
XQL (XML Query Language)

August 1999

This version:
http://metalab.unc.edu/xql/xql-proposal.xml

Latest version:
http://metalab.unc.edu/xql/xql-proposal.xml

Editor:
Jonathan Robie (Software AG) <jonathan.robie@sagus.com>

Contributors:
Eduard Derksen (CSCIO) <enno@att.com>
Peter Fankhauser (GMD-IPSI) <fankhaus@darmstadt.gmd.de>
Ed Howland (DEGA) <Ed@dega.com>
Gerald Huck (GMD-IPSI) <huck@darmstadt.gmd.de>
Ingo Macherius (GMD-IPSI) <macherius@darmstadt.gmd.de>
Makoto Murata (Fuji Xerox) <murata@apsdc.ksp.fujixerox.co.jp>
Michael Resnick (Object Design, Incorporated) <resnick@odi.com>
Harald Schöning (Software AG) <harald.schoening@softwareag.de>

Abstract

As more and more information is either stored in XML, exchanged in XML, or presented as XML through
various interfaces, the ability to intelligently query our XML data sources becomes increasingly important.
XML documents are structured documents – they blur the distinction between data and documents,
allowing documents to be treated as data sources, and traditional data sources to be treated as documents.

XQL is a query language designed specifically for XML. In the same sense that SQL is a query language for
for relational tables and OQL is a query language for objects stored in an object database, XQL is a query
language for XML documents. The basic constructs of XQL correspond directly to the basic structures of
XML, and XQL is closely related to XPath, the common locator syntax used by XSL and XPointers. Since
queries, transformation patterns, and links are all based on patterns in structures found in possible XML
documents, a common model for the pattern language used in these three applications is both possible and
desirable, and a common syntax to express the patterns expressed by that model simplifies the task of the
user who must master a variety of XML-related technologies. Although XQL originated before XSL Patterns,
Patterns, there were strong similarities between the two languages, and we have adopted XPath syntax for
the constructs which differed. Not all constructs found in XPath were needed for queries, and some
constructs used in XQL are not found in XPath, but the two languages share a common subset.

The XQL language described in this paper contains several features not found in previously published
versions of the language, including joins, links, text containment, and extensible functions. These new
features are inspired in large part by discussions stemming from the W3C QL '98 Workshop, and make it
possible to combine information from heterogeneous data sources in powerful ways. Great care has been
made to maintain the fundamental simplicity of XQL while adding these features.

This paper is intended as input for the upcoming W3C Query Language Activity, and for the further
development of XPath.

Table of contents

1. XML Query Language
 1.1 XML as a Data Model
 1.2 What is an XML Query?
 1.3 XQL Tutorial
 1.4 XQL Expressions
 1.4.1 Terms

1a

 1.4.2 Namespaces and names
 1.4.3 Comparisons
 1.4.4 Hierarchy and Filters
 1.4.5 Boolean and Set Operators
 1.4.6 Grouping Operator
 1.4.7 Sequence
 1.4.8 Functions
 1.4.9 Extensible Functions
 1.4.10 References
 1.4.11 Joins
 1.4.12 Renaming Operator
 1.4.13 Precedence of Operators
 1.5 Query Results and Serialization

Appendices

A. Appendix A: XQL and XML Pattern Expression Language
B. Appendix C: References

1. XML Query Language

Traditionally, structured queries have been used primarily for relational or object oriented databases, and
documents were queried with relatively unstructured full-text queries. Although quite sophisticated query
engines for structured documents have existed for some time, they have not been a mainstream
application. In the last year, a number of very different approaches to querying XML have been proposed,
with several distinct perspectives on what constitutes a query. Several particularly interesting proposals
have come from the semi-structured database community, including XML-QL and Lorel, and adopt semi-
structured approaches to XML. This proposal incorporates several ideas from those languages into XQL.

XQL was designed to be used in a number of different XML environments, using a syntax that may be used
in XML attributes, embedded in programming languages, or incorporated in URIs. From the beginning, we
have endeavored to keep the language simple and small, and we have been careful not to add functionality
that would make it difficult to implement XQL. During the last year, we have been persuaded to add several
powerful new features that allow users to combine information from multiple sources, use the relationships
expressed in links as part of a query, and search based on text containment. Queries that can make use of
information in multiple documents allow the information contained in those documents to be reused in ways
not foreseen by the people who created the original documents. This is extremely useful when many
documents or data sources may each contain part of the information needed on a given topic. For instance,
suppose one document contains a set of recommended books for a given course of study, another lists
books and prices for a store, and third contains a set of reviews of books. A query can be constructed to list
recommended books, their prices, and the reviews they have received.

XQL is closely related to XPath, and we hope to be able to maintain compatibility with XPath as it evolves.
We see XQL as complementary to XSLT, which may be used for sophisticated reshaping and formatting of
query results.

1.1 XML as a Data Model

An important motivation for the design of XQL is the realization that XML has its own implied data model,
which is neither that of traditional relational databases nor that of object oriented or object-relational
databases. In XQL, a document is an ordered, labelled tree, with nodes to represent the document entity,
elements, attributes, processing instructions, and comments. The model is compatible with the XML
Information Set (http://www.w3.org/XML/Group/1999/04/WD-xml-infoset-19990428.html).

It is important to note that the relationships among data contain a large proportion of the information
contained in a document, which is one of the reasons that structured document formats like XML are useful
in the first place. The original formulation of XQL was based completely on the tree structure of XML
documents:

1. Hierarchy

2a

1. parent/child

2. ancestor/descendant

2. Sequence (within a sibling list or in document order)

3. position (within a sibling list or in document order)

1. absolute

2. relative

3. ranges

These relationships have long been basic to the XPointer model, and are now reflected in XPath in the form
of axes. In XQL, all queries use the child axis, so we will speak in terms of parent/child and
ancestor/descendant relationships rather than use the term Locator Path from the XPath Working Draft.

The current draft extends this model to support the following:

1. Ad-hoc relationships established via joins

2. Dereferencing of links

Joins allow subtrees of documents to be combined in queries; links allow queries to support references as
well as tree structure.

1.2 What is an XML Query?

In XQL, a query returns XML document nodes from one or more XML documents. To examine the
characteristics of an XQL query, it is useful to consider four basic questions about the environment in which
a query takes place:

1. What is a database?

2. What is the query language?

3. What is the input to a query?

4. What is the result of a query?

The following table provides a brief answer to each of these questions, including a comparison with the
SQL query language, which is widely used for querying relational databases:

From the preceding table, it should be clear that document nodes play a central role in XQL queries. These
nodes are an abstraction. Any real XQL implementation will find some concrete way to implement the

SQL XQL
The database is a set of tables. The database is a set of one or more XML

documents.
Queries are done in SQL, a query language that
uses the structure of tables as a basic model.

Queries are done in XQL, a query language that
uses the structure of XML documents as a basic
model.

The FROM clause determines the tables which are
examined by the query.

A query is given a list of input nodes from one or
more documents.

The result of a query is a table containing a set of
rows; this table may serve as the basis for further
queries.

The result of a query is a list of XML document
nodes, which may serve as the basis for further
queries.

3a

nodes used in queries. For instance, XQL engines may represent the input to a query via DOM nodes, XSL
nodes, index structures, or XML text. Any of these might also be used to represent the results of queries; in
addition, hyperlinks or other references into the original document might be used, a new virtual document
might be created, or DOM Level Two TreeWalkers or Iterators might be used.

The nodes which form the input to a query may come from a variety of different sources. They may be the
result of a prior query, the contents of a document repository, the nodes from a Document Object Model
Nodelist, or any other source that identifies nodes from one or more documents. XQL does not specify how
these nodes are brought to the query. Current XQL implementations take a variety of approaches, including
the following: using Document Object Model subtrees as the basis for a query, querying whole documents
supplied as the input to a Unix-style pipe, reading a document from the command line, using data
dictionaries or repository directory structures to identify nodes to be queried, and identifying documents
using a URL. This proposal adds support for merging information from heterogeneous data sources using
joins.

In XQL, nodes have identity, and they retain their identity, containment relationships, and sequence in
query results. Grouping operators allow levels of a tree to be omitted, while still retaining the relative
sequence and containment of the nodes which are returned by a query. Joins allow subtrees from one data
source to be inserted into another document subtree, subject to the join conditions. Link functions are
similar to joins, allowing a hypertext link in a document to be replaced by the node or nodes to which it
refers. Some functions in XQL return values, which may be boolean, integer, or string. These values are
also treated as nodes in the query model.

1.3 XQL Tutorial

Before going into further detail, we feel it would be helpful to present some typical XQL queries to help
convey a feeling for the language. This tutorial discusses the simplest XQL queries, which are also likely to
be the most common. In this tutorial, we will present a quick overview of XQL without taking the time to be
precise. For more precise definitions of the expressions used in these examples, see the section on XQL
Expressions.

A simple string is interpreted as an element name. For instance, this query specification returns all <table>
elements:

table

The child operator ("/") indicates hierarchy. This query specification returns <author> elements that are
children of <front> elements:

front/author

The root of a document may be indicated by a leading "/" operator:

/novel/front/author

Ed. Note: In XQL, the root of a document refers to the document entity, in the technical XML
sense, which is basically equivalent to the document itself. It is not the same as the root
element, which is the element that contains the rest of the elements in the document. The
document root always contains the root element, but it may also contain a doctype,
processing instructions, and comments. In this example,<novel> would be the root element.

Paths are always described from the top down, and unless otherwise specified, the right-most element on
the path is returned. For instance, in the above example, <author> elements would be returned.

The content of an element or the value of an attribute may be specified using the equals operator ("="). The
following returns all authors with the name "Theodore Seuss Geisel" that are children of the <front>
element:

front/author='Theodore Seuss Geisel'

Attribute names begin with "@". They are treated as children of the elements to which they belong:

4a

front/author/address/@type='email'

The descendant operator ("//") indicates any number of intervening levels. The following shows addresses
anywhere within <front>:

front//address

When the descendant operator is found at the start of a path, it means all nodes descended from the
document. This query will find any address in the document:

//address

The filter operator ("[]") filters the set of nodes to its left based on the conditions inside the brackets. The
following query returns addresses; each of these addresses must have a nattribute called "type" with the
value "email":

front/author/address[@type='email']

Note that"address[@type='email']" returns addresses, but"address/@type='email'" returns type attributes.

Multiple conditions may be combined using Boolean operators.

front/author='Theodore Seuss Geisel'[@gender='male' and @shoesize='9EEEE']

Brackets are also used for subscripts, which indicate position within a document. The following refers to
sections 1, 3, 4, 5, and 8, plus the last section:

section[1,3 to 5, 8, -1]

Conditions and subscripts may not both occur in the same brackets, but both uses of brackets may occur in
the same query. The following refers to the first three sections whose level attributes have the value "3"; in
other words, it returns the first three "level3" sections:

section[@level='3'][1 to 2]

Now that we know the basics, let's take a look at a document and try some XQL queries on it. The following
is an invoice document. Traditionally, invoices are often stored in databases, but invoices are both
documents and data. XQL is designed to work on both documents and data, provided they are represented
via XML through some interface. This document will be the basis for the sample queries that follow:

<?xml version="1.0"?>
<invoicecollection>
 <invoice>
 <customer>
 Wile E. Coyote, Death Valley, CA
 </customer>
 <annotation>
 Customer asked that we guarantee return rights
 if these items should fail in desert conditions.
 This was approved by Marty Melliore, general
 manager.
 </annotation>
 <entries n="2">
 <entry quantity="2" total_price="134.00">
 <product maker="ACME" prod_name="screwdriver" price="80.00"/>
 </entry>
 <entry quantity="1" total_price="20.00">
 <product maker="ACME" prod_name="power wrench" price="20.00"/>
 </entry>
 </entries>
 </invoice>

 <invoice>
 <customer> Camp Mertz </customer>

5a

 <entries n="2">
 <entry quantity="2" total_price="32.00">
 <product maker="BSA" prod_name="left-handed smoke shifter" price="1
 </entry>
 <entry quantity="1" total_price="13.00">
 <product maker="BSA" prod_name="snipe call" price="13.00"/>
 </entry>
 </entries>
 </invoice>
</invoicecollection>

Now let's look at some sample queries. For these examples, we will present query results as text, using a
serialization approach described in the section "Query Results and Serialization". In general, XQL queries
return lists of nodes, which may be represented in any way convenient to the environment in which the
query is performed, e.g. as DOM nodes, serialized XML text, XPointers, hyperlinks, or by creating an
iterator to navigate the results. Since XML text is easily read, we find it suitable as a way of representing
results in our examples.

Suppose we wanted to see just the customers from the database. We could do the following query:

Query:

//customer

Result:

<xql:result>
 <customer> Wile E. Coyote, Death Valley, CA </customer>
 <customer> Camp Mertz </customer>
</xql:result>

We might want to look at all the products manufactured by BSA. This query would do the trick:

Query:

//product[@maker='BSA']

Result:

<xql:result>
 <product maker="BSA" prod_name="left-handed smoke shifter" price="16.00"/>
 <product maker="BSA" prod_name="snipe call" price="13.00"/>
</xql:result>

Filters are particularly useful when specifying conditions on paths that are not the same as what is returned.
For instance, the following query returns the products ordered by Camp Mertz:

Query:

//invoice[customer='Wile E. Coyote, Death Valley, CA']//product

Result:

<xql:result>
 <product maker="ACME" prod_name="screwdriver" price="80.00"/>
 <product maker="ACME" prod_name="power wrench" price="20.00"/>
</xql:result>

This is the end of the tutorial, which covers only the most basic features of XQL. For examples illustrating
newer or more advanced features, such as return operators, sequence, joins, references, and user-defined
functions, see the appropriate parts of the next section.

1.4 XQL Expressions

6a

An XQL query is always evaluated for a context, which is a list of document nodes. The initial context for a
query is known as the start context. In XQL, the nodes in a start context may come from different
documents, and even if they are in the same document, there is no assumption that they come from
contiguous portions of the document. Some XQL operators establish a new context in which a
subexpression will be evaluated; for instance, in the expression "author/name", "author" is evaluated in the
start context. For each author, the "/" operator establishes a new context consisting of the children of that
author, and "name" is evaluated in that context. The operators that establish a new context are /, //, and [].

Ed. Note: In XSL, expressions are evaluated with respect to a node which is called the
context node. Our use of the term "context" is intended to allow semantic consistency with
XSL Patterns without imposing unecessary restrictions on the query language. As a
consequence, XSL Patterns are defined in terms of children of the context node, and XQL
queries are defined in terms of the context node directly. We maintain the correspondence of
XSL Pattern definitions and XQL definitions by constructing an imaginary context node that
contains the nodes of the context, and allowing the XSL term "." to map to this context node.

1.4.1 Terms

The following expressions are terms, which select particular nodes from the context based on the type or
name of the node:

1.4.2 Namespaces and names

In XML expressions, names may be associated with namespace prefixes. A namespace prefix can be
declared using a variable declaration. In the following query, the first line declares "b" to be a variable
equivalent to the namespace URI "http://www.TwiceSoldTales.com". The second line of the query searches
for all <book> elements belonging to this namespace:

b := "http://www.TwiceSoldTales.com";
//b:book

An XML document may well use a different namespace prefix for the same namespace URI. Matching is
done on the basis of the namespace URI, not the prefix associated with it in the document or in the XQL
query.

XQL expressions can explicitly state whether namespaces should be taken into account when matching
node names:

n element name All nodes in the context where the node type is element and the
node name is "n".

* element name with
wildcards

All nodes in the context where the node type is element.

@n attribute name All nodes in the context where the node type is attribute and the
node name is "n".

@* attribute name with
wildcards

All nodes in the context where the node type is attribute.

text() text node All nodes in the context where the node type is text.
comment
()

comment All nodes in the context where the node type is comment.

pi() processing instruction All nodes in the context where the node type is processing
instruction.

pi("v") processing instruction
with target

All nodes in the context where the node type is processing
instruction and the target is "v".

. context node The node which is the parent to the nodes in the context - this node
may be real or imaginary.

table Any element named <table>, regardless of the namespace to which it belongs.
html:table Any element named <table> that belongs to the namespace indicated by the prefix "html".
* Any element, regardless of the namespace to which it belongs.

7a

The same conventions apply to attribute names. In attribute names, the attribute prefix comes before the
namespace prefix:

@lib:isbn

Namespaces are preserved in the output of a query. To change the namespaces of nodes in the output,
use the Renaming Operator.

1.4.3 Comparisons

Comparisons add constraints based on the content or value of nodes. Consider the following examples:

author="Washington Irving"

@id="id-sec-0203"

text() = "Whan that Aprille with his shoures soughte"

Regardless of the node type on the left hand of the comparison, it is compared to the value on the right. For
systems that use a schema that supports data types, they are used in comparisons:

books[pub_date < date("1990-01-01")]

Since some environments in which XQL is used have restricted character sets, e.g. URIs or queries stored
in attribute values, many comparisons have an alternative syntax that meets the syntactic constraints of
these environments. For instance, the following two queries are equivalent:

books[pub_date < date("1990-01-01")]

books[pub_date lt date("1990-01-01")]

The following comparison operators are available in XQL:

Text comparisons support the wildcard characters "*" and "?". Consider the following example:

Data:

<editor>
 <name>
 <first> Ramesh </first>
 <last> Lekshmynarayanan </last>
 </name>
</editor></customer>

:table Any element named <table> for which no namespace has been declared.
*:table Any element named <table> for which a namespace has been declared.
html:* Any element belonging to the namespace associated with the prefix "html".
:* Any element for which no namespace has been declared.
: Any element for which a namespace has been declared.

Equality n="value"
n eq "value"

Case insensitive comparison n ieq "value"
Inequality n !="value"

n ne "value"
Text containment n contains "value"
Case insensitive text containment n icontains "value"

8a

Query:

//(editor contains "Leksh*")

The value "Leksh*" matches the name "Lekshmynarayanan", and the <editor> element is returned.

The following operators may be defined in XQL environments that support data types:

1.4.4 Hierarchy and Filters

These operators establish a new search context and evaluate a subexpression within that context. In this
table, Q1 and Q2 are used to denote arbitrary XQL expressions.

1.4.5 Boolean and Set Operators

Terms or other XQL expressions may be combined using boolean operatorsand set operators:

The "both" operator was introduced because we found that many queries use filters to express constraints
on the same data that is returned outside the filter, resulting in expressions that are rather redundant. For
instance, the following query uses filters to express that only invoices for the customer named "Wile E.
Coyote"that also contain products are of interest, and both the customer name and the set of products
should be returned:

Less than n < value
n lt value

Less than or equals n <=value
n lte value

Greater than n > value
n gt value

Greater than or equals n >=value
n gte value

Q1/Q2 parent/child Children of nodes that satisfy Q1, evaluated in the current context, such
that the children satisfy Q2. Q2 is evaluated separately for the child list of
each node in Q1; the nodes to which each child list evaluates are unioned
together.

Q1//Q2 ancestor/descendant Descendants of nodes that satisfy Q1, evaluated in the current context,
such that the descendants satisfy Q2. Q2 is evaluated separately for each
child list of each node in Q1, and recursively for each node in the child list;
the nodes to which each child list evaluates are unioned together.

Q1[Q2] filter Nodes that satisfy Q1, evaluated in the current context, containing children
that satisfy Q2. Q2 is evaluated separately for the child list of each node in
Q1; the nodes to which each child list evaluates are unioned together.

Q1
[poslist]

subscript Nodes that satisfy Q1, evaluated in the current context, whose position in
the evaluation list is contained in the poslist.

not(q) negation All nodes in the context for which the expression q evaluates to null.
q1 union q2 union The union of q1 and q2, evaluated in the context.
q1 intersect
q2

intersection The intersection of q1 and q2, evaluated in the context.

q1 | q2 union The union of q1 and q2, evaluated in the context.
q1 ~ q2 both If both q1 and q2 are non-empty, returns q1 union q2; if either is empty, returns

the empty list.
q1 or q2 or (Boolean) If the union of q1 and q2, evaluated in the context, is non-empty,

returns true; else, returns false.
q1 and q2 and (Boolean) If the intersection of q1 and q2, evaluated in the context, is non-

empty, returns true; else, returns false.

9a

//invoice[customer[name='Wile E. Coyote'] and .//product]/(customer | .//product)

Using the "both" operator, this same query can be expressed more concisely:

//invoice/(customer[name='Wile E. Coyote'] ~ .//product)

Note that the "both" operator is neither the boolean "or" operator nor the set intersection operator. The
expression "customer intersect product" always returns an emtpy result since no element is ever
simultaneously a <customer> element and a <product> element. The "both" operator is used to specify
conditions which must simultaneously be satisfied for the context.

1.4.6 Grouping Operator

It is often useful to group results using the structure of the original document. For instance, a query that lists
the products on invoices might want to group products by invoice, placing each group of products within an
invoice tag. XQL provides a grouping operator that provides exactly this functionality. In the following query,
the element to the left of the curly braces (the Grouping Element) is used to group the results of the query
within the braces:

//invoice { .//product }

For each grouping element matched by the query, the grouping operator creates an empty element with the
same name. The results of the query contained within the curly braces are then appended to this new node
as children. If we apply this query to the invoice data presented in the tutorial, we obtain these results:

<xql:result>
 <invoice>
 <product maker="ACME" prod_name="screwdriver" price="80.00"/>
 <product maker="ACME" prod_name="power wrench" price="20.00"/>
 </invoice>
 <invoice>
 <product maker="BSA" prod_name="left-handed smoke shifter" price="16.00"/>
 <product maker="BSA" prod_name="snipe call" price="13.00"/>
 </invoice>
</xql:result>

Complex queries that use the grouping operator can be made more readable by the appropriate use of
whitespace, eg:

invoice {
 .//customer[name contains "Coyote"] {
 name | address
 } ~
 entries {
 .//product[@maker="ACME"]
 }
}

1.4.7 Sequence

XQL defines the following operators for sequence:

The list concatenation operator is used to specify order in return lists. In general, XQL operators maintain
document order; the concatenation operator allows an order to be specified within a return list. For instance,
instance, the following query specifies that the order of the returned results should be author, then title, then
isbn:

before a before
b

Returns a list of all "a"s that precede a "b".

after a after b Returns a list of all "a"s that occur after a "b".
list
concatenation

a, b Returns a list containing all "a"s, followed by all "b"s. Useful for specifying
order in return lists.

10a

//book//(author, title, isbn)

If there is more than one author, all authors will be listed before the title.

In systems where XML is used mainly to represent data from object oriented systems or relational
databases, sequence may not be particularly important. However, sequence is important in documents, and
it also can be useful in data-oriented applications where the markup does not clearly indicate the role of
each element. Consider the following table, which lists the latest scores for some fictitious sport:

The markup for this table looks like this:

<table width="50%" border="1">
 <tbody>
 <tr>
 <td colspan="2"><emph>Western League</emph> </td>
 </tr>
 <tr>
 <td colspan="1">Aardvarks 12</td>
 <td>Weasels 10</td>
 </tr>
 <tr>
 <td colspan="1">Mosquitos 17</td>
 <td>Bulls 2</td>
 </tr>
 <tr>
 <td colspan="2"><emph>Southern League</emph></td>
 </tr>
 <tr>
 <td colspan="1">Tortoises 25</td>
 <td>Hares 0</td>
 </tr>
 <tr>
 <td colspan="1">Platypii 17</td>
 <td>Amoebae 16</td>
 </tr>
 </tbody>
</table>

Purists may object that this is not particularly good markup, since it does not clearly distinguish the leagues
from the scores. We agree, and when we write our own documents, we would write them differently;
however, there is a lot of mediocre markup in the real world, and when querying documents, we do not
have the luxury of rewriting them first. Therefore, we feel that a query language should be able to manage
data like that shown above.

To find all the latest scores for the Western League, we can use the following query:

table//((tr after (tr contains "Western League")) before (tr contains "Southern League"

Ed. Note: Sequence is handled by axes in XPath. We believe that an XML query language
should provide some means for allowing sequence in queries, and that various approaches
should be considered. The approach discussed here has advantages in expressing
relationships among multiple nodes, especially when comparisons are to be made only within
the descendants of a particular node.

1.4.8 Functions

Western League
Aardvarks 12 Weasels 10
Mosquitos 17 Slugs 2
Southern League
Tortoises 25 Hares 0
Platypii 17 Amoebae 16

11a

Most of the functions of XQL have been taken directly from XSL Pattern Language. A few functions have
been added, many more have been omitted because we found them to be less relevant in a pure query
environment than in a general purpose transformation environment.

1.4.8.1 Collection functions

1.4.8.2

1.4.9 Extensible Functions

Many XQL implementations are part of a programming environment. In these environments, it is helpful to
allow users to write their own functions, which may be used in queries. This must be done in a language-
independent manner, since XQL implementations have been done in a variety of languages, including C++,
Java, Haskell, and Perl. To allow user-defined functions to be written, XQL provides a function called
"function()".

Suppose a user wanted to add a function that computes the average for a list of values. The user could
write a function called "average" and call it in an XQL query like this:

average(property//price)

User-defined functions are typically written in the language environment of the XQL implementation; for
instance, if the XQL implementation is written in Java, user-defined functions are generally written as Java
functions. All XQL functions are passed the list of nodes in the current context. If the function has
parameters, these are passed as strings to the XQL function. Typically, the function will evaluate these
parameters as queries against the current context; for instance, the user code that implements the
"average" function might first execute the query "property//price" for the current context to obtain a set of
<price> elements, then compute the average of these elements.

The result of a function call is also a nodelist. If a single value is to be returned, such as a string or a
number, it should be returned as an element node of that type:

<xql:number> 112,000.47 </xql:number>

The available set of types that may be returned by functions is described in the section "Query Results and
Serialization", which follows the current section. If a function is called with the wrong parameters, this may
be communicated by returning an <xql:warning> element in the result:

<xql:warning> "average" requires numeric values for the nodes to be averaged

attribute(),
attribute('name')

Returns the attributes in the context. If a name argument is supplied, returns the attribute
attribute with the given name.

comment() Returns the comments in the context.
element(),
element('name')

Returns the elements in the context. If a name argument is supplied, returns the
elements with the given name.

entity-ref() Returns the entity references in the context. XQL operates on a view of the document in
which all entity references are expanded; this function is the only way to locate entity
references in XQL.

node() Returns all nodes in the context.
pi(), pi('target') Returns the processing instructions in the context. If a target argument is supplied,

returns the processing instructions with the given target.
text() Returns the text nodes in the context. For the sake of text nodes, XQL assumes that

CDATA sections are treated as text, adjacent text nodes are merged, and entity
references are expanded.

count()
id()
idref()
position()

12a

</xql:warning>

Ed. Note: Some vendors have asked that extensible operators be provided as well. This
would be a useful feature; so far, we have not found a clean design for extensible operators in
XQL.

Issue (function-namespace): There are differing opinions as to whether namespaces add
significant value as vendors and users add functions to XQL.

1.4.10 References

Ed. Note: The ideas in this section are exploratory, and have not yet been incorporated into
XQL.

There is currently no syntax for dereferencing links in XQL, but this is clearly needed in many applications.
XSL provides the "id()" function, which returns the element containing a given id. For instance, the following
would evaluate to the node pointed to by an HREF attribute in an <A> element:

A/id(@HREF)

From an XQL perspective, this is actually a kind of join. However, the above syntax is less complex than the
the equivalent join syntax:

A/id[$h = @HREF]/(//*[id=$h])

We need functionality similar to id(), extending this functionality to incorporate any kind of link, not just
ID/IDREF. Let's create a function called ref() which returns the node or nodes to which an XPointer or
HTML HREF points

A/ref(@HREF)

One advantage of the join syntax is that it allows the type of the referenced node to be specified. It may be
useful to be able to specify this as a further parameter to the function. Let's allow the type of the referenced
node to be specified as a second parameter to the function. For instance, the following will return the
referenced node only if it is a 'table" element; otherwise, it will return null:

A/ref(@HREF, "table")

It may also be helpful to specify further parameters, e.g. to limit the scope of the reference to the current
document, the local repository, or some other identifiable scope.

It is frequently useful to be able to identify the references to a particular node from other nodes. For
instance, if we are thinking of deleting something from a document, we may want to know if it is referenced.
For this purpose, it may be useful to introduce another function that returns all nodes that reference a
particular node. If we call this function "backref()", it might look like this:

A/backref(table[0])

Issue (ref-scope): Backwards references will also need to be scoped somehow, and not all
systems will want to support them, due to implementation overhead.

References can also be used to specify the URLs of documents used in queries:

ref("http://www.amazon.com")//book[.//title contains "Alhambra"]

1.4.11 Joins

Ed. Note: Joins are a new feature in XQL. The approach to joins discussed in this section
comes largely from Peter Fankhauser of the GMD-IPSI and Harald Schöning of Software AG.
Gerald Huck of the GMD-IPSI has been particularly helpful in refining the initial model. There

13a

is some preliminary implementation experience with this approach.

In many environments, it is useful to be able to combine information from multiple sources to create one
unified view. For instance, suppose we have a source of books and a source of reviews:

<book>
 <isbn> 84-7169-020-9 </isbn>
 <title> Tales of the Alhambra </title>
 <author> Washington Irving </author>
</book>

<review>
 <isbn> 84-7169-020-9 </isbn>
 <title> Tales of the Alhambra </title>
 <reviewer> Ricardo Sanchez </reviewer>
 <comments>
 A romantic and humorous account of the time that
 the author of "The Legend of Sleepy Hollow" lived
 in an Arabian palace in Spain.
 </comments>
</review>

We may want to combine these to create a view of the book that includes the comments found in reviews:

<book>
 <isbn> 84-7169-020-9 </isbn>
 <title> Tales of the Alhambra </title>
 <author> Washington Irving </author>

 <review>
 <reviewer> Ricardo Sanchez </reviewer>
 <comments>
 A romantic and humorous account of the time that
 the author of "The Legend of Sleepy Hollow" lived
 in an Arabian palace in Spain.
 </comments>
 </review>
</book>

This amounts to inserting information from the review into the book. If we had a database that consisted
only of this one book and this one review, we could obtain the desired result with this query:

/book {
 isbn | title | author | //review { reviewer | comments }
}

If we are using a database with many books and many reviews, the above query would include the whole
list of reviews in every single book, not just the reviews for the book in question. We need some way to
restrict our reviews to those that have the same ISBN number as the book. We will do this by introducing
correlation variables. In the following example, "$i := isbn" assigns the variable "$i" to the evaluation of isbn
in the context of each book. The expression "//review[isbn=$i]" restricts the reviews to those that match "$i":

/book[$i:=isbn] {
 isbn | title | author | //review[isbn=$i] { reviewer | comments }
}

Ed. Note: Although filters and variable bindings both use square bracket notation, variable
bindings do not filter results. For instance, the expressions "/book" and "/book[$i:=isbn]" will
always return the same set of books, whether or not any <isbn> elements are present.

Variable bindings propogate as new search contexts are created; when a new context is created, e.g. as
the result of a child or descendant operator, it inherits all variable bindings that are active. This allows
bindings declared high in the document hierarchy to be used for joins performed lower down.

If a correlation variable is bound to a subexpression that evaluates to more than one result, any value in the
list of results will be used as the basis for a join. To be precise, "list1 relop list2" evaluates to "all e1 in list1

14a

such that for some e2 in list2, e1 relop e2 is satisfied".

The following query returns books whether or not they have an isbn; reviews are returned only if they have
a matching isbn:

/book[$i:=isbn] {
 $i | title | author
 | //review[isbn=$i] { reviewer | comments }
}

Ed. Note: In this example, it seems intuitive to say that you can't join on null - a book with no
isbn does not match all reviews that have no isbn. On the XQL mailing list, there is some
difference of opinion as to whether it should be possible to join on null.

In XQL, square brackets are used for three distinct things that can not be mixed: subscripts, filters, and
variable bindings. If you want both a filter and a variable binding, you must use separate sets of brackets:

/book[isbn][$i:=isbn] {
 $i | title | author
 | //review[isbn=$i] { reviewer | comments }
}

1.4.12 Renaming Operator

The nodes in a list may be renamed using the renaming operator "->". In joins, this can be used to reflect a
meaningful name that describes the synthesized result:

/book[isbn][$i:=isbn] -> BookWithReviews {
 $i | title | author
 | //review[isbn=$i] { reviewer | comments }
}

The renaming operator may also be used to adjust namespaces in query results. Since renaming changes
the name of a node, it also changes the namespace. For instance, suppose <book> is in the namespace of
"http://www.TwiceSoldTales.com", and we rename the <book> element to <livre>:

//book->livre

We can assume that <livre> is not defined in the namespace associated with
"http://www.TwiceSoldTales.com". Since renaming often creates element names that do not exist in the
original namespace, renaming in XQL does not keep the namespace of the original node name. This
property of the renaming operator can be used to remove namespaces; for instance, the following query
places <book> elements in the default namespace, regardless of their original namespace:

//book->book

New namespace prefixes may be explicitly applied with the rename operator:

//book->a:book

1.4.13 Precedence of Operators

XQL expressions are evaluated from left to right. The following table shows the precedence of operators in
XQL:

Query Operators by Decreasing
Precedence
Grouping ()
Filter []
Renaming ->
Grouping { }

15a

Parentheses may be used for grouping:

(author | editor)/name

author | (editor/name)

1.5 Query Results and Serialization

In some environments, the results of a query are returned as XML text. XQL defines a serialization format
to allow the results of queries to be returned as well-formed XML documents. Namespaces are used to
distinguish tags belonging to the serialization format from tags returned by the query. When query results
are serialized, they are wrapped in an <xql:result> element:

<xql:result xmlns:xql="http://www.metalab.unc/xql/serialization">
 <customer> Wile E. Coyote, Death Valley, CA </customer>
 <customer> Camp Mertz </customer>
</xql:result>

The reason for this is that a well-formed XML document may have only one root element, and queries may
return any number of results. Other XQL serialization elements are used to return values from functions,
provide additional information about a query, or indicate errors or warnings. The following elements are
defined in the XQL serialization namespace:

A. Appendix A: XQL and XML Pattern Expression Language

B. Appendix C: References

Path / //
Comparison, Assignment = != < <= > >= eq ne lt le gt ge contains ieq ine ilt ile igt ige

icontains :=
Intersection intersect
Union union |
Negation not()
Conjunction and
Disjunction or
Sequence before after
End of Statement ;

<xql:result> Surrounds the serialized results of the query.
<xql:query> Optional. Contains the original query string. Useful for

debugging.
<xql:true> Returned by boolean functions.
<xql:false> Returned by boolean functions.
<xql:number> Returned by numeric functions.
<xql:text> Returned by text functions.
<xql:attribute name="attributeName"
value="attributeValue">

Used to return attributes when they are returned outside of
the attribute list of an element.

<xql:declaration> Used to return the XML declaration when it is returned in a
query.

<xql:error> Used to indicate an error in the query. The content of this
element explains the error.

<xql:warning> Used to indicate a warning. The content of this element
explains the warning.

16a

