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8.1 Introduction

Images are signals with two spatial dimensions. This chapter deals

with signals of arbitrary dimensions. This generalization is very useful

because computer vision is not restricted solely to 2-D signals. On the

one hand, higher-dimensional signals are encountered. Dynamic scenes

require the analysis of image sequences; the exploration of 3-D space

requires the acquisition of volumetric images. Scientific exploration of

complex phenomena is significantly enhanced if images not only of a

single parameter but of many parameters are acquired. On the other

hand, signals of lower dimensionality are also of importance when a

computer vision system is integrated into a larger system and image

data are fused with time series from point-measuring sensors.

8.2 Continuous signals

8.2.1 Types of signals

An important characteristic of a signal is its dimension. A zero-dimen-

sional signal results from the measurement of a single quantity at a

single point in space and time. Such a single value can also be averaged

over a certain time period and area. There are several ways to extend

a zero-dimensional signal into a 1-D signal (Table 8.1). A time series

records the temporal course of a signal in time, while a profile does the

same in a spatial direction or along a certain path.

A 1-D signal is also obtained if certain experimental parameters of

the measurement are continuously changed and the measured parame-

ter is recorded as a function of some control parameters. With respect

to optics, the most obvious parameter is the wavelength of the electro-

magnetic radiation received by a radiation detector. When radiation is

recorded as a function of the wavelength, a spectrum is obtained. The
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Table 8.1: Some types of signals g depending on D parameters

D Type of signal Function

0 Measurement at a single point in space and time g

1 Time series g(t)

1 Profile g(x)

1 Spectrum g(λ)

2 Image g(x, y)

2 Time series of profiles g(x, t)

2 Time series of spectra g(λ, t)

3 Volumetric image g(x, y, z)

3 Image sequence g(x, y, t)

3 Hyperspectral image g(x, y, λ)

4 Volumetric image sequence g(x, y, z, t)

4 Hyperspectral image sequence g(x, y, λ, t)

5 Hyperspectral volumetric image sequence g(x, y, z, λ, t)

wavelength is only one of the many parameters that could be consid-

ered. Others could be temperature, pressure, humidity, concentration

of a chemical species, and any other properties that may influence the

measured quantity.

With this general approach to multidimensional signal processing,

it is obvious that an image is only one of the many possibilities of a

2-D signal. Other 2-D signals are, for example, time series of profiles or

spectra. With increasing dimension, more types of signals are possible

as summarized in Table 8.1. A 5-D signal is constituted by a hyperspec-

tral volumetric image sequence.

8.2.2 Unified description

Mathematically, all these different types of multidimensional signals

can be described in a unified way as continuous scalar functions of

multiple parameters or generalized coordinates qd as

g(q) = g(q1, q2, . . . , qD) with q = [q1, q2, . . . , qD]
T

(8.1)

that can be summarized in a D-dimensional parameter vector or gen-

eralized coordinate vector q. An element of the vector can be a spatial

direction, the time, or any other parameter.

As the signal g represents physical quantities, we can generally as-

sume some properties that make the mathematical handling of the sig-

nals much easier.
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Continuity. Real signals do not show any abrupt changes or discon-

tinuities. Mathematically, this means that signals can generally be re-

garded as arbitrarily often differentiable.

Finite range. The physical nature of both the signal and the imaging

sensor ensures that a signal is limited to a finite range. Some signals

are restricted to positive values.

Finite energy. Normally a signal corresponds to the amplitude or the

energy of a physical process. As the energy of any physical system is

limited, any signal must be square integrable:

∞
∫

−∞

∣

∣g(q)
∣

∣

2
dDq < ∞ (8.2)

With these general properties of physical signals, it is obvious that

the continuous representation provides a powerful mathematical ap-

proach. The properties imply, for example, that the Fourier transform

(Section 8.6) of the signals always exist.

Depending on the underlying physical process the observed signal

can be regarded as a stochastic signal. More often, however, a signal

is a mixture of a deterministic and a stochastic signal. In the simplest

case, the measured signal of a deterministic process gd is corrupted by

additive zero-mean homogeneous noise. This leads to the simple signal

model

g(q) = gd(q) + n (8.3)

where n has the variance σ 2
n = 〈n2〉. In most practical situations, the

noise is not homogeneous but rather depends on the level of the signal.

Thus in a more general way

g(q) = gd(q) + n(g) with
〈

n(g)
〉

= 0,
〈

n2(g)
〉

= σ 2
n(g) (8.4)

A detailed treatment of noise in various types of imaging sensors can

be found in Section 5.5; see also CVA1 [Chapter 9 and 10].

8.2.3 Multichannel signals

So far, only scalar signals have been considered. If more than one signal

is taken simultaneously, a multichannel signal is obtained. In some

cases, for example, taking time series at different spatial positions, the

multichannel signal can be considered as just a sampled version of a

higher-dimensional signal. In other cases, the individual signals cannot

be regarded as samples. This is the case when they are parameters with

different units and/or meaning.
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a b c

Figure 8.1: Representation of 2-D digital images bymeshes of regular polygons:

a triangles; b squares; c hexagons.

Table 8.2: Properties of tessellations of the 2-D space with regular triangular,

square, and hexagonal meshes; Ne: number of neighbors with common edge;

Nc : number of neighbors with common edge and/or corner; l: basis length l of

regular polygon; d: distance d to nearest neighbor; and A: area of cell

Triangular Square Hexagonal

Ne 3 4 6

Nc 12 8 6

l l =
√
3d =

√

√

16/3A l = d =
√

A l = 1
3

√
3d =

√

√

4/27A

d d = 1
3

√
3l =

√

√

16/27A d = l =
√

A d =
√
3l =

√

√

4/3A

A A = 3
4

√
3d2 = 1

4

√
3l2 A = d2 = l2 A = 1

2

√
3d2 = 3

2

√
3l2

A multichannel signal provides a vector at each point and is there-

fore sometimes denoted as a vectorial signal and written as

g(q) = [q1(q), q2(q), . . . , qD(q)]
T

(8.5)

A multichannel signal is not necessarily a vectorial signal. Depend-

ing on the mathematical relation between its components, it could also

be a higher-order signal, for example, a tensorial signal . Such types of

multichannel images are encountered when complex features are ex-

tracted from images. One example is the tensorial description of local

structure discussed in Section 9.8.

8.3 Discrete signals

8.3.1 Regular two-dimensional lattices

Computers cannot handle continuous signals but only arrays of digi-

tal numbers. Thus it is required to represent signals as D-dimensional

arrays of points. We first consider images as 2-D arrays of points. A
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Figure 8.2: Elementary cells of regular grids for 2-D digital images: a triangle

grid; b square grid; c hexagonal grid.

point on the 2-D grid is called a pixel or pel . Both words are abbre-

viations of picture element . A pixel represents the irradiance at the

corresponding grid position. There are two ways to derive 2-D lattices

from continuous signals.

First, the continuous 2-D space can be partitioned into space-filling

cells. For symmetry reasons, only regular polygons are considered.

Then there are only three possible tesselations with regular polygons:

triangles, squares, and hexagons as illustrated in Fig. 8.1 (see also Ta-

ble 8.2). All other regular polygons do not lead to a space-filling ge-

ometrical arrangement. There are either overlaps or gaps. From the

mesh of regular polygons a 2-D array of points is then formed by the

symmetry centers of the polygons. In case of the square mesh, these

points lay again on a square grid. For the hexagonal mesh, the sym-

metry centers of the hexagons form a triangular grid. In contrast, the

symmetry centers of the triangular grid form a more complex pattern,

where two triangular meshes are interleaved. The secondmesh is offset

by a third of the base length l of the triangular mesh.

A second approach to regular lattices starts with a primitive cell . A

primitive cell in 2-D is spanned by two not necessarily orthogonal base

vectors b1 and b2. Thus, the primitive cell is always a parallelogram ex-

cept for square and rectangular lattices (Fig. 8.2). Only in the latter case

are the base vectors b1 and b2 orthogonal. Translating the primitive

cell by multiples of the base vectors of the primitive cell then forms the

lattice. Such a translation vector or lattice vector r is therefore given

by

r = n1b1 + n2b2 n1, n2 ∈ Z (8.6)

The primitive cells of the square and hexagonal lattices (Fig. 8.2b

and c) contains only one grid located at the origin of the primitive cell.

This is not possible for a triangular grid, as the lattice points are not

arranged in regular distances along two directions (Fig. 8.1a). Thus,

the construction of the triangular lattice requires a primitive cell with
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a b
c

Figure 8.3: Construction of the cells of a regular lattice from the lattice points:

a triangle lattice; b square lattice; and c hexagonal lattice.

two grid points. One grid point is located at the origin of the cell, the

other is offset by a third of the length of each base vector (Fig. 8.2a)

The construction scheme to generate the elementary cells of regular

shape from the lattice points is illustrated in Fig. 8.3. From one lattice

point straight lines are drawn to all other lattice points starting with

the nearest neighbors (dashed lines). Then the smallest cell formed

by the lines perpendicular to these lines and dividing them into two

halves results in the primitive cell. For all three lattices, only the nearest

neighbors must be considered for this construction scheme.

The mathematics behind the formation of regular lattices in two

dimensions is the 2-D analog to 3-D lattices used to describe crystals

in solid state physics and mineralogy. The primitive cell constructed

from the lattice points is, for example, known in solid state physics as

the Wigner-Seitz cell .

Although there is a choice of three lattices with regular polygons—

and many more if irregular polygons are considered—almost exclu-

sively square or rectangular lattices are used for 2-D digital images.

The position of the pixel is given in the common notation for matri-

ces. The first index m denotes the position of the row, the second, n,

the position of the column (Fig. 8.4a); M gives the number of rows, and

N the number of columns. In accordance with the matrix notation, the

vertical axis (y axis) runs from top to bottom and not vice versa as is

common in graphs. The horizontal axis (x axis) runs as usual from left

to right.

8.3.2 Regular higher-dimensional lattices

The considerations in the previous section can be extended to higher di-

mensions. In 3-D space, lattices are identical to those used in solidstate

physics to describe crystalline solids. In higher dimensions, we have

serious difficulty in grasping the structure of discrete lattices because

we can visualize only projections onto 2-D space. Given the fact that
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Figure 8.4: Representation of digital images by orthogonal lattices: a square

lattice for a 2-D image; and b cubic lattice for a volumetric or 3-D image.

already 2-D discrete images are almost exclusively represented by rect-

angular lattices (Section 8.3.1), we may ask what we lose if we consider

only hypercubic lattices in higher dimensions. Surprisingly, it turns out

that this lattice has significant advantages. Thus it is hardly necessary

to consider any other lattice.

Orthogonal lattice. The base vectors of the hypercubic primitive cell

are orthogonal to each other. As discussed in CVA1 [Chapter 6], this is

a significant advantage for the design of filters. If separable filters are

used, they can easily be extended to arbitrary dimensions.

Valid for all dimensions. The hypercubic lattice is the most general

solution for digital data as it is the only geometry that exists in ar-

bitrary dimensions. In practice this means that it is generally quite

easy to extend image processing algorithms to higher dimensions. We

will see this, for example, with the discrete Fourier transform in Sec-

tion 8.7, with multigrid data structures in Section 8.10, with averaging

in Section 9.5, and with the analysis of local structure in Section 9.8.

Only lattice with regular polyhedron. While in 2-D three lattices with

regular polyhedrons exist (Section 8.3.1), the cubic lattice is the only

lattice with a regular polyhedron (the hexahedron) in 3-D. None of the

other four regular polyhedra (tetrahedron, octahedron, dodecahedron,

and icosahedron) is space filling.

These significant advantages of the hypercubic lattice are not out-

weighed by the single disadvantage that the neighborhood relations,

discussed in Section 8.3.4, are more complex on these lattices than, for

example, the 2-D hexagonal lattice.
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In 3-D or volumetric images the elementary cell is known as a voxel ,

an abbreviation of volume element . On a rectangular grid, each voxel

represents the mean gray value of a cuboid. The position of a voxel is

given by three indices. The first, l, denotes the depth, m the row, and

n the column (Fig. 8.4b). In higher dimensions, the elementary cell is

denoted as a hyperpixel .

8.3.3 Metric in digital images

Based on the discussion in the previous two sections, we will focus in

the following on hypercubic or orthogonal lattices and discuss in this

section the metric of discrete images. This constitutes the base for all

length, size, volume, and distance measurements in digital images. It

is useful to generalize the lattice vector introduced in Eq. (8.6) that rep-

resents all points of a D-dimensional digital image and can be written

as

rn = [n1∆x1, n2∆x2, . . . , nD∆xD]
T

(8.7)

In the preceding equation, the lattice constants ∆xd need not be equal

in all directions. For the special cases of 2-D images, 3-D volumetric

images, and 4-D spatiotemporal images the lattice vectors are

rm,n =
[

n∆x

m∆y

]

,rl,m,n =







n∆x

m∆y

l∆z





 ,rk,l,m,n =













n∆x

m∆y

l∆z

k∆t













(8.8)

To measure distances, the Euclidean distance can be computed on

an orthogonal lattice by

de(x,x′) = ‖x −x′‖ =





D
∑

d=1
(nd − n′

d)2∆x2
d





1/2

(8.9)

On a square lattice, that is, a lattice with the same grid constant in all

directions, the Euclidean distance can be computed more efficiently by

de(x,x′) = ‖x −x′‖ =





D
∑

d=1
(nd − n′

d)2





1/2

∆x (8.10)

The Euclidean distance on discrete lattices is somewhat awkward.

Although it is a discrete quantity, its values are not integers. Moreover,

it cannot be computed very efficiently.
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Therefore, two other metrics are sometimes considered in image

processing. The city-block distance

db(x,x′) =
D
∑

d=1
|nd − n′

d| (8.11)

simply adds up the magnitude of the component differences of two

lattice vectors and not the squares as with the Euclidean distance in

Eq. (8.10). Geometrically, the city block distance gives the length of a

path between the two lattice vectors if we can only walk in directions

parallel to axes. The chessboard distance is defined as the maximum of

the absolute difference between two components of the corresponding

lattice vectors:

dc(x,x′) = max
d=1,... ,D

|nd − n′
d| (8.12)

These two metrics have gained some importance for morphological op-

erations (Section 14.2.4). Despite their simplicity they are not of much

use as soon as lengths and distances are to be measured. The Euclidean

distance is the only metric on digital images that preserves the isotropy

of the continuous space. With the city block and chessboard distance,

distances in the direction of the diagonals are longer and shorter than

the Euclidean distance, respectively.

8.3.4 Neighborhood relations

The term neighborhood has no meaning for a continuous signal. How

far two points are from each other is simply measured by an adequate

metric such as the Euclidean distance function and this distance can

take any value. With the cells of a discrete signal, however, a ranking

of the distance between cells is possible. The set of cells with the small-

est distance to a given cell are called the nearest neighbors. The trian-

gular, square, and hexagonal lattices have three, four, and six nearest

neighbors, respectively (Fig. 8.5). The figure indicates also the ranking

in distance from the central cell.

Directly related to the question of neighbors is the term adjacency .

A digital object is defined as a connected region. This means that we

can reach any cell in the region from any other by walking from one

neighboring cell to the next. Such a walk is called a path.

On a square lattice there are two possible ways to define neighboring

cells (Fig. 8.5b). We can regard pixels as neighbors either when they

have a joint edge or when they have at least one joint corner. Thus a

pixel has four or eight neighbors and we speak of a 4-neighborhood or

an 8-neighborhood . The definition of the 8-neighborhood is somewhat

awkward, as there are neighboring cells with different distances.
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Figure 8.5: Classification of the cells according to the distance from a given

cell for the a triangular, b square, and c hexagonal lattices. The central cell is

shaded in light gray, the nearest neighbors in darker gray. The numbers give

the ranking in distance from the central cell.

a b c

Figure 8.6: Digital objects on a triangular, b square, and c hexagonal lattice; a

and b show either two objects or one object (connected regions) depending on

the neighborhood definition.

The triangular lattice shows an equivalent ambivalence with the 3-

and 12-neighborhoods with cells that have either only a joint edge

or at least a joint corner with the central cell (Fig. 8.5a). In the 12-

neighborhood there are three different types of neighboring cells, each

with a different distance (Fig. 8.5a).

Only the hexagonal lattice gives a unique definition of neighbors.

Each cell has six neighboring cells at the same distance joining one

edge and two corners with the central cell.

A closer look shows that unfortunately both types of neighborhood

definitions are required on triangular and square grids for a proper

definition of connected regions. A region or an object is called con-

nected when we can reach any pixel in the region by walking from one

neighboring pixel to the next. The black object shown in Fig. 8.6b is

one object in the 8-neighborhood, but constitutes two objects in the 4-

neighborhood. The white background, however, shows the same prop-

erty. Thus we have either two connected regions in the 8-neighborhood

crossing each other or four separated regions in the 4-neighborhood.
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This inconsistency between objects and background can be overcome

if we declare the objects as 4-neighboring and the background as 8-

neighboring, or vice versa.

These complications occur also on a triangular lattice (Fig. 8.6b) but

not on a hexagonal lattice (Fig. 8.6c). The photosensors on the retina

in the human eye, however, have a more hexagonal shape, see Wandell

[1, Fig. 3.4, p. 49].

8.3.5 Errors in object position and geometry

The tessellation of space in discrete images limits the accuracy of the

estimation of the position of an object and thus all other geometri-

cal quantities such as distance, area, circumference, and orientation of

lines. It is obvious that the accuracy of the position of a single point

is only in the order of the lattice constant. The interesting question

is, however, how this error propagates into position errors for larger

objects and other relations. This question is of significant importance

because of the relatively low spatial resolution of images as compared

to other measuring instruments. Without much effort many physical

quantities such as frequency, voltage, and distance can be measured

with an accuracy better than 1ppm, that is, 1 in 1,000,000, while im-

ages have a spatial resolution in the order of 1 in 1000 due to the limited

number of pixels. Thus only highly accurate position estimates in the

order of 1/100 of the pixel size result in an accuracy of about 1 in

100,000.

The discussion of position errors in this section will be limited to or-

thogonal lattices. These lattices have the significant advantage that the

errors in the different directions can be discussed independently. Thus

the following discussion is not only valid for 2-D images but any type of

multidimensional signals and we must consider only one component.

In order to estimate the accuracy of the position estimate of a sin-

gle point it is assumed that all positions are equally probable. This

means a constant probability density function in the interval ∆x. Then

the variance σ 2
x introduced by the position discretization is given by

Papoulis [2, p. 106]

σ 2
x = 1

∆x

xn+∆x/2
∫

xn−∆x/2

(x − xn)2 dx = (∆x)2

12
(8.13)

Thus the standard deviation σx is about 1/
√
12 ≈ 0.3 times the lattice

constant ∆x. The maximum error is, of course, 0.5∆x.

All other errors for geometricalmeasurements of segmented objects

can be related to this basic position error by statistical error propa-

gation. We will illustrate this with a simple example computing the
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area and center of gravity of an object. For the sake of simplicity, we

start with the unrealistic assumption that any cell that contains even

the smallest fraction of the object is regarded as a cell of the object.

We further assume that this segmentation is exact, that is, the signal

itself does not contain noise and separates without errors from the

background. In this way we separate all other errors from the errors

introduced by the discrete lattice.

The area of the object is simply given as the product of the number

N of cells and the area Ac of a cell. This simple estimate is, however,

biased towards a larger area because the cells at the border of the object

are only partly covered by the object. In the mean, half of the border

cells are covered. Hence an unbiased estimate of the area is given by

A = Ac(N − 0.5Nb) (8.14)

whereNb is the number of border cells. With this equation, the variance

of the estimate can be determined. Only the statistical error in the area

of the border cells must be considered. According to the laws of error

propagation with independent random variables, the variance of the

area estimate σ 2
A is given by

σ 2
A = 0.25A2

cNbσ 2
x (8.15)

If we assume a compact object, for example, a square, with a length

of D pixels, it has D2 pixels and 4D border pixels. Using σx ≈ 0.3

(Eq. (8.13)), the absolute and relative standard deviation of the area

estimate are given by

σA ≈ 0.3Ac

√

D and
σA

A
≈ 0.3

D3/2
if D ≫ 1 (8.16)

Thus the standard deviation of the area error for an object with a length

of 10 pixels is just about the area of the pixel and the relative error

is about 1%. Equations (8.14) and (8.15) are also valid for volumetric

images if the area of the elementary cell is replaced by the volume of

the cell. Only the number of border cells is now different. If we again

assume a compact object, for example, a cube, with a length of D, we

now have D3 cells in the object and 6D2 border cells. Then the absolute

and relative standard deviations are approximately given by

σV ≈ 0.45VcD and
σV

V
≈ 0.45

D2
if D ≫ 1 (8.17)

Now the standard deviation of the volume for an object with a diameter

of 10 pixels is about 5 times the volume of the cells but the relative

error is about 0.5%. Note that the absolute/relative error for volume

measurements in/decreases faster with the size of the object than for

area measurements.
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The computations for the error of the center of gravity are quite

similar. With the same assumptions about the segmentation process,

an unbiased estimate of the center of gravity is given by

xg = 1

N





N−Nb
∑

n=1
xn + 1

2

Nb
∑

n′=1
xn′



 (8.18)

Again the border pixels are counted only half. As the first part of the

estimate with the nonborder pixels is exact, errors are caused only by

the variation in the area of the border pixels. Therefore the variance of

the estimate for each component of the center of gravity is given by

σ 2
g = Nb

4N2
σ 2 (8.19)

where σ is again the variance in the position of the fractional cells at

the border of the object. Thus the standard deviation of the center of

gravity for a compact object with the diameter of D pixels is

σg ≈ 0.3

D3/2
if D ≫ 1 (8.20)

Thus the standard deviation for the center of gravity of an object with

10 pixel diameter is only about 0.01 pixel. For a volumetric object with

a diameter of D pixel, the standard deviation becomes

σgv ≈ 0.45

D2
if D ≫ 1 (8.21)

This result clearly shows that the position of objects and all related

geometrical quantities such as the distances can be performed even

with binary images (segmented objects) well into the range of 1/100

pixel. It is interesting that the relative errors for the area and volume

estimates of Eqs. (8.16) and (8.17) are equal to the standard deviation

of the center of gravity Equations (8.20) and (8.21). Note that only the

statistical error has been discussed. A bias in the segmentation might

easily result in much higher systematic errors.

8.4 Relation between continuous and discrete signals

A continuous function g(q) is a useful mathematical description of a

signal as discussed in Section 8.2. Real-world signals, however, can only

be represented and processed as discrete or digital signals. Therefore

a detailed knowledge of the relation between these two types of signals

is required. It is not only necessary to understand the whole chain of

the image-formation process from a continuous spatial radiance distri-

bution to a digital image but also to perform subpixel-accurate image
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