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Figure 9.4: Transfer function of the zero-phase recursive resonance filter for

a k̃0 = 1/2 and values of r as indicated; and b r = 7/8 and values of k̃0 as

indicated.

The denominator in Eq. (9.61) is still the same as in Eq. (9.60); it has only

been expanded in terms with cos(nπk̃0). The corresponding recursive

filter coefficients are:

g′n = (1− r
2) sin(πk̃0)gn + 2r cos(πk̃0)g

′

n∓1 − r
2g′n∓2 (9.62)

Figure 9.4 shows the transfer function of this filter for values of k̃0 and

r as indicated.

For symmetry reasons, the factors become most simple for a reso-

nance wave number of k̃0 = 1/2. Then the recursive filter is

g′n = (1− r
2)gn − r

2g′n∓2 = gn − r
2(gn + g

′

n∓2) (9.63)

with the transfer function

ŝ(k̃) =
(1− r 2)2

1+ r 4 + 2r 2 cos(2πk̃)
(9.64)

Themaximum response of this filter at k̃ = 1/2 is one and theminimum

response at k̃ = 0 and k̃ = 1 is ((1− r 2)/(1+ r 2))2.

This resonance filter is the discrete analog to a linear system gov-

erned by the second-order differential equation ÿ+2τẏ+ω2
0y = 0, the

damped harmonic oscillator. The circular eigenfrequency ω0 and the

time constant τ of a real-world oscillator are related to the parameters

of the discrete oscillator, r and k̃0 by [4]

r = exp(−∆t/τ) and k̃0 =ω0∆t/π (9.65)

9.4 Classes of nonlinear filters

9.4.1 Limitations of linear filters

In the previous sections, the theory of linear shift-invariant filters was

discussed in detail. Although the theory of these filters is well estab-
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lished and they can be applied, they still have some severe limitations.

Basically, linear filters cannot distinguish between a useful feature and

noise. This property can be best demonstrated with a simple example.

We assume a simple signal model with additive noise:

g′(x) = g(x)+n(x)⇐⇒ ĝ′(k) = ĝ(k)+ n̂(k) (9.66)

The signal to noise ratio (SNR) is defined by
∣

∣ĝ(k)
∣

∣ /
∣

∣n̂(k)
∣

∣. If we now

apply a linear filter with the transfer function ĥ(k) to this signal, the

filtered signal is

ĥ(k)ĝ′(k) = ĥ(k)(ĝ(k)+ n̂(k)) = ĥ(k)ĝ(k)+ ĥ(k)n̂(k) (9.67)

It is immediately evident that the noise and the signal are damped by

the same factor. Consequently, the SNR does not increase at all by

linear filtering, it just stays the same.

From the preceding considerations, it is obvious that more complex

approaches are required than linear filtering. Common to all these ap-

proaches is that in one or another way the filters aremade dependent on

the context or are tailored for specific types of signals. Often a control

strategy is an important part of such filters that controls which filter or

in which way a filter has to be applied at a certain point in the image.

Here, we will outline only the general classes for nonlinear filters. Pitas

and Venetsanopoulos [7] give a detailed survey on this topic.

9.4.2 Rank-value filters

Rank-value filters are based on a quite different concept than linear-

shift invariant operators. These operators consider all pixels in the

neighborhood. It is implicitly assumed that each pixel, distorted or

noisy, carries still useful and correct information. Thus, convolution

operators are not equipped to handle situations where the value at a

pixel carries incorrect information. This situation arises, for instance,

when an individual sensor element in a CCD array is defective or a

transmission error occurred.

To handle such cases, operations are required that apply selection

mechanisms and do not use all pixels in the neighborhood to compute

the output of the operator. The simplest class of operators of this

type are rank-value filters. While the convolution operators may be

characterized by “weighting and accumulating,” rank-value filters may

be characterized by “comparing and selecting.”

For this we take all the gray values of the pixels that are within the

filter mask and sort them by ascending gray value. This sorting is com-

mon to all rank-value filters. They only differ by the position in the list

from which the gray value is picked out and written back to the center

pixel. The filter operation that selects the medium value is called the
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median filter . The median filter is an excellent example for a filter that

is adapted to a certain type of signal. It is ideally suited for removing

a single pixel that has a completely incorrect gray value because of a

transmission or data error. It is less well suited, for example, to reduce

white noise.

Other known rank-value filters are the minimum filter and the max-

imum filter . As the names indicate, these filters select out of a local

neighborhood, either the minimum or the maximum gray value form-

ing the base for gray-scale morphological filters (Chapter 14).

As rank-value filters do not perform arithmetic operations but select

pixels, we will never run into rounding problems. These filters map a

discrete set of gray values onto itself. The theory of rank-value filters

has still not been developed to the same extent as convolution filters.

As they are nonlinear filters, it is much more difficult to understand

their general properties. Rank-value filters are discussed in detail by

Pitas and Venetsanopoulos [7].

9.4.3 Pixels with certainty measures

Linear filters as discussed in Section 9.2 treat each pixel equally. Im-

plicitly, it is assumed that the information they are carrying is of equal

significance. While this seems to be a reasonable first approximation,

it is certain that it cannot be generally true. During image acquisition,

the sensor areamay contain bad sensor elements that lead to erroneous

gray values at certain positions in the image. Furthermore, the sensitiv-

ity and noise level may vary from sensor element to sensor element. In

addition, transmission errors may occur so that individual pixels may

carry wrong information. Thus we may attach in one way or another a

certainty measurement to each picture element.

Once a certaintymeasurement has been attached to a pixel, it is obvi-

ous that the normal convolution operators are no longer a good choice.

Instead, the certainty has to be considered when performing any kind of

operation with it. A pixel with suspicious information should only get

a low weighting factor in the convolution sum. This kind of approach

leads us to what is known as normalized convolution [8, 9].

This approach seems to be very natural for a scientist or engineer

who is used to qualifying any measurement with an error. A measure-

ment without a careful error estimate is of no value. The standard de-

viation of a measured value is required for the further analysis of any

quantity that is related to the measurement. In normalized convolution

this common principle is applied to image processing.

The power of this approach is related to the fact that we have quite

different possibilities to define the certainty measurement. It need not

only be related to a direct measurement error of a single pixel. If we

are, for example, interested in computing an estimate of the mean gray
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value in an object, we can take the following approach. We devise a kind

of certainty measurement that analyzes neighborhoods and attaches

lowweighting factors wherewemay suspect an edge so that these pixels

do not contribute much to the mean gray value or feature of the object.

In a similar way, we can, for instance, also check how likely the gray

value of a certain pixel is if we suspect some distortion by transmission

errors or defective pixels. If the certainty measurement of a certain

pixel is below a critical threshold, we replace it by a value interpolated

from the surrounding pixels.

9.4.4 Adaptive and steerable filters

Adaptive filters can be regarded as a linear filter operation that is made

dependent on the neighborhood. Adaptive filtering can best be ex-

plained by a classical application, that is, the suppression of noise with-

out significant blurring of image features.

The basic idea of adaptive filtering is that in certain neighborhoods

we could very well apply a smoothing operation. If, for instance, the

neighborhood is flat, we can assume that we are within an object with

constant features and thus apply an isotropic smoothing operation to

this pixel to reduce the noise level. If an edge has been detected in

the neighborhood, we could still apply some smoothing, namely, along

the edge. In this way, some noise is still removed but the edge is not

blurred. With this approach, we need a set of filters for various uni-

directional and directional smoothing operations and choose the most

appropriate smoothing filter for each pixel according to the local struc-

ture around it. Because of the many filters involved, adaptive filtering

may be a very computational-intensive approach. This is the case if

either the coefficients of the filter to be applied have to be computed

for every single pixel or if a large set of filters is used in parallel and

after all filters are computed it is decided at every pixel which filtered

image is chosen for the output image.

With the discovery of steerable filters [10], however, adaptive filter-

ing techniques have become attractive and computationally muchmore

efficient.

9.4.5 Nonlinear combinations of filters

Normalized convolution and adaptive filtering have one strategy in

common. Both use combinations of linear filters and nonlinear point

operations such as pointwise multiplication and division of images.

The combination of linear filter operations with nonlinear point op-

erations makes the whole operation nonlinear.

The combination of these two kinds of elementary operations is a

very powerful instrument for image processing. Operators containing



296 9 Neighborhood Operators

combinations of linear filter operators and point operators are very at-

tractive as they can be composed of very simple and elementary opera-

tions that are very well understood and for which analytic expressions

are available. Thus, these operations in contrast to many others can be

the subject of a detailed mathematical analysis. Many advanced signal

and image-processing techniques are of that type. This includes oper-

ators to compute local structure in images and various operations for

texture analysis.

9.5 Local averaging

Averaging is an elementary neighborhood operation for multidimen-

sional signal processing. Averaging results in better feature estimates

by including more data points. It is also an essential tool to regularize

otherwise ill-defined quantities such as derivatives (Chapters 10 and

12). Convolution provides the framework for all elementary averaging

filters. In this chapter averaging filters are considered for continuous

signals and for discrete signals on square, rectangular and hexagonal

lattices. The discussion is not restricted to 2-D signals. Whenever it is

possible, the equations and filters are given for signals with arbitrary

dimension.

The common properties and characteristics of all averaging filters

are discussed in Section 9.5.1. On lattices two types of averaging filters

are possible [3, Section 5.7.3]. Type I filters generate an output on the

same lattice. On a rectangular grid such filters are of odd length in

all directions. Type II filters generate an output on a grid with lattice

points between the original lattice points (intermediate lattice). On a

rectangular grid such filters are of even length in all directions. In this

chapter two elementary averaging filters for digital multidimensional

signals are discussed—box filters (Section 9.5.3) and binomial filters

(Section 9.5.4). Then we will deal with techniques to cascade these

elementary filters to large-scale averaging filters in Section 9.5.5, and

filters with weighted signals (normalized convolution) in Section 9.5.6.

9.5.1 General properties

Transfer function. Any averaging filter operator must preserve the

mean value. This condition means that the transfer function for zero

wave number is 1 or, equivalently, that the sum of all coefficients of the

mask is 1:

ĥ(0) = 1⇐⇒

∞
∫

−∞

h(x)dDx = 1 or
∑

n∈mask

Hn = 1 (9.68)
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