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known that appropriate averaging requires the weighting of each data

point gn with the inverse of the variance wn = 1/σ 2
n. Then, an estimate

of the mean value is given by

〈

g
〉

=
N∑

n=1
gn/σ 2

n

/
N∑

n=1
1/σ 2

n (9.106)

while the standard deviation of the mean is

σ 2
〈g〉 = 1

/
N∑

n=1
1/σ 2

n (9.107)

The application ofweighted averaging to image processing is known

as normalized convolution [9]. The averaging is now extended to a local

neighborhood. Each pixel enters the convolution sum with a weighting

factor associated with it. Thus, normalized convolution requires two

signals. One is the image G to be processed, the other an imageW with

the weighting factors.

By analogy to Eqs. (9.106) and (9.107), normalized convolution with

the mask H is defined as

G′ = H ∗ (W ·G)

H ∗W (9.108)

A normalized convolution with the mask H essentially transforms the

image G and the weighting image W into a new image G′ and a new

weighting image W ′ =H ∗W , which can undergo further processing.

Normalized convolution is just adequate consideration of pixels

with spatially variable statistical errors. “Standard” convolution can

be regarded as a special case of normalized convolution. Then all pix-

els are assigned the same weighting factor and it is not required to use

a weighting image, because the factor remains a constant.

The flexibility of normalized convolution is given by the choice of

the weighting image. The weighting image is not necessarily associ-

ated with an error. It can be used to select and/or amplify pixels with

certain features. In this way, normalized convolution becomes a ver-

satile nonlinear operator. The application of normalized convolution

is discussed in a number of contributions in the application gallery:

Sections A18, A20, A16, and A23.

9.6 Interpolation

Interpolation of digital signals is required for a wide range of signal-

processing tasks whenever any operation shifts the digital points of the

output signal so that they no longer coincide with the grid points of the

input signal. This occurs, among others, with the following operations:
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Geometric operations. For many applications, the geometrical distor-

tions introduced by optical systems [CVA1, Chapter 4]) are not ac-

ceptable and must be corrected. For satellite images, it is often

required to recompute the image data to a different projective map-

ping.

Signal registration. If data are taken with different sensors, these sen-

sors will almost never be in perfect spatial alignment. Thus it is

required to map them onto common spatial coordinates for further

joint processing.

Multiresolution signal processing. Formultigrid data structures, such

as pyramids (Section 8.10), signals are represented at different res-

olution levels. On such data structures it is necessary to interpolate

missing points from coarser levels to be able to process them at a

finer level.

Coarse-to-fine strategies. Coarse-to-fine strategies are an often used

concept on multigrid data structures if the processing involves im-

ages that are shifted to each other either because of a different sen-

sor (image registration), a different perspective (stereo images) or

motion of objects (Chapter 10). In all these cases it is required to

warp the images with the determined displacement vector field be-

fore processing at the next finer resolution [CVA2, Chapter 14].

Test image generation. In order to evaluate algorithms, it is important

to apply them to known signals. For image-sequence processing,

for example, it is useful to simulate displacement vector fields by

warping images correspondingly.

For a long time there was little effort put into interpolation algo-

rithms for computer vision. Thusmost of the available procedures have

been invented for computer graphics in the framework of photorealistic

rendering. An excellent survey in this respect is provided by Wolberg

[11]. Only with increasing demand for subpixel-accurate computer vi-

sion algorithms have the researchers become aware of the importance

of accurate interpolation algorithms. The demands are quite high. As

a rule of thumb, interpolation should neither change the amplitude of

a signal by more than 1% nor shift any signal by more than 0.01.

The analysis of the structure in small neighborhoods is a key el-

ement in higher-dimensional signal processing. Changes in the gray

values reveal either the edge of an object or the type of texture.

9.6.1 Interpolation as convolution

The basis of interpolation is the sampling theorem (Section 8.4.2). This

theorem states that the digital signal completely represents the contin-

uous signal provided the sampling conditions are met. This basic fact

suggests the following general framework for interpolation:
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Reconstruction of continuous signal. From the sampled signal a con-

tinuous or a higher-resolution representation is reconstructed.

Filtering. Before a resampling can be performed, it is necessary to

check whether a prefiltering of the data is required. Whenever the

data are to be resampled with a coarser resolution, aliasing could oc-

cur because the sampling condition is no longer met (Section 8.4.3).

Resampling. This step finally forms the new digital signal.

Of course, a certain procedure for interpolation can perform two or

even all of these steps in a single operation. However, it is still helpful

for a better understanding of the procedure to separate it into these

steps.

Although these procedures sound simple and straightforward, they

are not. The problem is related to the fact that the reconstruction of the

continuous signal from the sampled signal in practice is quite involved

and can be performed only approximately. Thus, we need to balance the

computational effort with the residual error for a given interpolation

task.

Generally, a continuousmultidimensional signal is interpolated from

values at all points of a lattice by (Section 8.4.4)

gr (x) =
P∑

p=1

∑

n

gs(rn + sp)h(x − (rn + sp)) (9.109)

In this equation rn are the translation vectors of the lattice and sp the

offsets of the P points in the primitive cell of the lattice. If a continuous

signal is required but only the value at a shifted point p (Eq. (9.109))

reduces to

gr (p) =
P∑

p=1

∑

n

gs(rn + sp)h(p − (rn + sp)) (9.110)

This equation reveals that interpolation is nothing else but a general-

ized convolution operation of the points on a discrete lattice with sam-

pled values from the interpolation kernel. The only difference is that

the result of the operation is not written back to the same lattice but to

a shifted lattice. Thus an interpolation operation can be described by

a transfer function. According to the discussion of the sampling theo-

rem in Sections 8.4.2 and 8.4.4, the ideal interpolation function has a

transfer function that is constantly one within the first Brillouin zone

and zero outside.

For the rest of this section, we will restrict all considerations to

orthogonal lattices because interpolation of multidimensional signals

is much easier to handle on these grids. On an orthogonal lattice with

only one point per primitive cell (P = 1), the interpolation in Eq. (9.109)
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reduces to

gr (x̃) =
∑

n

gs(n)h(x̃ −n) (9.111)

In this equation all vectors in the spatial domain are expressed in units

of the lattice constants: x̃d = xd/∆xd. Thus, the components of the

translation vector r are integers and are replaced by n = [n1, . . . , nD]T ,

the vectorial index that counts the translations vectors on a D-dimen-

sional lattice.

The ideal transfer function for interpolation of a D-dimensional sig-

nal is then a D-dimensional box function

ĝr (k̃) = ĝ(k̃)

D∏

d=1
Π(2k̃) (9.112)

where k̃ is the wave number normalized to the Nyquist limit according

to Eq. (8.34). It follows that the ideal interpolation function h is the

Fourier transform of the box function, the sinc function

h(x̃) =
D∏

d=1

sin(πx̃d)

πx̃d
=

D∏

d=1
sinc(x̃d) (9.113)

This ideal interpolation mask cannot be used in practice as it is infi-

nite. Thus an optimal approximation must be found that minimizes

the deviations from the ideal transfer function.

9.6.2 General properties of interpolation kernels

In this section some general properties of interpolation are summarized

that are useful for the design of optimal interpolation masks.

Symmetries. An interpolation mask can have an even or odd number

of coefficients. Because of symmetry reasons, the interpolation inter-

val of these two types of interpolation masks is different. For a mask

with an even number of coefficients (Fig. 9.14a), the symmetry center is

between the two central points of the interpolation mask. Because any

interpolation mask can have an interpolation interval of one distance

between two points of the mask, the interpolation interval is limited

to the interval between the two central points of the mask. For points

outside of this range, the mask is shifted a corresponding number of

points on the lattice, so that the point to be interpolated again is within

this central interval.

For a mask with an odd number of coefficients (Fig. 9.14b), the sym-

metry center coincides with the central point. Thus the interpolation

interval is now half the distance between points on the lattice on both
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Figure 9.14: Interpolation interval for interpolation masks with a an even and

b an odd number of coefficients .

sides of the central point. The symmetry conditions for these two types

of interpolation filters are analogous to type I and type II averaging fil-

ters discussed in Sections 9.2.5 and 9.5.3.

Interpolation condition. There are some general constraints thatmust

be met by any interpolation filter. They result from the simple fact that

the interpolated values in Eq. (9.111) at the lattice points n should re-

produce the lattice points and not depend on any other lattice points.

From this condition, we can infer the interpolation condition:

h(n) =
{

1 n = 0

0 otherwise
(9.114)

Therefore any interpolation mask must have zero crossings at all

grid points except the zero point where it is one. The ideal interpolation

mask in Eq. (9.113) meets this interpolation condition.

More generally, we can state that any discrete interpolation mask

sampled from the continuous interpolation kernel should meet the fol-

lowing condition:

x̃Hn =
∑

n

h(n+ x̃) = 1 ⇐⇒ x̃Ĥ0 = 1 (9.115)

This generalized condition indicates only that a constant signal (k̃ = 0)

is not changed by an interpolation operation.

Separability. The ideal interpolation function in Eq. (9.113) is sepa-

rable. Therefore, interpolation can as easily be formulated for higher-

dimensional images. We can expect that all solutions to the interpola-

tion problem will also be separable. Consequently, we need only dis-
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a

x~

b

k
~

Figure 9.15: a Ideal 1-D interpolation mask and b its transfer function. The

values for the coefficients of the discrete mask to interpolate intermediate lattice

points (x̃ = 1/2) are marked by dots.

cuss the 1-D interpolation problem

gr (x̃) =
R∑

n=−R

gnh(x̃ − n) (9.116)

where n and R take half-integer values for interpolation masks with an

even number of coefficients and integer values for interpolation masks

with an odd number of coefficients; x is given here in units of the lattice

constant x̃ = x/∆x. The 1-D ideal interpolation mask sinc(x̃) and its

transfer function Π(2k̃) are illustrated in Fig. 9.15.

Once a good interpolation mask is found for 1-D interpolation, we

also have a solution for the D-dimensional interpolation problem.

An important special case is the interpolation to intermediate lat-

tice points half-way between the existing lattice points. This scheme

doubles the resolution and image size in all directions in which it is

applied. The coefficients of the corresponding interpolation mask are

the values of the sinc(x̃) function sampled at all half-integer values:

h =
[

(–1)r−1 2

(2r − 1)π
· · · –

2

3π

2

π

2

π
–
2

3π
· · · (–1)r−1 2

(2r − 1)π

]

(9.117)

The coefficients are of alternating sign.

Interpolation error analysis. The fact that interpolation is a convo-

lution operation and thus can be described by a transfer function in

Fourier space Equation (9.113) gives us a tool to rate the errors asso-

ciated with an interpolation technique. The box-type transfer function

for the ideal interpolation function simplymeans that all wave numbers

within the range of possible wave numbers |kd| ≤ ∆xd/π experience

neither a phase shift nor amplitude damping. Also, no wave number be-

yond the allowed interval is present in the interpolated signal, because

the transfer function is zero there.
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9.6.3 Interpolation in Fourier space

Interpolation reduces to a simple operation in the Fourier domain. The

transfer function of an ideal interpolation kernel is a box function

that is zero outside the wave numbers that can be represented (see

Eq. (9.113)). This basic fact suggests the following interpolation proce-

dure in Fourier space:

1. Enlargement of the Fourier transform of the signal. If the discrete

Fourier transform of an MD multidimensional signal is increased to

an M ′D array, the array in the spatial domain is also increased to

the same size. Because of the reciprocity of the Fourier transform,

the image size remains unchanged. Only the spacing between pix-

els in the spatial domain is decreased, resulting in a higher spatial

resolution:

M∆kd → M ′
∆kd ⇐⇒ ∆x = 2π

M∆k
→ ∆x′ = 2π

M ′∆k
(9.118)

The padded area in the Fourier space is filled with zeroes.

2. Inverse Fourier transform. All that needs to be done is the compu-

tation of an inverse Fourier transform to obtain a higher resolution

signal.

The Fourier transform can also be used to shift a signal by any dis-

tance without changing the signal resolution. Then the following three-

step procedure must be applied.

1. Forward Fourier transform.

2. Multiplication with a phase factor. According to the shift theorem

(Table 8.6), a shift in the spatial domain by a distancexs corresponds

to themultiplication of the Fourier transform by the following phase

factor:

g(x) → g(x − s) ⇐⇒ Ĝu → exp(−2π ius)Ĝu (9.119)

where the vectorial shift s is given in units of the lattice constants

∆xd.

3. Inverse Fourier transform.

Theoretically, these simple procedures result in perfectly interpo-

lated signals. A closer look, however, reveals that these techniques

have some serious drawbacks.

First, the Fourier transform of a finite image implies a cyclic repe-

tition of the image both in the spatial and Fourier domain. Thus, the

convolution performed by the Fourier transform is also cyclic. This

means that at the right or left edge of the image, convolution contin-

ues with the image at the opposite side. Because the real world is not
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Figure 9.16: aOne-dimensional linear interpolation: a continuous interpolation

mask and b its transfer function. The values for the coefficients of the discrete

mask to interpolate intermediate lattice points (x̃ = 1/2) are marked by dots.

periodic and interpolation masks are large, this may lead to significant

distortions of the interpolation even at quite large distances from the

edges of the image.

Second, the Fourier transform can be computed efficiently only for

a specified number of values for M ′ [CVA2, Section 3.4]. Therefore, the
Fourier-transform based interpolation is limited to scaling factors of

powers of two.

Third, the Fourier transform is a global transform. Thus it can be

applied only to a global scaling of the signal by an integer factor.

9.6.4 Polynomial interpolation

Linear interpolation. Linear interpolation is the classic approach to

interpolation. The interpolated points are on pieces of straight lines

connecting neighboring grid points. In order to simplify the expres-

sions in the following, we use normalized spatial coordinates x̃ = x/∆x.

We locate the two grid points at −1/2 and 1/2. This yields the interpo-

lation equation

g(x̃) = g1/2 + g−1/2

2
+
(

g1/2 − g−1/2

)

x̃ for |x̃| ≤ 1/2 (9.120)

By comparison of Eq. (9.120) with Eq. (9.116), we can conclude that the

continuous interpolation mask for linear interpolation is the triangle

function

h1(x̃) = Λ(x̃) =
{

1− |x̃| |x̃| ≤ 1

0 otherwise
(9.121)

The transfer function of the interpolation mask for linear interpola-

tion, the triangle functionh1(x) Eq. (9.121), is the squared sinc function

ĥ1(k̃) = sin2(πk̃/2)

(πk̃/2)2
= sinc2(k̃/2) (9.122)
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A comparison with the ideal transfer function for interpolation Equa-

tion (9.112) (see also Fig. 9.15b and Fig. 9.16b), shows that two distor-

tions are introduced by linear interpolation:

1. While low wave numbers (and especially the mean value k̃ = 0) are

interpolated correctly, high wave numbers are reduced in ampli-

tude, resulting in some degree of smoothing. At k̃ = 1, the transfer

function is reduced to about 40%: ĥ1(1) = (2/π)2 ≈ 0.4.

2. As ĥ1(k̃) is not zero at wave numbers k̃ > 1, some spurious high

wave numbers are introduced. If the continuously interpolated im-

age is resampled, this yields moderate aliasing. The first sidelobe

has an amplitude of (2/3π)2 ≈ 0.045.

If we interpolate only the intermediate grid points at x̃ = 0, the con-

tinuous interpolation function Eq. (9.121) reduces to a discrete con-

volution mask with values at x̃ = [. . . − 3/2 − 1/2 1/2 3/2 . . . ]. As

Eq. (9.121) is zero for |x̃| ≥ 1, we obtain the simple interpolation mask

H = 1/2[1 1] with the transfer function

Ĥ1(k̃) = cosπk̃/2 (9.123)

The transfer function is real, so no phase shifts occur. The signifi-

cant amplitude damping at higher wave numbers, however, shows that

structures with high wave numbers are not correctly interpolated.

Higher-order polynomial interpolation. Given the significant limita-

tions of linear interpolation, we ask whether higher-order interpolation

schemes perform better. The basic principle of linear interpolation was

that a straight line was drawn to pass through two neighboring points.

In the same way, we can use a polynomial of degree P with P + 1 un-

known coefficients ap to pass through P + 1 points:

gr (x̃) =
P∑

p=0
apx̃p (9.124)

For symmetry reasons, the lattice points are placed at the positions

k̃p = 2p − P

2
(9.125)

For an even number of points (P is odd), the lattice points are located

at half-integer values.

From the interpolation condition at the grid points gr (k̃p) = gp, we

obtain a linear equation systemwith P+1 equations and P+1 unknowns
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aP of the following form when P is odd:
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...

g(P−1)/2

g(P+1)/2

...

gP
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1 −P/2 P2/4 −P3/8 · · ·
...

1 −1/2 1/4 −1/8 · · ·
1 1/2 1/4 1/8 · · ·
...

1 P/2 P2/4 P3/8 · · ·































a0

...

a(P−1)/2

a(P+1)/2

...

aP
















(9.126)

or written as a matrix equation:

g =Ma with Mpq =
(
2q − P

2

)p

, p, q ∈ [0, P] (9.127)

For a cubic polynomial (P = 3), the solution of the equations system

is








a0

a1

a2

a3









= 1

48









−3 27 27 −3
2 −54 54 −2
12 −12 −12 12

−8 24 −24 8

















g0

g1

g2

g3









(9.128)

Using Eqs. (9.124) and (9.128) we can express the interpolated values

for the position ǫ in the interval [−1/2,1/2] as

g(ǫ) = 9− 4ǫ2

16
(g1 + g2) − 1− 4ǫ2

16
(g0 + g3)

+ ǫ(9− 4ǫ2)

8
(g2 − g1) − ǫ(1− 4ǫ2)

24
(g3 − g0)

(9.129)

Thus the interpolation mask is

[−α

16
+ ǫα

24
,

8+ α

16
+ ǫ(8+ α)

8
,

8+ α

16
− ǫ(8+ α)

8
,

−α

16
− ǫα

24

]

(9.130)

with α = 1− 4ǫ2. For ǫ = 0 (α = 1), the mask reduces to

1

16
[−1 9 9 − 1] (9.131)

It is not very helpful to go to higher-order polynomial interpolation.

With increasing degree P of the interpolating polynomial, the transfer

function approaches the ideal transfer function better but convergence

is too slow (Fig. 9.17). Less than 1% amplitude error is given only for

a polynomial of degree 7 for k̃ < 0.45. Thus the extra effort of higher-

order polynomial interpolation does not pay off.
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Figure 9.17: Transfer function of polynomial interpolation filters to interpolate

the value between two grid points (ǫ = 0). The degree of the polynomial (1

= linear, 3 = cubic, etc.) is marked in the graph. The dashed line marks the

transfer function for cubic B-spline interpolation (Section 9.6.5): a Full range; b

sector as marked in a.
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Figure 9.18: a B-spline interpolation kernels of order 0 (nearest neighbor), 1 (lin-

ear interpolation), 2 (quadratic B-spline), and 3 (cubic B-spline); b corresponding

transfer functions.

9.6.5 Spline-based interpolation

Besides the still limited accuracy, polynomial interpolation has another

significant disadvantage. The interpolated curve is not continuous at

the grid points already in its first derivative. This is due to the fact

that for each interval between grid points another polynomial is taken.

Thus, only the interpolated function is continuous at the grid points

but not the derivatives.

Splines avoid this disadvantage by additional constraints for the

continuity of derivatives at the grid points. From the many classes

of splines, we will here discuss only one class, B-splines, and introduce

cubic B-spline interpolation. From the background of signal processing,

the easiest access to B-splines is their convolution property. The kernel

of a P -order B-spline curve is generated by convolving the box function
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P times with itself (Fig. 9.18a):

βP (x̃) = Π(x̃) ∗ . . . ∗Π(x̃)
︸ ︷︷ ︸

(P+1) times

(9.132)

The transfer function of the box function is the sinc function (see

Fig. 9.15). Therefore, the transfer function of the P -order B-spline is

β̂P (k̂) =
(

sinπk̃/2

(πk̃/2)

)P+1

(9.133)

Figure 9.18b shows that the B-spline function does not make a suit-

able interpolation function. The transfer function decreases too early,

indicating that B-spline interpolation performs too much averaging.

Moreover, the B-spline kernel does not meet the interpolation condition

Eq. (9.114) for P > 1. Thus, B-splines can be used only for interpola-

tion if the discrete grid points are first transformed in such a way that

a following convolution with the B-spline kernel restores the original

values at the grid points.

This transformation, known as the B-spline transformation, is con-

structed from the following condition:

gp(x) =
∑

n

cnβP (x − xn) with gp(xn) = g(xn) (9.134)

If centered around a grid point, the cubic B-spline interpolation

kernel is unequal to zero for only three grid points. The coefficients

β3(−1) = β−1, β3(0) = β0, and β3(1) = β1 are 1/6, 2/3, and 1/6. The

convolution of this kernel with the unknown B-spline transform values

cn should result in the original values gn at the grid points. Therefore,

g = c ∗ β3 or gn =
1∑

n′=−1
cn+n′βn′ (9.135)

Equation (9.134) constitutes the sparse linear equation system
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(9.136)
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using cyclic boundary conditions. The determination of the B-spline

transformation thus requires the solution of a linear equation system

with N unknowns. The special form of the equation system as a con-

volution operation, however, allows for a more efficient solution. In

Fourier space, Eq. (9.135) reduces to

ĝ = β̂3ĉ (9.137)

The transfer function of β3 is β̂3(k̃) = 2/3+1/3cos(πk̃). As this func-

tion has no zeroes, we can compute c by inverse filtering, that is, con-

voluting g with a mask that has the transfer function

β̂−1
3 (k̃) = β̂T (k̃) = 1

2/3+ 1/3cos(πk̃)
(9.138)

This is the transfer function of a recursive relaxation filter (Section 9.3.6)

that is applied first in the forward and then in the backward direction

with the following recursion [12]:

g′
n = gn − (2−

√
3)(g′

n−1 − gn)

c′
n = g′

n − (2−
√
3)(cn+1 − g′

n)
(9.139)

The entire operation takes only two multiplications and four additions.

The B-spline interpolation is applied after the B-spline transforma-

tion. In the continuous cubic case this yields the effective transfer func-

tion using Eqs. (9.133) and (9.138),

β̂I(k̃) = sin4(πk̃/2)/(πk̃/2)4

(2/3+ 1/3cos(πk̃))
(9.140)

Essentially, the B-spline transformation performs an amplification

of high wave numbers (at k̃ = 1 by a factor 3), which compensates the

smoothing of the B-spline interpolation to a large extent.

We investigate this compensation at both the grid points and the in-

termediate points. From the equation of the cubic B-spline interpolat-

ing kernel (Eq. (9.132); see also Fig. 9.18a) the interpolation coefficients

for the grid points and intermediate grid points are

1/6 [1 4 1] and 1/48 [1 23 23 1] (9.141)

respectively. Therefore, the transfer functions are

2/3+ 1/3cos(πk̃) and 23/24cos(πk̃/2) + 1/24cos(3πk̃/2)

(9.142)

respectively. At the grid points, the transfer functions compensate

exactly—as expected—the application of the B-spline transformation
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