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combinations of linear filter operators and point operators are very at-

tractive as they can be composed of very simple and elementary opera-

tions that are very well understood and for which analytic expressions

are available. Thus, these operations in contrast to many others can be

the subject of a detailed mathematical analysis. Many advanced signal

and image-processing techniques are of that type. This includes oper-

ators to compute local structure in images and various operations for

texture analysis.

9.5 Local averaging

Averaging is an elementary neighborhood operation for multidimen-

sional signal processing. Averaging results in better feature estimates

by including more data points. It is also an essential tool to regularize

otherwise ill-defined quantities such as derivatives (Chapters 10 and

12). Convolution provides the framework for all elementary averaging

filters. In this chapter averaging filters are considered for continuous

signals and for discrete signals on square, rectangular and hexagonal

lattices. The discussion is not restricted to 2-D signals. Whenever it is

possible, the equations and filters are given for signals with arbitrary

dimension.

The common properties and characteristics of all averaging filters

are discussed in Section 9.5.1. On lattices two types of averaging filters

are possible [3, Section 5.7.3]. Type I filters generate an output on the

same lattice. On a rectangular grid such filters are of odd length in

all directions. Type II filters generate an output on a grid with lattice

points between the original lattice points (intermediate lattice). On a

rectangular grid such filters are of even length in all directions. In this

chapter two elementary averaging filters for digital multidimensional

signals are discussed—box filters (Section 9.5.3) and binomial filters

(Section 9.5.4). Then we will deal with techniques to cascade these

elementary filters to large-scale averaging filters in Section 9.5.5, and

filters with weighted signals (normalized convolution) in Section 9.5.6.

9.5.1 General properties

Transfer function. Any averaging filter operator must preserve the

mean value. This condition means that the transfer function for zero

wave number is 1 or, equivalently, that the sum of all coefficients of the

mask is 1:

ĥ(0) = 1 ⇐⇒
∞∫

−∞

h(x)dDx = 1 or
∑

n∈mask

Hn = 1 (9.68)
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Intuitively, we expect that any smoothing operator attenuates small-

er scalesmore strongly than coarser scales. More specifically, a smooth-

ing operator should not completely annul a certain scale while smaller

scales still remain in the image. Mathematically speaking, this means

that the transfer function decreases monotonically with the wave num-

ber. Then for any direction, represented by a unit vector r̄

ĥ(k2r̄) ≤ ĥ(k1r̄) if k2 > k1 (9.69)

We may impose the more stringent condition that the transfer func-

tion approaches zero in all directions,

lim
k→∞

ĥ(kr̄) = 0 (9.70)

On a discrete lattice the wave numbers are limited by the Nyquist con-

dition, that is, the wave number must lay within the first Brillouin zone

(Section 8.4.2). Then it makes sense to demand that the transfer func-

tion of an averaging filter is zero at the border of the Brillouin zone.

On a rectangular lattice this means

ĥ(k) = 0 if kb̂d = |b̂d|/2 (9.71)

where b̂d is any of the D-basis vectors of the reciprocal lattice (Sec-

tion 8.4.2). Together with the monotonicity condition and the preserva-

tion of the mean value, this means that the transfer function decreases

monotonically from one to zero for each averaging operator.

For a 1-D filter we can easily use Eq. (9.24) to relate the condition in

Eq. (9.71) to a condition for the coefficients of type I filters:

ĥ(1) = 0 ⇐⇒ h0 + 2
∑

r even

hr = 2
∑

r odd

hr (9.72)

One-dimensional type II filters are, according to Eq. (9.24), always zero

for k̃ = 1.

Even filters in continuous space. With respect to object detection,

the most important feature of an averaging operator is that it must not

shift the object position. Any shift introduced by a preprocessing op-

erator would cause errors in the estimates of the position and possibly

other geometric features of an object. In order not to cause a spatial

shift, a filter must not induce any phase shift in the Fourier space. A

filter with this property is known as a zero-phase filter . This implies

that the transfer function is real and this is equivalent with an even

symmetry of the filter mask (Section 8.6.3):

h(−x) = h(x) ⇐⇒ ĥ(k) real (9.73)
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Averaging filters normally meet a stronger symmetry condition in the

sense that each axis is a symmetry axis. Then Eq. (9.73) is valid for each

component of x:

h([x1, . . . ,−xd, . . . , xD]
T

) = h([x1, . . . , xd, . . . , xD]
T

) (9.74)

Even filters on 1-D lattices. For digital signals we distinguish fil-

ters with odd and even numbers of coefficients in all directions (Sec-

tion 9.2.5). For both cases, we can write the symmetry condition for a

filter with Rd + 1 coefficients in the direction d as

Hr0,r1,... ,Rd−rd,... ,rD = Hr0,r1,... ,rd,... ,rD ∀d ∈ [1, D] (9.75)

when we count the coefficients in each direction from left to right from

0 to Rd. This is not the usual counting but it is convenient as only one

equation is required to express the evenness for filters with even and

odd numbers of coefficients. For a 1-D filter the symmetry conditions

reduce to

HR−r = Hr (9.76)

The symmetry relations significantly ease the computation of the

transfer functions because for real transfer functions only the cosine

term of the complex exponential from the Fourier transform remains

in the equations (Sections 8.6 and 9.2.5). The transfer function for 1-D

even masks with either 2R + 1 (type I filter) or 2R coefficients (type II

filter) is

Iĥ(k̃) = h0 + 2

R∑

r=1
hr cos(rπk̃)

IIĥ(k̃) = 2

R∑

r=1
hr cos((r − 1/2)πk̃)

(9.77)

Note that in these equations only pairs of coefficients are counted from

1 to R. The central coefficient of a filter with an odd number of coeffi-

cients has the index zero. As discussed in Section 9.2.5, filters with an

odd number of coefficients output the filter results to the same lattice

while filters with an even number of coefficients output the filter result

to the intermediate lattice. A further discussion of the properties of

symmetric filters up to three dimensions can be found in Jähne [4].

Isotropic filters. In most applications, the averaging should be the

same in all directions in order not to prefer any direction. Thus, both

the filter mask and the transfer function should be isotropic. Conse-

quently, the filter mask depends only on the magnitude of the distance
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from the center pixel and the transfer function on the magnitude of the

wave number:

H(x) = H(|x|) ⇐⇒ Ĥ(k̃) = Ĥ(|k̃|) (9.78)

This condition can also be met easily in discrete space. It means that

the coefficients at lattice points with an equal distance from the cen-

ter point are the same. However, the major difference now is that a

filter whose coefficients meet this condition does not necessarily have

an isotropic transfer function. The deviations from the isotropy are

stronger the smaller is the filter mask. We will discuss the deviations

from isotropy in detail for specific filters.

9.5.2 Separable averaging filters

The importance of separable filters for higher-dimensional signals is

related to the fact that they can be computed much faster than non-

separable filters [CVA2, Section 5.6]. The symmetry conditions for sep-

arable averaging filters are also quite simple because only the symmetry

condition Equation (9.76) must be considered. Likewise, the equations

for the transfer functions of separable filters are quite simple. If we ap-

ply the same 1-D filter in all directions, the resulting transfer function

of a D-dimensional filter is given after Eq. (9.77) by

Iĥ(k̃) =
D∏

d=1



h0 + 2

R∑

r=1
hr cos(rπk̃d)





IIĥ(k̃) =
D∏

d=1



2

R∑

r=1
hr cos((r − 1/2)πk̃d)





(9.79)

With respect to isotropy, there exists only a single separable filter

that is also isotropic, that is, the Gaussian function

1

aD
exp(−πxTx/a2) = 1

aD

D∏

d=1
exp(−πx2

d/a2) ⇐⇒

exp(−πa2k̃
T
k̃/4) =

D∏

d=1
exp(−πa2k̃2

d/4)

(9.80)

This feature shows the central importance of the Gaussian function for

signal processing from yet another perspective.

To a good approximation, the Gaussian function can be replaced

on orthogonal discrete lattices by the binomial distribution. The coef-

ficients of a 1-D binomal filter with R + 1 coefficients and its transfer
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Figure 9.5: Transfer functions of type I box filters with 3, 7, and 15 coefficients

in a a linear plot; and b a log-log plot of the absolute value.

function are given by

BR = 1

2R

[

b0 = 1, . . . , br =
(

R

r

)

, . . . , bR+1 = 1

]

⇐⇒ B̂R(k̃) = cosR(πk̃/2)

(9.81)

With the comments on the isotropy of discrete filters in mind (Sec-

tion 9.5.1), it is necessary to study the deviation of the transfer function

of binomial filters from an isotropic filter.

9.5.3 Box filters

The simplest method is to average pixels within the filter mask and to

divide the sum by the number of pixels. Such a simple filter is called

a box filter . It is also known under the name running mean. In this

section, only type I box filters are discussed. For type II box filters and

box filters on hexagonal lattices see CVA2 [Section 7.3].

The simplest type I 1-D box filter is

3
R = 1

3
[1,1,1] ⇐⇒ 3R̂(k̃) = 1

3
+ 2

3
cos(πk̃) (9.82)

The factor 1/3 scales the result of the convolution sum in order to

preserve the mean value (see Eq. (9.68) in Section 9.5.1). Generally, a

type I 1-D box filter with 2R + 1 coefficients has the transfer function

IR̂(k̃) = 1

2R + 1
+ 2

2R + 1

R∑

r=1
cos(πr k̃)

= 1

2R + 1

cos(πRk̃) − cos(π(R + 1)k̃)

1− cos(πk̃)

(9.83)

For small wave numbers the transfer function can be approximated by

IR̂(k̃) ≈ 1− R(R + 1)

6
(πk̃)2 + R(R + 1)(3R2 + 3R − 1)

360
(πk̃)4 (9.84)
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Figure 9.5 shows that the box filter is a poor averaging filter. The trans-

fer function is not monotonical and the envelope of the transfer func-

tion is only decreasing with k−1 (compare Section 8.6.3). The high-

est wave number is not completely suppressed even with large filter

masks. The box filter also shows significant oscillations in the trans-

fer function. The filter 2R+1R completely eliminates the wave numbers

k̃ = 2r/(2R + 1) for 1 ≤ r ≤ R. In certain wave-number ranges, the

transfer function becomes negative. This corresponds to a 180° phase

shift and thus a contrast inversion.

Despite all their disadvantages, box filters have one significant ad-

vantage. They can be computed very fast with only one addition, sub-

traction, and multiplication independent of the size of the filter, that

is, O(R0). Equation (9.83) indicates that the box filter can also be un-

derstood as a filter operation with a recursive part according to the

following relation:

g′
n = g′

n−1 + 1

2R + 1
(gn+R − gn−R−1) (9.85)

This recursion can easily be understood by comparing the computa-

tions for the convolution at neighboring pixels. When the box mask

is moved one position to the right, it contains the same weighting fac-

tor for all pixels except for the last and the first pixel. Thus, we can

simply take the result of the previous convolution (g′
n−1), subtract the

first pixel that just moved out of the mask (gn−R−1), and add the gray

value at the pixel that just came into the mask (gn+R). In this way, the

computation of a box filter does not depend on its size.

Higher-dimensional box filters can simply be computed by cascad-

ing 1-D box filters running in all directions, as the box filter is separable.

Thus the resulting transfer function for a D-dimensional filter is

2R+1R̂(k̃) = 1

(2R + 1)D

D∏

d=1

cos(πRk̃d) − cos(π(R + 1)k̃d)

1− cos(πk̃d)
(9.86)

For a 2-D filter, we can approximate the transfer function for small

wave numbers and express the result in cylinder coordinates by using

k1 = k cosφ and k2 = k sinφ and obtain

IR̂(k̃) ≈ 1− R(R + 1)

6
(πk̃)2 + R(R + 1)(14R2 + 14R − 1)

1440
(πk̃)4

− R(R + 1)(2R2 + 2R + 1)

1440
cos(4φ)(πk̃)4

(9.87)

This equation indicates that—although the term with k̃2 is isotropic—

the term with k̃4 is significantly anisotropic. The anisotropy does not
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Figure 9.6: Absolute deviation of the 2-D transfer functions of type I 2-D box

filters from the transfer function along the x axis (1-D transfer function shown

in Fig. 9.5) for a a 3×3 and b 7×7 filter. The distance of the contour lines is
0.05. The area between the thick contour lines marks the range around zero.

improve for larger filter masks because the isotropic and anisotropic

terms in k̃4 grow with the same power in R.

A useful measure for the anisotropy is the deviation of the 2-D filter

response from the response in the direction of the x1 axis:

∆R̂(k̃) = R̂(k̃) − R̂(k̃1) (9.88)

For an isotropic filter, this deviation is zero. Again in an approximation

for small wave numbers we obtain by Taylor expansion

∆IR̂(k̃) ≈ 2R4 + 4R3 + 3R2 + R

720
sin2(2φ)(πk̃)4 (9.89)

The anisotropy for various box filters is shown in Fig. 9.6. Clearly, the

anisotropy does not become weaker for larger box filters. The devia-

tions are significant and easily reach 0.25. This figure means that the

attenuation for a certain wave number varies up to 0.25 with the direc-

tion of the wave number.

9.5.4 Binomial filters

In Section 9.5.2 we concluded that only the Gaussian functionmeets the

most desirable features of an averaging filter: separability and isotropy.

In this section we will investigate to which extent the binomial filter,

which is a discrete approximation to the Gaussian filter, still meets

these criteria. The coefficients of the one-dimensional binomial filter
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Figure 9.7: Transfer functions of binomial filters BR in a a linear plot and b a

log-log plot of the absolute value with values of R as indicated.

can be generated by repeatedly convolving the simple 1/2 [1 1] mask:

B
R = 1/2 [1 1] ∗ . . . ∗ 1/2 [1 1]

︸ ︷︷ ︸

R times

(9.90)

This cascaded convolution is equivalent to the scheme in Pascal’s tri-

angle. The transfer function of the elementary B = 1/2 [1 1] filter is

B̂ = cos(πk̃/2) (9.91)

There is no need to distinguish type I and type II binomial filters in the

equations because they can be generated by cascaded convolution as

in Eq. (9.90). Therefore, the transfer function of the BR binomial filter

is

B̂
R = cosR(πk̃/2) (9.92)

The most important features of binomial averaging filters are:

Monotonic transfer function. The transfer function decreases mono-

tonically from 1 to 0 (Fig. 9.7).

Spatial variance. The coefficients of the binomial filter quickly ap-

proach with increasing mask size a sampled normal distribution.

The spatial variance is

σ 2
x = R/4 (9.93)

A binomial filter effectively averages over a width of 2σx . In contrast

to the box filters, the effective averaging width increases only with

the square root of the filter length.

Variance. Also the transfer function of the binomial filter quickly ap-

proaches the Gaussian function with increasingmask size (Fig. 9.7a).

It is instructive to compare the Taylor expansion of the Gaussian
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Figure 9.8: Absolute deviation of the 2-D transfer functions of binomial filters

from the transfer function along the x axis (1-D transfer function shown in

Fig. 9.7) for a a 3×3 (B2) and b 9×9 (B8) filter. The distance of the contour

lines is 0.005 in a and 0.001 in b. The area between the thick contour lines

marks the range around zero.

function for small wave numbers with those of the transfer func-

tions of binomial filters:

exp(−k̃2/(2σ 2
k )) ≈ 1 − 1

2σ 2
k

k̃2 + 1

8σ 4
k

k̃4

B̂
R

(k̃) ≈ 1 − Rπ2

8
k̃2 +

(

R2π4

128
− Rπ4

192

)

k̃4
(9.94)

For large R both expansions are the same with

σk = 2√
Rπ

(9.95)

Higher-dimensional binomial filters can be composed from 1-D bi-

nomial filters in all directions:

BR =
D∏

d=1
BR

d (9.96)

Thus the transfer function of the multidimensional binomial filter BR

with (R + 1)D coefficients is given by

B̂R =
D∏

d=1
cosR(πk̃d/2) (9.97)
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The isotropy of binomial filters can be studied by expanding Eq. (9.97)

in a Taylor series using cylindrical coordinates k̃ = [k̃, φ]T :

B̂R ≈ 1− R

8
(πk̃)2 + 2R2 − R

256
(πk̃)4 − R cos4φ

768
(πk̃)4 (9.98)

Only the second-order term is isotropic. In contrast, the fourth-order

term contains an anisotropic part, which increases the transfer func-

tion in the direction of the diagonals. A larger filter (larger R) is less

anisotropic as the isotropic term with k̃4 increases quadratically with

R while the anisotropic term with k̃4 cos4θ increases only linearly with

R. The anisotropy deviation according to Eq. (9.88) is given by

∆B̂R ≈ R

384
sin2(2φ)(πk̃)4 + 5R2 − 4R

15360
sin2(2φ)(πk̃)6 (9.99)

and shown in Fig. 9.8.

Three-dimensional binomial filters and binomial filters on hexago-

nal grids are discussed in CVA2 [Section 7.4.3].

9.5.5 Cascaded averaging

The approaches discussed so far for local averaging are no solution if

the averaging should cover large neighborhoods for the following rea-

sons: First, binomial filters are not suitable for large-scale averaging—

despite their efficient implementation by cascaded convolution with

B—because the averaging distance increases only with the square root

of the mask size (see Eq. (9.93) in Section 9.5.4). Second, box filters and

recursive filters are, in principle, suitable for large-scale averaging be-

cause the number of operations does not increase with the size of the

point spread function (operation of the order O(R0)). However, both

types of filters have a nonideal transfer function. The transfer function

of the box filter is not monotonically decreasing with the wave number

(Section 9.5.3) and both filters show overly large deviations from an

isotropic response. In this section, several techniques are discussed

for large-scale averaging that overcome these deficits and limitations.

Multistep averaging. The problem of slow large-scale averaging orig-

inates from the small distance between the pixels averaged by small

masks. In order to overcome this problem, we may use the same ele-

mentary averaging process but with more distant pixels. As the box,

binomial and recursive averaging filters are separable and thus are ap-

plied as cascaded filter operations running one after the other in all co-

ordinate directions through a multidimensional signal, it is sufficient

to discuss increasing the step width for 1-D filter operations. A 1-D

convolution with a mask that operates only with every S-th pixel can
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a b

Figure 9.9: Transfer functions of the binomial filterB4 (B = 1/16[1 4 6 4 1]) and

the same filter stretched by a a factor of two, B4
2 (B2 = 1/16[1 0 4 0 6 0 4 0 1]),

and b a factor of four, B4
4.

be written as a stretched mask

(hS)n =
{

hn′ n = Sn′

0 else
⇐⇒ ĥS(k̃) = ĥ(k̃/S) (9.100)

Because of the reciprocity between the spatial and Fourier domains the

stretching of the filter mask by a factor S results in a corresponding

shrinking of the transfer function. This shrinking goes—because of the

periodicity of the transfer function of discrete samples—along with an

S-fold replication of the transfer function as illustrated in Fig. 9.9.

An averaging filter that is used with a larger step width is no longer

a good averaging filter for the whole wave-number range but only for

wave numbers up to k̃ = 1/S. Used individually, these filters are thus

not of much help. But we can use them in cascade in such a way that

previous smoothing has already removed all wave numbers beyond

k̃ = 1/S. This is the basic principle for the design of cascaded filters.

For practical design there are two degrees of freedom. First, we can

select the basic filter that is used repeatedly with different step widths.

Here, box, binomial and relaxation filters are investigated. Second, we

can choose the way in which the step width is increased. We will con-

sider both a linear and an exponential increase in the step width. Gen-

erally, a cascaded filter operation consists of the following chain of P

operations with the filter operation B:

BaP . . .Bap . . .Ba2Ba1
︸ ︷︷ ︸

P times

(9.101)

where ap consists of a sequence of step widths. Whereas in each step

the same operator B with the spatial variance σ 2 is used and only the
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Figure 9.10: Transfer functions of cascaded filtering with linear increase in

step width with a B2, b B4, c 3R, and d 5R. Shown are the transfer functions of
the original filters and of the cascaded filtering up to the six-fold step size with

a resulting averaging width
√
91 ≈ 9.54 times larger than the original filter.

step width is changed, the resulting step width can be computed by

σ 2
c = σ 2

P∑

p=1
a2

p (9.102)

From this equation it is also obvious that efficient filter cascading re-

quires an increasing step width. If we keep the step width constant,

the averaging width given by σc increases only with
√

P and not lin-

early with P .

Linearly increasing step width. In the simplest case, the step width

is increased linearly, that is, ap = p. This results in the following se-

quence of P step widths: 1,2,3,4, . . . , P . According to Eq. (9.102), the

resulting series of variances is

σ 2
c = σ 2

P∑

p=1
p2 = P(P + 1)(2P + 1)

6
σ 2 (9.103)

For large P , σc = P3/2σ/
√
3. Thus the averaging width increases even

stronger than linear with the number of steps. With only six steps, the

resulting averaging width is
√
91 ≈ 9.54 times larger than that of the
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Figure 9.11: Transfer functions of cascaded filtering with exponential increase

in step width with a B2, b B4, c 3R, and d 5R. Shown are the transfer func-
tions of the original filters and of four cascaded filters (up to step size 8) with a

resulting averaging width
√
85 ≈ 9.22 times larger than the original filter.

original filter (Fig. 9.10). To achieve this averaging width, the same filter

would have to be applied 91 times.

The quality of the cascaded filtering, that is, the degree of devia-

tion from a monotonic transfer function, is determined by the basic

filter. Figure 9.10 shows the transfer functions for a number of dif-

ferent filters in a double-logarithmic plot. Only the binomial filter B4

shows negligible secondary peaks well beyond 10−4. The other filters
in Fig. 9.10 have significantly more pronounced secondary peaks in the

10−4 to 10−2 range.

Exponentially increasing step width. A linear increase in the step

width is still too slow to achieve averaging over very large scales. It

is also disadvantageous in that the increase in the averaging width is

of the odd order P3/2. This means that filtering does not increase the

width of the averaging linearly. The increase is slightly stronger. Both

difficulties are overcome with an exponential increase in the step width.

The easiest way is to increase the step width by a factor of two from

filtering to filtering. The resulting mask has the standard deviation

σ 2
c = σ 2

P∑

p=1
22p−2 = 22P − 1

3
σ 2 (9.104)
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Figure 9.12: a Sequence of transfer functions of cascaded filtering with expo-

nential increase in step width using the B6 binomial filter. b Shows the same

sequence except that the first filter with step width 1 is B8.

Thus the standard deviation grows exponentially to ≈ (2P /
√
3)σ

with only P filtering steps. In other words, the number of computations

increases only logarithmically with the averaging width.

As for the linear increase of the step width, the basic filter deter-

mines the quality of the resulting transfer function of the cascaded fil-

tering. Figure 9.11 shows that only the binomial filter B4 results in an

acceptable transfer function of the cascaded filtering. All other filters

show too high secondary peaks.

Figure 9.12a shows a sequence of transfer functions for the cascad-

ing of the binomial filter B6. It can be observed that the filters are not

of exactly the same shape but that the secondary peak is higher for the

first steps and only gradually levels off to a constant value. This effect

is caused by the constant term in Eq. (9.104). It can be compensated if

the first filter (p = 1) does not have variance σ 2 but has variance 4/3σ 2.

Indeed, if a B8 filter is used instead of the B6 filter in the first step, the

filters in the different steps of the filter cascade are much more similar

(Fig. 9.12b).

For higher-dimensional signals the isotropy of the averaging is of

significance. As we already know that all filters except for the binomial

filters are significantly anisotropic, only binomial filters are discussed.

While the B2 filter still shows a pronounced anisotropy of several per-

cent (Fig. 9.13a), the anisotropy is already just slightly more than 0.01

for a B4 filter (Fig. 9.13b).

Multigrid averaging. Multistep cascaded averaging can be further en-

hanced by converting it into a multiresolution technique. The idea of

multigrid smoothing is very simple. If a larger step mask is involved,

this operation can be applied on a correspondingly coarser grid. This

means that the last operation before using the larger step mask needs

to compute the convolution only at the grid points used by the follow-

ing coarser grid operator. This sampling procedure is denoted by a

special syntax in the operator index; O↓2 means: Apply the operator in
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a b

Figure 9.13: Anisotropy of cascaded filtering with exponential increase of the

step width in a log-polar plot. Shown is the deviation from the transfer function

in the direction of the x axis for a B2
4B2

2B2
1 and b B4

4B4
2B4

1.

all directions and advance the mask two pixels in all directions. Thus,

the output of the filter operator has only half as many pixels in every

direction as the input.

Multigrid smoothing makes the number of computations essentially

independent of the standard deviation of the smoothing mask. We

again consider a sequence of 1-D averaging filters:

B↓2 · · ·B↓2B↓2
︸ ︷︷ ︸

P times

The standard deviation of the filter cascade is the same as for the multi-

step approach with exponential increase of the step width (Eq. (9.104)).

Also, as long as the sampling condition is met, that is, B̂p(k̃) = 0

∀k̃ ≥ 1/2, the transfer functions of the filters are the same as for the

multistep filters.

If B↓2 takes q operations, the operator sequence takes

q

P∑

p=1

1

2p−1 = 2q

(

1− 1

2P−1

)

< 2q (9.105)

Thus, smoothing to any degree takes no more than twice as many op-

erations as smoothing at the first step.

9.5.6 Weighted averaging

Image data, just like any other experimental data, may be characterized

by individual errors that have to be considered in any further process-

ing. As an introduction, we first discuss the averaging of a set of N

data gn with standard deviations σn. From elementary statistics, it is
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known that appropriate averaging requires the weighting of each data

point gn with the inverse of the variance wn = 1/σ 2
n. Then, an estimate

of the mean value is given by

〈

g
〉

=
N∑

n=1
gn/σ 2

n

/
N∑

n=1
1/σ 2

n (9.106)

while the standard deviation of the mean is

σ 2
〈g〉 = 1

/
N∑

n=1
1/σ 2

n (9.107)

The application ofweighted averaging to image processing is known

as normalized convolution [9]. The averaging is now extended to a local

neighborhood. Each pixel enters the convolution sum with a weighting

factor associated with it. Thus, normalized convolution requires two

signals. One is the image G to be processed, the other an imageW with

the weighting factors.

By analogy to Eqs. (9.106) and (9.107), normalized convolution with

the mask H is defined as

G
′ = H ∗ (W ·G)

H ∗W (9.108)

A normalized convolution with the mask H essentially transforms the

image G and the weighting image W into a new image G′ and a new

weighting image W ′ =H ∗W , which can undergo further processing.

Normalized convolution is just adequate consideration of pixels

with spatially variable statistical errors. “Standard” convolution can

be regarded as a special case of normalized convolution. Then all pix-

els are assigned the same weighting factor and it is not required to use

a weighting image, because the factor remains a constant.

The flexibility of normalized convolution is given by the choice of

the weighting image. The weighting image is not necessarily associ-

ated with an error. It can be used to select and/or amplify pixels with

certain features. In this way, normalized convolution becomes a ver-

satile nonlinear operator. The application of normalized convolution

is discussed in a number of contributions in the application gallery:

Sections A18, A20, A16, and A23.

9.6 Interpolation

Interpolation of digital signals is required for a wide range of signal-

processing tasks whenever any operation shifts the digital points of the

output signal so that they no longer coincide with the grid points of the

input signal. This occurs, among others, with the following operations:
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