem, all

the results derived from continuous functions remain valid because the

sampled image is an exact representation of the continuous gray-value

function. Second, we can now distinguish between errors inherent to

the chosen approach and those that are only introduced by the dis-

cretization.

A simple local neighborhood is characterized by the fact that the

gray value only changes in one direction. In all other directions it is

constant. Because the gray values are constant along lines and form

oriented structures this property of a neighborhood is denoted as local

orientation [13] or linear symmetry [14]. Only more recently, the term

simple neighborhood has been coined by Granlund and Knutsson [9].

If we orient the coordinate system along the principal directions,

the gray values become a 1-D function of only one coordinate. Gener-

ally, we will denote the direction of local orientation with a unit vector

r̄ perpendicular to the lines of constant gray values. Then, a simple

neighborhood is mathematically represented by

g(x) = g(xT r̄) (9.185)
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Figure 9.22: Illustration of a linear symmetric or simple neighborhood. The

gray values depend only on a coordinate given by a unit vector r̄.

Equation Eq. (9.185) is also valid for image data with more than two

dimensions. The projection of the vectorx onto the unit vector r̄makes

the gray values depend only on a scalar quantity, the coordinate in the

direction of r̄ (Fig. 9.22). The essential relation now is that the gradient

is parallel to the direction r̄ into which the gray values change:

∇g(xT r̄) =

















∂g(xT r̄)

∂x1

. . .

∂g(xT r̄)

∂xW

















=











r̄1g′(xT r̄)

. . .

r̄Dg′(xT r̄)











= r̄g′(xT r̄) (9.186)

The term g′ denotes the derivative of g with respect to the scalar vari-

able xT r̄. In the hyperplane perpendicular to the gradient, the values

remain locally constant.

A simple neighborhood has a special form in Fourier space. Let us

first assume that the whole image is described by Eq. (9.185), that is, r̄

does not depend on the position. Then, from the very fact that a simple

neighborhood is constant in all directions except r̄, we infer that the

Fourier transform must be confined to a line. The direction of the line

is given by r̄:

g(xT r̄) ⇐⇒ ĝ(k)δ(k− r̄(k
T
r̄)) (9.187)

where k denotes the coordinate in the Fourier domain in the direction

of r̄. The argument in the δ function is only zero when k is parallel to

r̄.

In a second step, a window function w(x − x0) is used to restrict

the area to a local neighborhood around a point x0. Thus g(xT r̄) in
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Eq. (9.187) is multiplied by the window functionw(x−x0) in the spatial

domain. The size and shape of the neighborhood is determined by the

window function. Multiplication in the space domain corresponds to a

convolution in the Fourier domain (Section 8.6.3). Thus,

w(x −x0)g(xT r̄) ⇐⇒ ŵ(k)∗ ĝ(k)δ(k− r̄(k
T
r̄)) (9.188)

where ŵ(k) is the Fourier transform of the window function.

The limitation to a local neighborhood thus blurs the line in Fourier

space to a “sausage-like” shape. Because of the reciprocity of scales

between the two domains, its thickness is inversely proportional to

the size of the window. From this elementary relation, we can already

conclude qualitatively that the accuracy of the orientation estimate is

directly related to the ratio of the window size to the wavelength of the

smallest structures in the window.

9.8.2 Direction versus orientation

For an appropriate representation of simple neighborhoods, it is first

important to distinguish orientation from direction. The direction is

defined over the full angle range of 2π (360°). Two vectors that point

in opposite directions, that is, differ by 180°, are different. The gradient

vector, for example, always points into the direction into which the gray

values are increasing. With respect to a bright object on a dark back-

ground, this means that the gradient at the edge is pointing towards the

object. In contrast, to describe the direction of a local neighborhood,

an angle range of 360° makes no sense. We cannot distinguish between

patterns that are rotated by 180°. If a pattern is rotated by 180°, it still

has the same direction. Thus, the direction of a simple neighborhood

is different from the direction of a gradient. While for the edge of an

object gradients pointing in opposite directions are conflicting and in-

consistent, for the direction of a simple neighborhood this is consistent

information.

In order to distinguish the two types of “directions,” we will speak

of orientation in all cases where an angle range of only 180° is required.

Orientation is still, of course, a cyclic quantity. Increasing the orienta-

tion beyond 180° flips it back to 0°. Therefore, an appropriate repre-

sentation of orientation requires an angle doubling.

In his pioneering paper on a general picture processing operator

Granlund [13] introduced a vectorial representation of the local orien-

tation. The magnitude of the orientation vector is set to the certainty

with which the orientation could be determined and its direction to the

doubled orientation angle. This vector representation of orientation

has two significant advantages.

First, it is more suitable for further processing than a separate repre-

sentation of the orientation by two scalar quantities. Take, for example,
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averaging. Vectors are summed up by chaining them together, and the

resulting sum vector is the vector from the starting point of the first

vector to the end point of the last vector. The weight of an individual

vector in the vector sum is given by its length. In this way, the certainty

of the orientation measurement is adequately taken into account.

9.8.3 First-order tensor representation; structure tensor

The vectorial representation discussed in Section 9.8.2 is incomplete.

Although it is suitable for representing the orientation of simple neigh-

borhoods, it cannot distinguish between neighborhoods with constant

values and isotropic orientation distribution (e. g., uncorrelated noise).

Both cases result in an orientation vector with zero magnitude.

Therefore, it is obvious that an adequate representation of gray-

value changes in a local neighborhood must be more complex. Such a

representation should be able to determine a unique orientation and to

distinguish constant neighborhoods from neighborhoods without local

orientation.

A suitable representation can be introduced by a optimization strat-

egy to determine the orientation of a simple neighborhood in a slightly

more general way as performed by Kass and Witkin [15]. The optimum

orientation is defined as the orientation that shows the least deviations

from the directions of the gradient. A suitable measure for the devia-

tion must treat gradients pointing in opposite directions equally. The

squared scalar product between the gradient vector and the unit vector

representing the local orientation r̄ meets this criterion

(∇gT r̄)2 = |∇g|2 cos2 (∠(∇g, r̄)) (9.189)

This quantity is proportional to the cosine squared of the angle between

the gradient vector and the orientation vector and is thusmaximal when

∇g and r̄ are parallel or antiparallel, and zero if they are perpendicular

to each other. Therefore, the following integral is maximized in a D-

dimensional local neighborhood:
∫

w(x −x′)
(

∇g(x′)T r̄
)2

dDx′ (9.190)

where the window function w determines the size and shape of the

neighborhood around a point x in which the orientation is averaged.

The maximization problem must be solved for each point x. Equation

Eq. (9.190) can be rewritten in the following way:

r̄
T
Jr̄ →max (9.191)

with

J =

∞
∫

−∞

w(x −x′)
(

∇g(x′)∇g(x′)T
)

dDx′
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The components of this symmetric D×D tensor are

Jpq(x) =

∞
∫

−∞

w(x −x′)

(

∂g(x′)

∂x′
p

∂g(x′)

∂x′
q

)

dDx′ (9.192)

At this point it is easy to extend the tensor for multichannel signals.

It is only needed to sum the tensor components for all channels. The

weighting function might be different for each channel in order to con-

sider the significance and spatial resolution of a certain channel. With

all this, Eq. (9.192) extends to

Jr ,s(x) =

P
∑

p=1

∞
∫

−∞

wp(x −x′)

(

∂gp(x′)

∂x′
r

∂gp(x′)

∂x′
s

)

dDx′ (9.193)

These equations indicate that a tensor is an adequate first-order rep-

resentation of a local neighborhood. The term first-order has a double

meaning. First, only first-order derivatives are involved. Second, only

simple neighborhoods can be described in the sense that we can analyze

in which direction(s) the gray values change. More complex structures

such as structures with multiple orientations cannot be distinguished.

The complexity of Eqs. (9.191) and (9.192) somewhat obscures their

simple meaning. The tensor is symmetric. By a rotation of the coordi-

nate system, it can be brought into a diagonal form. Then, Eq. (9.191)

reduces to

J =
[

r̄ ′1, r̄ ′2, . . . , r̄ ′D
]















J1′1′ 0 . . . 0

0 J2′2′ . . . 0
...

...
. . .

...

0 . . . . . . JD′D′



























r̄ ′1
r̄ ′2
. . .

r̄ ′D













→ max

or

J =

D
∑

d′=1

Jd′d′(r̄ ′d′)
2

Without loss of generality, we assume that J1′1′ ≥ Jd′d′ ∀d′ ≠ 1.

Then, it is obvious that the unit vector r̄′ = [1 0 . . . 0]
T
maximizes the

foregoing expression. The maximum value is J1′1′ . In conclusion, this

approach not only yields a tensor representation for the local neighbor-

hood but also shows the way to determine the orientation. Essentially,

we have to solve an eigenvalue problem. The eigenvalues λd and eigen-

vectors kd of a D×D matrix are defined by

Jkd = λdkd (9.194)
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An eigenvector kd of J is thus a vector that is not turned in direc-

tion by multiplication with the matrix J, but is only multiplied by a

scalar factor, the eigenvalue λw . This implies that the structure tensor

becomes diagonal in a coordinate system that is spanned by the eigen-

vectors. For our further discussion it is important to keep in mind that

the eigenvalues are all real and nonnegative and form an orthogonal

basis [16, 17, 18].

9.8.4 Classification of local neighborhoods

The power of the tensor representation becomes apparent if we clas-

sify the eigenvalues of the structure tensor. The classifying criterion is

the number of eigenvalues that are zero. If an eigenvalue is zero, this

means that the gray values in the direction of the corresponding eigen-

vector do not change. The number of zero eigenvalues is also closely

related to the rank of a matrix. The rank of a matrix is defined as

the dimension of the subspace for which Jk ≠ 0. The space for which

Jk = 0 is denoted as the null space. The dimension of the null space

is the dimension of the matrix minus the rank of the matrix and equal

to the number of zero eigenvalues. We will perform an analysis of the

eigenvalues for two and three dimensions. In two dimensions, we can

distinguish the following cases:

λ1 = λ2 = 0, rank 0 tensor. Both eigenvalues are zero. Themean square

magnitude of the gradient (λ1+λ2) is zero. The local neighborhood

has constant values. It belongs to an object with a homogeneous

feature;

λ1 > 0, λ2 = 0, rank 1 tensor. One eigenvalue is zero. The values do

not change in the direction of the corresponding eigenvector. The

local neighborhood is a simple neighborhood with ideal orientation.

This could either be the edge of an object or an oriented texture;

λ1 > 0, λ2 > 0, rank 2 tensor. Both eigenvalues are unequal to zero.

The gray values change in all directions as at the corner of an object

or a texture with a distributed orientation. In the special case of

λ1 = λ2, we speak of an isotropic gray-value structure as it changes

equally in all directions.

The classification of the eigenvalues in three dimensions is similar

to the 2-D case:

λ1 = λ2 = λ3 = 0, rank 0 tensor. The gray values do not change in any

direction; constant neighborhood.

λ1 > 0, λ2 = λ3 = 0, rank 1 tensor. The gray values change only in one

direction. This direction is given by the eigenvector to the nonzero

eigenvalue. The neighborhood includes a boundary between two

objects (surface) or a layered texture. In a space-time image, this
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means a constant motion of a spatially oriented pattern (“planar

wave”);

λ1 > 0, λ2 > 0, λ3 = 0, rank 2 tensor. The gray values change in two

directions and are constant in a third. The eigenvector to the zero

eigenvalue gives the direction of the constant gray values. This hap-

pens at the edge of a three-dimensional object in a volumetric im-

age, or if a pattern with distributed spatial orientation moves with

constant speed; and

λ1 > 0, λ2 > 0, λ3 > 0, rank 3 tensor. The gray values change in all

three directions as at the corner of an object or a region with iso-

tropic noise.

In practice, it will not be checked whether the eigenvalues are zero

but below a critical threshold that is determined by the noise level in

the image.

9.8.5 Computation of the structure tensor

The structure tensor (Section 9.8.3) can be computed straightforwardly

as a combination of linear convolution and nonlinear point operations.

The partial derivatives in Eq. (9.192) are approximated by discrete deriva-

tive operators. The integration weighted with the window function is

replaced by a convolution with a smoothing filter that has the shape

of the window function. If we denote the discrete partial derivative

operator with respect to the coordinate p by the operator Dp and the

(isotropic) smoothing operator by B, the local structure of a gray-value

image can be computed with the structure tensor operator

Jpq = B(Dp · Dq) (9.195)

The equation is written in the operator notation introduced in Sec-

tion 9.1.3. Pixelwise multiplication is denoted by a centered dot “·”

to distinguish it from successive application of convolution operators.

Equation (9.195) expresses in words that the Jpq component of the ten-

sor is computed by convolving the image independently with Dp and

Dq, multiplying the two images pixelwise, and smoothing the resulting

image with B. For the inertia tensor method, a similar tensor operator

can be formulated

J′pp =
∑

q≠p

B(Dq · Dq), J′pq = −B(Dp · Dq) (9.196)

These operators are valid in images of any dimension D ≥ 2. In a

D-dimensional image, the structure tensor has D(D+1)/2 independent

components, hence 3 in 2-D and 6 in 3-D images. These components

are best stored in a multichannel image with D(D + 1)/2 channels.
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The smoothing operations consume the largest number of opera-

tions. Therefore, a fast implementation must, in the first place, apply a

fast smoothing algorithm. A fast algorithm can be established based on

the general observation that higher-order features always show a lower

resolution than the features fromwhich they are computed. Thismeans

that the structure tensor can be stored on a coarser grid and thus in a

smaller image. It is convenient and appropriate to reduce the scale by

a factor of two by storing only every second pixel in every second row.

These procedures lead us in a natural way to multigrid data struc-

tures that are discussed in detail in Chapter 8.10. Multistep averaging

is discussed in detail in Section 9.5.5.

Storing higher-order features on coarser scales has another signif-

icant advantage. Any subsequent processing is sped up simply by the

fact that many fewer pixels have to be processed. A linear scale reduc-

tion by a factor of two results in a reduction in the number of pixels

and the number of computations by a factor of 4 in two and 8 in three

dimensions.

The accuracy of the orientation angle strongly depends on the im-

plementation of the derivative filters. It is critical to use a derivative

filter that has been optimized for a minimum error in the direction of

the gradient. Such filters are discussed in Section 9.7.1.

9.8.6 Orientation vector

With the simple convolution and point operations discussed in the pre-

vious section, we computed the components of the structure tensor. In

this section, we solve the eigenvalue problem to determine the orien-

tation vector. In two dimensions, we can readily solve the eigenvalue

problem. The orientation angle can be determined by rotating the in-

ertia tensor into the principal axes coordinate system. As shown, for

example, by Jähne [1], the orientation angle is given by

tan2φ =
2J12

J22 − J11
(9.197)

Without defining any prerequisites, we have obtained the anticipated

angle doubling for orientation as discussed in Section 9.8.2 at the be-

ginning of this chapter. Because tan2φ is gained from a quotient, we

can regard the dividend as the y and the divisor as the x component

of a vector and can form the orientation vector o, as introduced by

Granlund [13]

o =

[

J22 − J11

2J12

]

(9.198)

The argument of this vector gives the orientation angle and the magni-

tude a certainty measure for local orientation.
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The result of Eq. (9.198) is remarkable in that the computation of

the components of the orientation vector from the components of the

orientation tensor requires just one subtraction and one multiplication

by two. As these components of the orientation vector are all we need

for further processing steps, we do not need the orientation angle or the

magnitude of the vector. Thus, the solution of the eigenvalue problem

in two dimensions is trivial.

9.8.7 Coherency

The orientation vector reduces local structure to local orientation. From

three independent components of the symmetric tensor still only two

are used. When we fail to observe an orientated structure in a neighbor-

hood, we do not know whether any gray-value variations or distributed

orientations are encountered. This information is included in the not

yet used component of the tensor J11+J22, which gives themean square

magnitude of the gradient. Consequently, a well-equipped structure

operator needs to include also the third component. A suitable linear

combination is

s =







J11 + J22

J11 − J22

2J12





 (9.199)

This structure operator contains the two components of the orientation

vector and, as an additional component, the mean square magnitude of

the gradient, which is a rotation-invariant parameter. Comparing the

latter with the magnitude of the orientation vector, a constant gray-

value area and an isotropic gray-value structure without preferred ori-

entation can be distinguished. In the first case, both squared quantities

are zero; in the second, only the magnitude of the orientation vector.

In the case of a perfectly oriented pattern, both quantities are equal.

Thus their ratio seems to be a good coherency measure cc for local

orientation

cc =
(J22 − J11)2 + 4J212

(J11 + J22)2
=

(

λ1 − λ2

λ1 + λ2

)2

(9.200)

The coherency cc ranges from 0 to 1. For ideal local orientation (λ2 =

0, λ1 > 0) it is one, for an isotropic gray-value structure (λ1 = λ2 > 0) it

is zero.

9.8.8 Color coding of the two-dimensional structure tensor

A symmetric 2-D tensor has three independent pieces of information

(Eq. (9.199)), which fit well to the three degrees of freedom available to
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represent color, for example, luminance, hue, and saturation. First, the

squared magnitude of the gradient is mapped onto the intensity. Sec-

ond, the coherency measure Equation (9.200) is used as the saturation.

The angle of the orientation vector is represented as the hue.

In practice, a slight modification of this color representation is use-

ful. The squared magnitude of the gradient shows variations too large

to be displayed in the narrow dynamic range of a display screen with

only 256 luminance levels. Therefore, a suitable normalization is re-

quired. The basic idea of this normalization is to compare the squared

magnitude of the gradient with the noise level. Once the gradient is

well above the noise level it is regarded as a significant piece of infor-

mation. This train of thoughts suggests the following normalization

for the intensity I:

I =
J11 + J22

(J11 + J22)+ γσ 2
n

(9.201)

where σn is an estimate of the standard deviation of the noise level.

This normalization provides a rapid transition of the luminance from

one, when themagnitude of the gradient is larger than σn, to zero when

the gradient is smaller than σn. The factor γ is used to optimize the

display.

A demonstration of the structure tensor technique is given by the

heurisko image processing workspace orient.ws in /software/09.
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