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Figure 9.19: Transfer function of interpolation kernels optimized with the

weighted least squares technique of a Eq. (9.144) withR = 2 to 6 and b Eq. (9.145)

with R = 1 to 4 (solid line). c and d show a narrow sector of the plots in a and

b for a better estimation of small deviations from ideal values.

9.7 Edge detection

Detection of edges is one of themost important tasks of low-level multi-

dimensional signal processing. An edge marks the border of an object

that is characterized by a different feature (gray value, color, or any

other property) than the background. In the context of simple neigh-

borhoods, an edge is a special type of simple neighborhoodwith a sharp

transition. Low-level edge detection thus means to detect the strength

of such a transition and the direction of the edge.

9.7.1 Edge detection by first-order derivatives

First-order derivative filters are one way for low-level edge detection. A

first-order derivative operator corresponds to amultiplication by 2π ikd

in the wave-number space (Section 8.6.3). Thus, a first-order derivative

operator in the direction d is represented by the following operations

in the space and wave-number domain:

∂

∂xd
⇐⇒ 2π ikd (9.146)
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where k̃ is the dimensionless wave number normalized to the Nyquist

limit Equation (8.34). One-dimensional first-order derivative operators

are not sufficient for edge detection in higher-dimensional signals be-

cause they predominantly detect edges that are perpendicular to the

direction of the operator. As shown with Eq. (9.186) in Section 9.8.1,

the gradient vector

∇g =

[

∂g

∂x1
,

∂g

∂x2
, ...,

∂g

∂xD

]T

(9.147)

is parallel to the direction in which the gray values change. Thus it is a

good low-level measure for edges. In the operator notation introduced

in Section 9.1.3, the gradient can be written as a vector operator. In 2-D

and 3-D space this is

D =

[

Dx

Dy

]

or D =







Dx

Dy

Dz





 (9.148)

The magnitude of the gradient vector

∣

∣∇g
∣

∣ =





D
∑

d=1

(

∂g

∂xd

)2




1/2

(9.149)

is rotation-invariant and a measure for the edge strength. Because of

the rotation invariance, this measure is isotropic. The computation of

the magnitude of the gradient can be expressed in operator notation as

|D| =





D
∑

d=1

Dd · Dd





1/2

(9.150)

The principal problem with all types of edge detectors is that a

derivative operator can only be approximated on a discrete grid. This

is one of the reasons why there is such a wide variety of solutions for

edge detectors available.

General properties. With respect to object detection, the most im-

portant feature of a derivative convolution operator is that it must not

shift the object position. For a first-order derivative filter, a real transfer

function makes no sense, because extreme values should be mapped

onto zero crossings and the steepest slopes to extreme values. This

mapping implies a 90° phase shift, a purely imaginary transfer func-

tion and an antisymmetric or odd filter mask. According to the classifi-

cation of linear shift-invariant (LSI) filters established in Section 9.2.5,

first-order derivative filters are either type III or type IV filters. Thus
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the simplified equations, Eqs. (9.25) and (9.27), can be used to compute

the transfer function.

A derivative filter of any order must not show response to constant

values or an offset in a signal. This condition implies that the sum of

the coefficients must be zero and that the transfer function is zero for

a zero wave number:
∑

n

Hn = 0⇐⇒ Ĥ(0) = 0 (9.151)

Intuitively, we expect that any derivative operator amplifies smaller

scales more strongly than coarser scales, as the transfer function of a

first-order derivative operator goes with k. However, this condition is

too restrictive. Imagine that we first apply a smoothing operator to an

image before we apply a derivative operator. Then the resulting trans-

fer function would not increase monotonically with the wave number

but decrease for higher wave numbers. We would, however, still rec-

ognize the joint operation as a derivation because the mean gray value

is suppressed and the operator is only sensitive to spatial gray-value

changes.

Thus a more general condition is required. Here we suggest

Ĥ(k̃) = iπk̃dB̂(|k̃|) with B̂(0) = 1 and ∇B̂ = 0 (9.152)

This condition ensures that the transfer function is still zero for the

wave number zero and increases in proportion to k̃d for small wave

numbers. One can regard Eq. (9.152) as a first-order derivative filter

regularized by an isotropic smoothing filter.

For good edge detection, it is important that the response of the

operator does not depend on the direction of the edge. If this is the

case, we speak of an isotropic edge detector. The isotropy of an edge

detector can best be analyzed by its transfer function. Equation (9.152),

which we derived from the condition of nonselective derivation, gives

a general form for an isotropic first-order derivative operator.

First-order difference operators. This is the simplest of all approaches

to compute a gradient vector. For the first partial derivative in the x

direction, one of the following approximations may be used:

∂g(x)

∂xd
≈

g(x)− g(x −∆xdēd)

∆xd
backward

≈
g(x +∆xdēd)− g(x)

∆xd
forward

≈
g(x +∆xdēd)− g(x −∆xdēd)

2∆xd
symmetric

(9.153)
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where ēd is a unit vector in the direction d. These approximations

correspond to the filter masks

−Dd = [1• − 1] ,+Dd = [1 − 1•] ,D2d = 1/2 [1 0 − 1] (9.154)

The subscript “•” denotes the pixel of the asymmetric masks to which

the result is written. The symmetric difference operator results in a

type III operator (odd number of coefficients, odd symmetry, see Sec-

tion 9.2.5). The forward and backward difference operators are asym-

metric and thus not of much use in signal processing. They can be

transformed in a type IV LSI operator if the result is not stored at the

position of the right or left pixel but at a position half-way between

the two pixels. This corresponds to a shift of the grid by half a pixel

distance. The transfer function for the backward difference is then

−D̂d = exp(iπk̃d/2)
[

1− exp(−iπk̃d)
]

= i sin(πk̃d/2) (9.155)

where the first term results from the shift by half a lattice point.

According to Eq. (9.25), the transfer function of the symmetric dif-

ference operator is given by

D̂2d = i sin(πk̃d) (9.156)

This operator can also be computed from

D2d =
−DdBd = [1• − 1]∗ 1/2 [1 1•] = 1/2 [1 0 − 1]

Unfortunately, these simple difference filters are only poor approx-

imations for an edge detector. From Eq. (9.156), we infer that the mag-

nitude and direction of the gradient φ′ are given by

|∇g| =
[

sin2(πk̃ cosφ)+ sin2(πk̃ sinφ)
]1/2

(9.157)

and

φ′ = arctan
sin(πk̃ sinφ)

sin(πk̃ cosφ)
(9.158)

when the wave number is written in polar coordinates (k, φ). The mag-

nitude of the gradient decreases quickly from the correct value. A

Taylor expansion of Eq. (9.157) in k̃ yields for the anisotropy in the

magnitude

∆|∇g| = |∇g(φ)| − |∇g(0)| ≈
(πk̃)3

12
sin2(2φ) (9.159)

The resulting errors are shown in Fig. 9.20 as a function of the mag-

nitude of the wave number and the angle to the x axis. The decrease
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Figure 9.20: Anisotropy of the a magnitude and b error in the direction of

the gradient based on the symmetrical gradient operator
[

D2x ,D2y

]T
. The

parameters are the magnitude of the wave number (0 to 0.9) and the angle to

the x axis (0 to π/2). Distance of contour lines: a 0.02 (thick lines 0.1); b 2°.

is also anisotropic; it is slower in the diagonal direction. The errors

in the direction of the gradient are also large (Fig. 9.20b). While in the

direction of the axes and diagonals the error is zero, in the directions

inbetween it reaches values of about ± 10° already at k̃ = 0.5. A Taylor

expansion of Eq. (9.158) in k̃ gives in the approximation of small k̃ the

angle error

∆φ ≈
(πk̃)2

24
sin4φ (9.160)

From this equation, we see that the angle error is zero for φ = nπ/4

with n ∈ Z, that is, for φ = 0°, 45° 90°, . . . .

Regularized difference operators. It is a common practice to regu-

larize derivative operators by presmoothing the signal (see, e. g., Chap-

ter 12). Wewill investigate here towhat extent the direction and isotropy

of the gradient is improved.

One type of regularized derivative filter is the derivate of a Gaussian.

On a discrete lattice this operator is best approximated by the derivative

of a binomial mask (Section 9.5.4) as

(B,R)Dd = D2dB
R (9.161)

with the transfer function

(B,R)D̂d(k̃) = i sin(πk̃d)

D
∏

d=1

cosR(πk̃d/2) (9.162)
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Figure 9.21: Anisotropy of the a magnitude and b error in the direction of the

gradient based on the Sobel operator Equation (9.166). Distance of contour lines

as in Fig. 9.20.

for even R. This approach leads to nonsquare masks and results in

some improvement of the isotropy of the gradient magnitude. How-

ever, the error in the direction of the gradient is the same as for the sym-

metric difference operator because the smoothing terms in Eq. (9.162)

cancel out in Eq. (9.158).

Slightly better are Sobel-type difference operators

RSd = D2dB
R−1
d

∏

d′≠d

BR
d′ (9.163)

with the transfer function

RŜd(k̃) = i tan(πk̃d/2)

D
∏

d=1

cosR(πk̃d/2) (9.164)

that lead to square masks by reducing the smoothing in the direction

of the derivation. The smallest operator of this type (R = 1) has in two

dimensions the masks

1Sx =
1

2

[

1 −1

1 −1

]

, 1Sy =
1

2

[

1 1

−1 −1

]

(9.165)

The best known example of this class of filters is the Sobel operator

2Sx =DxBxB
2
y =

1

8







1 0 –1

2 0 –2

1 0 –1





 , 2Sy =
1

8







1 2 1

0 0 0

–1 –2 –1





 (9.166)
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The errors in the magnitude and direction of the gradient based on

Eq. (9.164) are given by

∆|∇g| ≈ −
(πk̃)3

24
sin2(2φ) (9.167)

and

∆φ = arctan
tan(π(k̃d/2) sinφ)

tan(π(k̃d/2) cosφ)
−φ ≈ −

(πk̃d)2

48
sin4φ (9.168)

and shown in Fig. 9.21. The results are remarkable in two respects.

First, the error in the direction does not depend at all on the degree

of smoothing as for the derivatives of Gaussians and is only about two

times lower than that for the simple symmetric difference operator.

Second, Fig. 9.21b shows that the anisotropy of the magnitude of the

gradient is surprisingly low as compared to the symmetric difference

filter in Fig. 9.20b. This could not be expected from the Taylor expan-

sion because the term with k̃2 is only a factor of two lower than that

for the symmetric difference operator in Eq. (9.160). Thus the extrapo-

lation of the transfer functions from small wave numbers to high wave

numbers is not valid. The example of the Sobel operator shows that

oscillating higher-order terms may cancel each other and lead to much

better results as could be expected from a Taylor expansion.

The disadvantage of all approaches discussed so far is that they give

no clear indication whether the achieved solution is good or whether

any better exists. The filter design problem can be treated in a rigor-

ously mathematical way as an optimization problem [CVA2, Chapter 6].

These techniques not only allow the design of optimal filters but they

make it easier to decide precisely which criterion creates an optimal

solution.

9.7.2 Edge detection by zero crossings

General properties. First-order derivative operators detect edges by

maxima in the magnitude of the gradient. Alternatively, edges can be

detected as zero crossings of second-order derivative operators. This

technique is attractive because only linear operators are required to

perform an isotropic detection of edges by zero crossings. In con-

trast, the magnitude of the gradient is only obtained after squaring

and adding first-order derivative operators in all directions.

For an isotropic zero-crossing detector, only all second-order par-

tial derivatives must be added up. The resulting operator is called the

Laplace operator and denoted by ∆

∆ =

D
∑

d=1

∂2

∂x2
w

⇐⇒ −

D
∑

d=1

4π2k2
d = −4π2 |k|

2
(9.169)
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From this equation it is immediately evident that the Laplace operator

is an isotropic operator.

A second-order derivative filter detects curvature. Extremes in func-

tion values should thus coincide with extremes in curvature. Conse-

quently, a second-order derivative filter should be of even symmetry

similar to a smoothing filter and all the properties for filters of even

symmetry discussed in Sections 9.2.5 and 9.5.1 should also apply to

second-order derivative filters. In addition, the sum of the coefficients

must be zero as for first-order derivative filters:

∑

n

Hn = 0 ⇐⇒ Ĥ(0) = 0 (9.170)

Also, a second-order derivative filter should not respond to a con-

stant slope. This condition implies no further constraints as it is equiv-

alent to the conditions that the sum of the coefficients is zero and that

the filter is of even symmetry.

Laplace of Gaussian. The standard implementations for the Laplace

operator are well known and described in many textbooks (see, e. g.,

[1]). Thus, we will discuss here only the question of an optimal im-

plementation of the Laplacian operator. Because of a transfer func-

tion proportional to k̃2 (Eq. (9.169)), Laplace filters tend to enhance the

noise level in images considerably. Thus, a better edge detector may

be found by first smoothing the image and then applying the Laplacian

filter. This leads to a kind of regularized edge detection and to two

classes of filters known as Laplace of Gaussian or LoG filters and dif-

ference of Gaussian or DoG filters. While these filters reduce the noise

level it is not clear to what extent they improve or even optimize the

isotropy of the Laplace operator.

In the discrete case, a LoG filter is approximated by first smoothing

the image with a binomial mask and then applying the discrete Laplace

filter. Thus we have the operator combination LBR with the transfer

function

ˆLoG = L̂B̂R = −4

D
∑

d=1

sin2(πk̃d/2)

D
∏

d=1

cosR(πk̃d/2) (9.171)

For R = 0 this is the transfer function of the Laplace operator. In this

equation, we used the standard implementation of the Laplace opera-

tor, which has in two dimensions the mask

L =







0 1 0

1 –4 1

0 1 0





 (9.172)
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and the transfer function

L̂ = sin2(πk̃1/2)+ sin2(πk̃2/2) (9.173)

For small wave numbers, the 2-D transfer function in Eq. (9.171) can

be approximated in polar coordinates by

ˆLoG(k̃, φ) ≈ −(πk̃)2 +

[

1

16
+

R

8
+

1

48
cos(4φ)

]

(πk̃)4 (9.174)

Difference of Gaussian filters. The multidimensional difference of

Gaussian type of Laplace filter, or DoG filter, is defined as

DoG = 4(B2 − I)BR = 4(BR+2 −BR) (9.175)

and has the transfer function

ˆDoG(k̃) = 4

D
∏

d=1

cosR+2(πk̃d/2)− 4

D
∏

d=1

cosR(πk̃d/2) (9.176)

For small wave numbers it can be approximated by

ˆDoG(k̃, φ) ≈ −(πk̃)2 +

[

3

32
+

R

8
−

1

96
cos(4φ)

]

(πk̃)4 (9.177)

The transfer function of the LoG and DoG filters are quite similar.

Both have a significant anisotropic term. Increased smoothing (larger

R) does not help to decrease the anisotropy. It is obvious that the DoG

filter is significantly more isotropic but neither of them is really optimal

with respect to a minimal anisotropy. That second-order derivative

operators with better isotropy are possible is immediately evident by

comparing Eqs. (9.174) and (9.177). The anisotropic cos4φ terms have

different signs. Thus they can easily be compensated by a mix of LoG

and DoG operators of the form 2/3DoG + 1/3LoG, which corresponds

to the operator (8/3B2 − 8/3I − 1/3L)Bp.

This ad hoc solution is certainly not the best. Examples of optimized

second-order differential operators are discussed in CVA2 [Chapter 6].

9.7.3 Edges in multichannel images

Inmultichannel images, it is significantlymore difficult to analyze edges

than to perform averaging, which simply can be performed channel by

channel. The problem is that the different channels may contain con-

flicting information about edges. In channel A, the gradient can point

to a different direction than in channel B. Thus a simple addition of the

gradients in all channels

P
∑

p=1

∇gp(x) (9.178)
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is of no use. It may happen that the sum of the gradients over all

channels is zero although the gradients themselves are not zero. Then

we would be unable to distinguish this case from constant areas in all

channels.

A more suitable measure of the total edge strength is the sum of the

squared magnitudes of gradients in all channels

P
∑

p=1

|∇gp|
2 =

P
∑

p=1

D
∑

d=1

(

∂gp

∂xd

)2

(9.179)

While this expression gives a useful estimate of the overall edge strength,

it still does not solve the problem of conflicting edge directions. An

analysis of how edges are distributed in a D-dimensional multichannel

image with P channels is possible with the following symmetric D×D

matrix S (where D is the dimension of the image):

S = J
T
J (9.180)

where J is known as the Jacobian matrix. This P×D matrix is defined

as

J =































∂g1

∂x1

∂g1

∂x2
· · ·

∂g1

∂xD

∂g2

∂x1

∂g2

∂x2
· · ·

∂g2

∂xD

...
. . .

...

∂gP

∂x1

∂gP

∂x2
· · ·

∂gP

∂xD































(9.181)

Thus the elements of the matrix S are

Skl =

P
∑

p=1

∂gp

∂xk

∂gp

∂xl
(9.182)

Because S is a symmetric matrix, we can diagonalize it by a suitable

coordinate transform. Then, the diagonals contain terms of the form

P
∑

p=1

(

∂gp

∂x′
d

)2

(9.183)

In the case of an ideal edge, only one of the diagonal terms of the

matrix will be nonzero. This is the direction perpendicular to the dis-

continuity. In all other directions it will be zero. Thus, S is a matrix of

rank one in this case.
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By contrast, if the edges in the different channels point randomly in

all directions, all diagonal terms will be nonzero and equal. In this way,

it is possible to distinguish random changes by noise from coherent

edges. The trace of the matrix S

trace(S) =

D
∑

d=1

Sdd =

D
∑

d=1

P
∑

p=1

(

∂gp

∂xd

)2

(9.184)

gives a measure of the edge strength that we have already defined in

Eq. (9.179). It is independent of the orientation of the edge because the

trace of a symmetric matrix is invariant to a rotation of the coordinate

system.

In conclusion, the matrix S is the key for edge detection in multi-

channel signals. Note that an arbitrary number of channels can be pro-

cessed and that the number of computations increases only linearly

with the number of channels. The analysis is, however, of order O(D2)

in the dimension of the signal.

9.8 Tensor representation of simple neighborhoods

9.8.1 Simple neighborhoods

The mathematical description of a local neighborhood by continuous

functions has two significant advantages. First, it is much easier to for-

mulate the concepts and to study their properties analytically. As long

as the corresponding discrete image satisfies the sampling theorem, all

the results derived from continuous functions remain valid because the

sampled image is an exact representation of the continuous gray-value

function. Second, we can now distinguish between errors inherent to

the chosen approach and those that are only introduced by the dis-

cretization.

A simple local neighborhood is characterized by the fact that the

gray value only changes in one direction. In all other directions it is

constant. Because the gray values are constant along lines and form

oriented structures this property of a neighborhood is denoted as local

orientation [13] or linear symmetry [14]. Only more recently, the term

simple neighborhood has been coined by Granlund and Knutsson [9].

If we orient the coordinate system along the principal directions,

the gray values become a 1-D function of only one coordinate. Gener-

ally, we will denote the direction of local orientation with a unit vector

r̄ perpendicular to the lines of constant gray values. Then, a simple

neighborhood is mathematically represented by

g(x) = g(xT r̄) (9.185)
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