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and we end up with the well-known binomial smoothing mask and the

Sobel operator for the estimate of the mean and slopes of a local plane

fit, respectively.

Thus, the close relationship between LSI operators and least squares

fits is helpful in determining what kind of properties an LSI operator is

filtering out from a signal.

The case with nonorthogonal fit functions is slightly more complex.

As the matrix M (Eq. (9.32)) depends only on the fit functions and the

chosen window and not on the signal g(x), the matrix M can be in-

verted once for a given fit. Then the fit coefficients are given as a linear

combination of the results from the convolutions with all P fit func-

tions:

ap(x) =
P−1
∑

p′=0

M−1
p,p′

∞
∫

−∞

w(x′)fp′(−x′)g(x −x′)dDx′ (9.40)

9.3 Recursive filters

9.3.1 Definition

Recursive filters are a special form of the linear convolution filters. This

type of filter includes results from previous convolutions at neighbor-

ing pixels into the convolution sum. In this way, the filter becomes

directional. Recursive filters can most easily be understood if we apply

them first to a 1-D discrete signal, a time series. Then we can write

g′n = −
S
∑

n′′=1

an′′g′n−n′′ +

R
∑

n′=−R

hn′gn−n′ (9.41)

While the neighborhood of the nonrecursive part (coefficients h) is sym-

metric around the central point, the recursive part is asymmetric, using

only previously computed values. A filter that contains only such a re-

cursive part is called a causal filter . If we put the recursive part on

the left hand side of the equation, we observe that the recursive filter

is equivalent to the following difference equation, also known as an

ARMA(S,R) process (autoregressive-moving average process):

S
∑

n′′=0

an′′g′n−n′′ =

R
∑

n′=−R

hn′gn−n′ with a0 = 1 (9.42)

9.3.2 Transfer function and z-transform

The transfer function of such a filter with a recursive and a nonrecursive

part can be computed by applying the discrete-space Fourier transform
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(Section 8.5.1, Table 8.3) to Eq. (9.42). In the Fourier space the convolu-

tion of g′ with a and of g with h is replaced by a multiplication of the

corresponding Fourier transforms:

ĝ′(k)
S
∑

n′′=0

an′′ exp(−2π in′′k) = ĝ(k)
R
∑

n′=−R

hn′ exp(−2π in′k) (9.43)

Thus the transfer function is

ĥ(k) =
ĝ′(k)

ĝ(k)
=

R
∑

n′=−R

hn′ exp(−2π in′k)

S
∑

n′′=0

an′′ exp(−2π in′′k)

(9.44)

The nature of the transfer function of a recursive filter becomes more

evident if we consider that both the numerator and the denominator

can have zeros. Thus the nonrecursive part of the transfer function

may cause zeros and the recursive part poles.

A deeper analysis of the zeros and thus the structure of the trans-

fer function is not possible in the form as Eq. (9.44) is written. It re-

quires an extension similar to the extension from real numbers to com-

plex numbers that was necessary to introduce the Fourier transform

(Section 8.5.3). We observe that the expressions for both the numer-

ator and the denominator are polynomials in the complex exponential

exp(2π ik). The complex exponential has a magnitude of one and thus

covers the unit circle in the complex plane. It covers the whole complex

plane if we add a radius r to the expression: z = r exp(2π ik).
With this extension, the expressions become polynomials in z. As

such we can apply the fundamental law of algebra that any complex

polynomial of degree n can be factorized in n factors containing the

roots or zeros of the polynomial. Thus we can write a new expression

in z, which becomes the transfer function for z = exp(2π ik):

ĥ(z) =

R
∏

n′=−R

(1− cn′z−1)

S
∏

n′′=0

(1−dn′′z−1)

(9.45)

Each of the factors cn′ and dn′′ is a zero of the corresponding polyno-

mial (z = cn′ or z = dn′′ ).

The inclusion of the factor r in the extended transfer function re-

sults in an extension of the Fourier transform, the z-transform that is

defined as

ĝ(z) =
∞
∑

n=−∞

gnz−n (9.46)
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The z-transform of the series gn can be regarded as the Fourier trans-

form of the series gnr−n [5]. The z-transform is the key mathemat-

ical tool to understand recursive filters. Detailed accounts of the z-
transform are given by Oppenheim and Schafer [3] and Poularikas [6];

the 2-D z-transform is discussed by Lim [5].

The factorization of the z-transform of the filter in Eq. (9.45)—and in

turn of the transfer function—is an essential property. Multiplication

of the individual factors of the transfer function means that we can

decompose any filter into elementary filters containing only one factor

because multiplication of transfer functions is equivalent to cascaded

convolution in the spatial domain (Section 8.6.3). The basic filters that

are equivalent to a single factor in Eq. (9.45) will be discussed further

in Section 9.3.6.

Recursive filters can also be defined in higher dimensions with the

same type of equations as in Eq. (9.42); also the transfer function and

z-transform of higher-dimensional recursive filters can be written in

the very same way as in Eq. (9.44). However, it is generally not possi-

ble to factorize the z-transform as in Eq. (9.45) [5]. From Eq. (9.45) we

can immediately conclude that it will be possible to factorize a sepa-

rable recursive filter because then the higher-dimensional polynomials

can be factorized into 1-D polynomials. Given these inherent difficul-

ties of higher-dimensional recursive filters we will restrict the further

discussion on 1-D recursive filters that can be extended by cascaded

convolution into higher-dimensional filters.

9.3.3 Infinite and unstable response

The impulse response or point spread function of a recursive filter is no

longer identical to the filter coefficients as for nonrecursive filters (Sec-

tion 9.2.3). It must rather be computed as the inverse Fourier transform

of the transfer function. The impulse response of nonrecursive filters

has only a finite number of nonzero samples. A filter with this prop-

erty is called a finite-duration impulse response or FIR filter. In contrast,

recursive filters have an infinite-duration impulse response (IIR).

The stability of the filter response is not an issue for nonrecursive

filters but of central importance for recursive filters. A filter is said to

be stable if and only if each bound input sequence generates a bound

output sequence. In terms of the impulse response this means that a fil-

ter is stable if and only if the impulse response is absolutely summable

[3]. For 1-D filters the analysis of the stability is straightforward be-

cause the conditions are well established by the same basic algebraic

theorems. A filter is stable and causal if and only if all poles and zeros

of the z-transform ĥ(z) (Eq. (9.45)) are inside the unit circle [3].
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9.3.4 Relation between recursive and nonrecursive filters

Any stable recursive filter can be replaced by a nonrecursive filter, in

general, with an infinite-sized mask. Its mask is given by the point

spread function of the recursive filter. In practice, the masks cannot

be infinite and also need not be infinite. This is due to the fact that the

envelope of the impulse response of any recursive filter decays expo-

nentially (Section 9.3.6).

Another observation is of importance. From Eq. (9.44) we see that

the transfer function of a recursive filter is the ratio of its nonrecursive

and recursive part. This means that a purely recursive and a nonrecur-

sive filter with the same coefficients are inverse filters to each other.

This general relation is a good base to construct inverse filters from

nonrecursive filters.

9.3.5 Zero-phase recursive filtering

The causal 1-D recursive filters are of not much use for processing of

higher-dimensional spatial data. While a filter that uses only previous

data is natural and useful for real-time processing of time series, it

makes not much sense for spatial data. There is no “before” and “after”

in spatial data. Even worse, the spatial shift (delay) associated with

recursive filters is not acceptable because it causes phase shifts and

thus objects to be shifted depending on the filters applied.

With a single recursive filter it is impossible to construct a zero-

phase filter. Thus it is required to combine multiple recursive filters.

The combination should either result in a zero-phase filter suitable for

smoothing operations or a derivative filter that shifts the phase by 90°.

Thus the transfer function should either be purely real or purely imag-

inary (Section 8.6.3).

We start with a 1-D causal recursive filter that has the transfer func-

tion

+ĥ(k̃) = a(k̃)+ ib(k̃) (9.47)

The superscript “+” denotes that the filter runs in positive coordinate

direction. The transfer function of the same filter but running in the

opposite direction has a similar transfer function. We replace k̃ by −k̃
and note that a(−k̃) = a(+k̃) and b(−k̃) = −b(k̃)) because the transfer
function of a real PSF is Hermitian (Section 8.6.3) and thus obtain

−ĥ(k̃) = a(k̃)− ib(k̃) (9.48)

Thus, only the sign of the imaginary part of the transfer function changes

when the filter direction is reversed.
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We now have three possibilities to combine the two transfer func-

tions (Eqs. (9.47) and (9.48)) either into a purely real or imaginary trans-

fer function:

Addition eĥ(k̃) =
1

2

(

+ĥ(k̃)+ −ĥ(k̃)
)

= a(k̃)

Subtraction oĥ(k̃) =
1

2

(

+ĥ(k̃)− −ĥ(k̃)
)

= ib(k̃)

Multiplication ĥ(k̃) = +ĥ(k̃)−ĥ(k̃) = a2(k̃)+ b2(k̃)

(9.49)

Addition andmultiplication (consecutive application) of the left and

right running filter yields filters of even symmetry, while subtraction

results in a filter of odd symmetry. This way to cascade recursive filters

gives them the same properties as zero- or π/2-phase shift nonrecur-
sive filters with the additional advantage that they can easily be tuned,

and extended point spread functions can be realized with only a few

filter coefficients.

9.3.6 Basic recursive filters

In Section 9.3.2 we found that the factorization of the generalized re-

cursive filter is a key to analyze its transfer function and stability prop-

erties (Eq. (9.45)). The individual factors contain the poles and zeros.

From each factor, we can compute the impulse response so that the

resulting impulse response of the whole filter is given by a cascaded

convolution of all components.

As the factors are all of the form

fn(k̃) = 1− cn exp(−2π ik̃) (9.50)

the analysis becomes quite easy. Still we can distinguish two basic types

of partial factors. They result from the fact that the impulse response

of the filter must be real. Therefore, the transfer function must be Her-

mitian, that is, f∗(−k) = f (k). This can only be the case when either

the zero cn is real or a pair of factors exists with complex-conjugate

zeros. This condition gives rise to two basic types of recursive filters,

the relaxation filter and the resonance filter that are discussed in detail

in what follows. As these filters are only useful for image processing

if they are applied both in forward and backward direction, we discuss

also the resulting symmetric transfer function and point spread func-

tion.

Relaxation filter. The transfer function of the relaxation filter running

in forward or backward direction is

±r̂ (k̃) =
1−α

1−αexp(∓π ik̃)
with α ∈ R (9.51)
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Figure 9.3: Transfer function of the relaxation filter g′
n = αg′

n∓1 + (1 − α)gn

applied first in forward and then in backward direction for a positive; and b

negative values of α as indicated.

In this equation, the wave number has been replaced by the wave num-

ber normalized with the Nyquist limit (see Section 8.4.2, Eq. (8.34)). It

also has been normalized so that r̂ (0) = 1. Comparing Eqs. (9.42) and

(9.43) it is evident that the transfer function Eq. (9.51) belongs to the

simple recursive filter

g′n = αg′n∓1 + (1−α)gn = gn +α(g′n∓1 − gn) (9.52)

with the point spread function

±r±n =

{

(1−α)αn n ≥ 0

0 else
(9.53)

This filter takes the fraction α from the previously calculated value and

the fraction 1−α from the current pixel.

The transfer function Eq. (9.51) is complex and can be divided into

its real and imaginary parts as

±r̂ (k̃) =
1−α

1− 2α cosπk̃+α2

[

(1−α cosπk̃)∓ iα sinπk̃
]

(9.54)

From this transfer function, we can compute the multiplicative (r̂ ) ap-
plication of the filters by running it successively in positive and negative

direction; see Eq. (9.49):

r̂ (k̃) =
(1−α)2

1− 2α cosπk̃+α2
=

1

1+ β− β cosπk̃
(9.55)

with

β =
2α

(1−α)2
and α =

1+ β−
√

1+ 2β

β



9.3 Recursive filters 291

From Eq. (9.53) we can conclude that the relaxation filter is stable if

|α| < 1, which corresponds to β ∈] − 1/2,∞[. As already noted, the

transfer function is one for small wave numbers. A Taylor series in k̃
results in

r̂ (k̃) ≈= 1−
α

(1−α)2
(πk̃)2 +

α((1+ 10α+α2)

12(1−α2)2
(πk̃)4 (9.56)

If α is positive, the filter is a low-pass filter (Fig. 9.3a). It can be tuned by

adjusting α. If α is approaching 1, the averaging distance becomes infi-

nite. For negative α, the filter enhances high wave numbers (Fig. 9.3b).

This filter is the discrete analog to the first-order differential equa-

tion ẏ+τy = 0 describing a relaxation process with the relaxation time

τ = −∆t/ lnα [4].

Resonance filter. The transfer function of a filter with a pair of complex-

conjugate zeros running in forward or backward direction is

±ŝ(k̃) =
1

1−r exp(iπk̃0)exp(∓iπk̃)
·

1

1−r exp(−iπk̃0)exp(∓iπk̃)

=
1

1−2r cos(πk̃0)exp(∓iπk̃)+r2 exp(∓2iπk̃)

(9.57)

The second row of the equation shows that this is the transfer function

of the recursive filter

g′n = gn + 2r cos(πk̃0)g′n∓1 − r 2g′n∓2 (9.58)

The impulse response of this filter is [3]

h±n =











r n

sinπk̃0

sin[(n+ 1)πk̃0] n ≥ 0

0 n < 0

(9.59)

If we run the filter back and forth, the resulting transfer function is

ŝ(k̃) = 1
(

1−2r cos[π(k̃−k̃0)]+r2
)(

1−2r cos[π(k̃+k̃0)]+r2
) (9.60)

From this equation, it is evident that this filter is a bandpass filter with

a center wave number of k̃0. The parameter r is related to the width of

the bandpass. If r = 1, the transfer function has two poles at k̃ = ±k̃0.

If r > 1, the filter is unstable; even the slightest excitement will cause

infinite amplitudes of the oscillation. The filter is only stable for r ≤ 1.

The response of this filter can be normalized to obtain a bandpass

filter with a unit response at the center wave number. The transfer

function of this normalized filter is

ŝ(k̃) = (1−r2)2 sin2(πk̃0)

(1+r2)2+2r2 cos(2πk̃0)−4r(1+r2)cos(πk̃0)cos(πk̃)+2r2 cos(2πk̃)
(9.61)
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Figure 9.4: Transfer function of the zero-phase recursive resonance filter for

a k̃0 = 1/2 and values of r as indicated; and b r = 7/8 and values of k̃0 as

indicated.

The denominator in Eq. (9.61) is still the same as in Eq. (9.60); it has only

been expanded in terms with cos(nπk̃0). The corresponding recursive
filter coefficients are:

g′n = (1− r 2) sin(πk̃0)gn + 2r cos(πk̃0)g′n∓1 − r 2g′n∓2 (9.62)

Figure 9.4 shows the transfer function of this filter for values of k̃0 and

r as indicated.

For symmetry reasons, the factors become most simple for a reso-

nance wave number of k̃0 = 1/2. Then the recursive filter is

g′n = (1− r 2)gn − r 2g′n∓2 = gn − r 2(gn + g′n∓2) (9.63)

with the transfer function

ŝ(k̃) =
(1− r 2)2

1+ r 4 + 2r 2 cos(2πk̃)
(9.64)

Themaximum response of this filter at k̃ = 1/2 is one and theminimum

response at k̃ = 0 and k̃ = 1 is ((1− r 2)/(1+ r 2))2.
This resonance filter is the discrete analog to a linear system gov-

erned by the second-order differential equation ÿ+2τẏ+ω2
0y = 0, the

damped harmonic oscillator. The circular eigenfrequency ω0 and the

time constant τ of a real-world oscillator are related to the parameters

of the discrete oscillator, r and k̃0 by [4]

r = exp(−∆t/τ) and k̃0 = ω0∆t/π (9.65)

9.4 Classes of nonlinear filters

9.4.1 Limitations of linear filters

In the previous sections, the theory of linear shift-invariant filters was

discussed in detail. Although the theory of these filters is well estab-
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