

XML Schema Part 2: Datatypes

W3C Recommendation 02 May 2001

This version:
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
(in XML and HTML, with a schema and DTD including datatype definitions, as well as a schema for built-in datatypes only,
in a separate namespace.)

Latest version:
http://www.w3.org/TR/xmlschema-2/

Previous version:
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/

Editors:
Paul V. Biron (Kaiser Permanente, for Health Level Seven) mailto:Paul.V.Biron@kp.org
Ashok Malhotra (Microsoft, formerly of IBM) mailto:ashokma@microsoft.com

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing
rules apply.

Abstract

XML Schema: Datatypes is part 2 of the specification of the XML Schema language. It defines facilities for defining datatypes to be
used in XML Schemas as well as other XML specifications. The datatype language, which is itself represented in XML 1.0,
provides a superset of the capabilities found in XML 1.0 document type definitions (DTDs) for specifying datatypes on elements
and attributes.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede this document.
The latest status of this document series is maintained at the W3C.

This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director as a
W3C Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from
another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability of the Web.

This document has been produced by the W3C XML Schema Working Group as part of the W3C XML Activity. The goals of the
XML Schema language are discussed in the XML Schema Requirements document. The authors of this document are the XML
Schema WG members. Different parts of this specification have different editors.

This version of this document incorporates some editorial changes from earlier versions.

Please report errors in this document to www-xml-schema-comments@w3.org (archive). The list of known errors in this
specification is available at http://www.w3.org/2001/05/xmlschema-errata.

The English version of this specification is the only normative version. Information about translations of this document is available
at http://www.w3.org/2001/05/xmlschema-translations.

A list of current W3C Recommendations and other technical documents can be found at http://www.w3.org/TR/.

1a

Table of contents

1 Introduction
1.1 Purpose
1.2 Requirements
1.3 Scope
1.4 Terminology
1.5 Constraints and Contributions

2 Type System
2.1 Datatype
2.2 Value space
2.3 Lexical space
2.4 Facets
2.5 Datatype dichotomies

3 Built-in datatypes
3.1 Namespace considerations
3.2 Primitive datatypes
3.3 Derived datatypes

4 Datatype components
4.1 Simple Type Definition
4.2 Fundamental Facets
4.3 Constraining Facets

5 Conformance

Appendices

A Schema for Datatype Definitions (normative)
B DTD for Datatype Definitions (non-normative)
C Datatypes and Facets
D ISO 8601 Date and Time Formats
E Adding durations to dateTimes
F Regular Expressions
G Glossary (non-normative)
H References
I Acknowledgements (non-normative)

1 Introduction

1.1 Purpose

The [XML 1.0 (Second Edition)] specification defines limited facilities for applying datatypes to document content in that documents
may contain or refer to DTDs that assign types to elements and attributes. However, document authors, including authors of
traditional documents and those transporting data in XML, often require a higher degree of type checking to ensure robustness in
document understanding and data interchange.

The table below offers two typical examples of XML instances in which datatypes are implicit: the instance on the left represents a
billing invoice, the instance on the right a memo or perhaps an email message in XML.

Data oriented Document oriented

<invoice>
 <orderDate>1999-01-21</orderDate>
 <shipDate>1999-01-25</shipDate>
 <billingAddress>
 <name>Ashok Malhotra</name>
 <street>123 Microsoft Ave.</street>
 <city>Hawthorne</city>
 <state>NY</state>
 <zip>10532-0000</zip>
 </billingAddress>

<memo importance='high'
 date='1999-03-23'>
 <from>Paul V. Biron</from>
 <to>Ashok Malhotra</to>
 <subject>Latest draft</subject>
 <body>
 We need to discuss the latest
 draft <emph>immediately</emph>.
 Either email me at <email>
 mailto:paul.v.biron@kp.org</email>

2a

The invoice contains several dates and telephone numbers, the postal abbreviation for a state (which comes from an enumerated
list of sanctioned values), and a ZIP code (which takes a definable regular form). The memo contains many of the same types of
information: a date, telephone number, email address and an "importance" value (from an enumerated list, such as "low", "medium"
or "high"). Applications which process invoices and memos need to raise exceptions if something that was supposed to be a date
or telephone number does not conform to the rules for valid dates or telephone numbers.

In both cases, validity constraints exist on the content of the instances that are not expressible in XML DTDs. The limited
datatyping facilities in XML have prevented validating XML processors from supplying the rigorous type checking required in these
situations. The result has been that individual applications writers have had to implement type checking in an ad hoc manner. This
specification addresses the need of both document authors and applications writers for a robust, extensible datatype system for
XML which could be incorporated into XML processors. As discussed below, these datatypes could be used in other XML-related
standards as well.

1.2 Requirements

The [XML Schema Requirements] document spells out concrete requirements to be fulfilled by this specification, which state that
the XML Schema Language must:

1. provide for primitive data typing, including byte, date, integer, sequence, SQL and Java primitive datatypes, etc.;
2. define a type system that is adequate for import/export from database systems (e.g., relational, object, OLAP);
3. distinguish requirements relating to lexical data representation vs. those governing an underlying information set;
4. allow creation of user-defined datatypes, such as datatypes that are derived from existing datatypes and which may

constrain certain of its properties (e.g., range, precision, length, format).

1.3 Scope

This portion of the XML Schema Language discusses datatypes that can be used in an XML Schema. These datatypes can be
specified for element content that would be specified as #PCDATA and attribute values of various types in a DTD. It is the intention
of this specification that it be usable outside of the context of XML Schemas for a wide range of other XML-related activities such
as [XSL] and [RDF Schema].

1.4 Terminology

The terminology used to describe XML Schema Datatypes is defined in the body of this specification. The terms defined in the
following list are used in building those definitions and in describing the actions of a datatype processor:

[Definition:] for compatibility
A feature of this specification included solely to ensure that schemas which use this feature remain compatible with [XML
1.0 (Second Edition)]

[Definition:] may
Conforming documents and processors are permitted to but need not behave as described.

[Definition:] match
(Of strings or names:) Two strings or names being compared must be identical. Characters with multiple possible
representations in ISO/IEC 10646 (e.g. characters with both precomposed and base+diacritic forms) match only if they
have the same representation in both strings. No case folding is performed. (Of strings and rules in the grammar:) A string
matches a grammatical production if it belongs to the language generated by that production.

[Definition:] must
Conforming documents and processors are required to behave as described; otherwise they are in �error�.

[Definition:] error
A violation of the rules of this specification; results are undefined. Conforming software �may� detect and report an error
and �may� recover from it.

1.5 Constraints and Contributions

This specification provides three different kinds of normative statements about schema components, their representations in XML
and their contribution to the schema-validation of information items:

 <voice>555-1234</voice>
 <fax>555-4321</fax>
</invoice>

 or call <phone>555-9876</phone>
 </body>
</memo>

3a

[Definition:] Constraint on Schemas
Constraints on the schema components themselves, i.e. conditions components �must� satisfy to be components at all.
Largely to be found in Datatype components (§4).

[Definition:] Schema Representation Constraint
Constraints on the representation of schema components in XML. Some but not all of these are expressed in Schema for
Datatype Definitions (normative) (§A) and DTD for Datatype Definitions (non-normative) (§B).

[Definition:] Validation Rule
Constraints expressed by schema components which information items �must� satisfy to be schema-valid. Largely to be
found in Datatype components (§4).

2 Type System

This section describes the conceptual framework behind the type system defined in this specification. The framework has been
influenced by the [ISO 11404] standard on language-independent datatypes as well as the datatypes for [SQL] and for
programming languages such as Java.

The datatypes discussed in this specification are computer representations of well known abstract concepts such as integer and
date. It is not the place of this specification to define these abstract concepts; many other publications provide excellent definitions.

2.1 Datatype

[Definition:] In this specification, a datatype is a 3-tuple, consisting of a) a set of distinct values, called its �value space�, b) a set of
lexical representations, called its �lexical space�, and c) a set of �facet�s that characterize properties of the �value space�, individual
values or lexical items.

2.2 Value space

[Definition:] A value space is the set of values for a given datatype. Each value in the value space of a datatype is denoted by
one or more literals in its �lexical space�.

The �value space� of a given datatype can be defined in one of the following ways:

l defined axiomatically from fundamental notions (intensional definition) [see �primitive�]
l enumerated outright (extensional definition) [see �enumeration�]
l defined by restricting the �value space� of an already defined datatype to a particular subset with a given set of properties

[see �derived�]
l defined as a combination of values from one or more already defined �value space�(s) by a specific construction procedure

[see �list� and �union�]

�value space�s have certain properties. For example, they always have the property of �cardinality�, some definition of equality and
might be �ordered�, by which individual values within the �value space� can be compared to one another. The properties of �value
space�s that are recognized by this specification are defined in Fundamental facets (§2.4.1).

2.3 Lexical space

In addition to its �value space�, each datatype also has a lexical space.

[Definition:] A lexical space is the set of valid literals for a datatype.

For example, "100" and "1.0E2" are two different literals from the �lexical space� of float which both denote the same value. The
type system defined in this specification provides a mechanism for schema designers to control the set of values and the
corresponding set of acceptable literals of those values for a datatype.

NOTE: The literals in the �lexical space�s defined in this specification have the following characteristics:

Interoperability:
The number of literals for each value has been kept small; for many datatypes there is a one-to-one
mapping between literals and values. This makes it easy to exchange the values between different
systems. In many cases, conversion from locale-dependent representations will be required on both the

4a

originator and the recipient side, both for computer processing and for interaction with humans.
Basic readability:

Textual, rather than binary, literals are used. This makes hand editing, debugging, and similar activities
possible.

Ease of parsing and serializing:
Where possible, literals correspond to those found in common programming languages and libraries.

2.3.1 Canonical Lexical Representation

While the datatypes defined in this specification have, for the most part, a single lexical representation i.e. each value in the
datatype's �value space� is denoted by a single literal in its �lexical space�, this is not always the case. The example in the previous
section showed two literals for the datatype float which denote the same value. Similarly, there �may� be several literals for one of
the date or time datatypes that denote the same value using different timezone indicators.

[Definition:] A canonical lexical representation is a set of literals from among the valid set of literals for a datatype such that
there is a one-to-one mapping between literals in the canonical lexical representation and values in the �value space�.

2.4 Facets
2.4.1 Fundamental facets
2.4.2 Constraining or Non-fundamental facets

[Definition:] A facet is a single defining aspect of a �value space�. Generally speaking, each facet characterizes a �value space�
along independent axes or dimensions.

The facets of a datatype serve to distinguish those aspects of one datatype which differ from other datatypes. Rather than being
defined solely in terms of a prose description the datatypes in this specification are defined in terms of the synthesis of facet values
which together determine the �value space� and properties of the datatype.

Facets are of two types: fundamental facets that define the datatype and non-fundamental or constraining facets that constrain the
permitted values of a datatype.

2.4.1 Fundamental facets

[Definition:] A fundamental facet is an abstract property which serves to semantically characterize the values in a �value space�.

All fundamental facets are fully described in Fundamental Facets (§4.2).

2.4.2 Constraining or Non-fundamental facets

[Definition:] A constraining facet is an optional property that can be applied to a datatype to constrain its �value space�.

Constraining the �value space� consequently constrains the �lexical space�. Adding �constraining facet�s to a �base type� is
described in Derivation by restriction (§4.1.2.1).

All constraining facets are fully described in Constraining Facets (§4.3).

2.5 Datatype dichotomies
2.5.1 Atomic vs. list vs. union datatypes
2.5.2 Primitive vs. derived datatypes
2.5.3 Built-in vs. user-derived datatypes

It is useful to categorize the datatypes defined in this specification along various dimensions, forming a set of characterization
dichotomies.

2.5.1 Atomic vs. list vs. union datatypes

The first distinction to be made is that between �atomic�, �list� and �union� datatypes.

l [Definition:] Atomic datatypes are those having values which are regarded by this specification as being indivisible.

5a

l [Definition:] List datatypes are those having values each of which consists of a finite-length (possibly empty) sequence of
values of an �atomic� datatype.

l [Definition:] Union datatypes are those whose �value space�s and �lexical space�s are the union of the �value space�s and
�lexical space�s of one or more other datatypes.

For example, a single token which �match�es Nmtoken from [XML 1.0 (Second Edition)] could be the value of an �atomic� datatype
(NMTOKEN); while a sequence of such tokens could be the value of a �list� datatype (NMTOKENS).

2.5.1.1 Atomic datatypes

�atomic� datatypes can be either �primitive� or �derived�. The �value space� of an �atomic� datatype is a set of "atomic" values,
which for the purposes of this specification, are not further decomposable. The �lexical space� of an �atomic� datatype is a set of
literals whose internal structure is specific to the datatype in question.

2.5.1.2 List datatypes

Several type systems (such as the one described in [ISO 11404]) treat �list� datatypes as special cases of the more general notions
of aggregate or collection datatypes.

�list� datatypes are always �derived�. The �value space� of a �list� datatype is a set of finite-length sequences of �atomic� values.
The �lexical space� of a �list� datatype is a set of literals whose internal structure is a white space separated sequence of literals of
the �atomic� datatype of the items in the �list� (where whitespace �match�es S in [XML 1.0 (Second Edition)]).

[Definition:] The �atomic� datatype that participates in the definition of a �list� datatype is known as the itemType of that �list�
datatype.

Example

<simpleType name='sizes'>
 <list itemType='decimal'/>
</simpleType>
<cerealSizes xsi:type='sizes'> 8 10.5 12 </cerealSizes>

A �list� datatype can be �derived� from an �atomic� datatype whose �lexical space� allows whitespace (such as string or anyURI). In
such a case, regardless of the input, list items will be separated at whitespace boundaries.

Example

<simpleType name='listOfString'>
 <list itemType='string'/>
</simpleType>
<someElement xsi:type='listOfString'>
this is not list item 1
this is not list item 2
this is not list item 3
</someElement>

In the above example, the value of the someElement element is not a �list� of �length� 3; rather, it is a �list� of �length� 18.

When a datatype is �derived� from a �list� datatype, the following �constraining facet�s apply:

l �length�
l �maxLength�
l �minLength�
l �enumeration�
l �pattern�
l �whiteSpace�

For each of �length�, �maxLength� and �minLength�, the unit of length is measured in number of list items. The value of

6a

�whiteSpace� is fixed to the value collapse.

The canonical-lexical-representation for the �list� datatype is defined as the lexical form in which each item in the �list� has the
canonical lexical representation of its �itemType�.

2.5.1.3 Union datatypes

The �value space� and �lexical space� of a �union� datatype are the union of the �value space�s and �lexical space�s of its
�memberTypes�. �union� datatypes are always �derived�. Currently, there are no �built-in� �union� datatypes.

Example
A prototypical example of a �union� type is the maxOccurs attribute on the element element in XML Schema itself: it is a union of
nonNegativeInteger and an enumeration with the single member, the string "unbounded", as shown below.

 <attributeGroup name="occurs">
 <attribute name="minOccurs" type="nonNegativeInteger"
 default="1"/>
 <attribute name="maxOccurs">
 <simpleType>
 <union>
 <simpleType>
 <restriction base='nonNegativeInteger'/>
 </simpleType>
 <simpleType>
 <restriction base='string'>
 <enumeration value='unbounded'/>
 </restriction>
 </simpleType>
 </union>
 </simpleType>
 </attribute>
 </attributeGroup>

Any number (greater than 1) of �atomic� or �list� �datatype�s can participate in a �union� type.

[Definition:] The datatypes that participate in the definition of a �union� datatype are known as the memberTypes of that �union�
datatype.

The order in which the �memberTypes� are specified in the definition (that is, the order of the <simpleType> children of the <union>
element, or the order of the QNames in the memberTypes attribute) is significant. During validation, an element or attribute's value
is validated against the �memberTypes� in the order in which they appear in the definition until a match is found. The evaluation
order can be overridden with the use of xsi:type.

Example
For example, given the definition below, the first instance of the <size> element validates correctly as an integer (§3.3.13), the
second and third as string (§3.2.1).

 <xsd:element name='size'>
 <xsd:simpleType>
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base='integer'/>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base='string'/>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
 </xsd:element>
 <size>1</size>
 <size>large</size>

7a

 <size xsi:type='xsd:string'>1</size>

The canonical-lexical-representation for a �union� datatype is defined as the lexical form in which the values have the canonical
lexical representation of the appropriate �memberTypes�.

NOTE: A datatype which is �atomic� in this specification need not be an "atomic" datatype in any programming
language used to implement this specification. Likewise, a datatype which is a �list� in this specification need not be
a "list" datatype in any programming language used to implement this specification. Furthermore, a datatype which
is a �union� in this specification need not be a "union" datatype in any programming language used to implement this
specification.

2.5.2 Primitive vs. derived datatypes

Next, we distinguish between �primitive� and �derived� datatypes.

l [Definition:] Primitive datatypes are those that are not defined in terms of other datatypes; they exist ab initio.
l [Definition:] Derived datatypes are those that are defined in terms of other datatypes.

For example, in this specification, float is a well-defined mathematical concept that cannot be defined in terms of other datatypes,
while a integer is a special case of the more general datatype decimal.

[Definition:] There exists a conceptual datatype, whose name is anySimpleType, that is the simple version of the ur-type definition
from [XML Schema Part 1: Structures]. anySimpleType can be considered as the �base type� of all �primitive� types. The �value
space� of anySimpleType can be considered to be the �union� of the �value space�s of all �primitive� datatypes.

The datatypes defined by this specification fall into both the �primitive� and �derived� categories. It is felt that a judiciously chosen set
of �primitive� datatypes will serve the widest possible audience by providing a set of convenient datatypes that can be used as is, as
well as providing a rich enough base from which the variety of datatypes needed by schema designers can be �derived�.

In the example above, integer is �derived� from decimal.

NOTE: A datatype which is �primitive� in this specification need not be a "primitive" datatype in any programming
language used to implement this specification. Likewise, a datatype which is �derived� in this specification need not
be a "derived" datatype in any programming language used to implement this specification.

As described in more detail in XML Representation of Simple Type Definition Schema Components (§4.1.2), each �user-derived�
datatype �must� be defined in terms of another datatype in one of three ways: 1) by assigning �constraining facet�s which serve to
restrict the �value space� of the �user-derived� datatype to a subset of that of the �base type�; 2) by creating a �list� datatype whose
�value space� consists of finite-length sequences of values of its �itemType�; or 3) by creating a �union� datatype whose �value
space� consists of the union of the �value space� its �memberTypes�.

2.5.2.1 Derived by restriction

[Definition:] A datatype is said to be �derived� by restriction from another datatype when values for zero or more �constraining
facet�s are specified that serve to constrain its �value space� and/or its �lexical space� to a subset of those of its �base type�.

[Definition:] Every datatype that is �derived� by restriction is defined in terms of an existing datatype, referred to as its base type.
base types can be either �primitive� or �derived�.

2.5.2.2 Derived by list

A �list� datatype can be �derived� from another datatype (its �itemType�) by creating a �value space� that consists of a finite-length
sequence of values of its �itemType�.

2.5.2.3 Derived by union

One datatype can be �derived� from one or more datatypes by �union�ing their �value space�s and, consequently, their �lexical
space�s.

8a

2.5.3 Built-in vs. user-derived datatypes

l [Definition:] Built-in datatypes are those which are defined in this specification, and can be either �primitive� or �derived�;
l [Definition:] User-derived datatypes are those �derived� datatypes that are defined by individual schema designers.

Conceptually there is no difference between the �built-in� �derived� datatypes included in this specification and the �user-derived�
datatypes which will be created by individual schema designers. The �built-in� �derived� datatypes are those which are believed to
be so common that if they were not defined in this specification many schema designers would end up "reinventing" them.
Furthermore, including these �derived� datatypes in this specification serves to demonstrate the mechanics and utility of the
datatype generation facilities of this specification.

NOTE: A datatype which is �built-in� in this specification need not be a "built-in" datatype in any programming
language used to implement this specification. Likewise, a datatype which is �user-derived� in this specification
need not be a "user-derived" datatype in any programming language used to implement this specification.

3 Built-in datatypes

9a

Each built-in datatype in this specification (both �primitive� and �derived�) can be uniquely addressed via a URI Reference
constructed as follows:

1. the base URI is the URI of the XML Schema namespace
2. the fragment identifier is the name of the datatype

For example, to address the int datatype, the URI is:

l http://www.w3.org/2001/XMLSchema#int

Additionally, each facet definition element can be uniquely addressed via a URI constructed as follows:

1. the base URI is the URI of the XML Schema namespace
2. the fragment identifier is the name of the facet

10a

For example, to address the maxInclusive facet, the URI is:

l http://www.w3.org/2001/XMLSchema#maxInclusive

Additionally, each facet usage in a built-in datatype definition can be uniquely addressed via a URI constructed as follows:

1. the base URI is the URI of the XML Schema namespace
2. the fragment identifier is the name of the datatype, followed by a period (".") followed by the name of the facet

For example, to address the usage of the maxInclusive facet in the definition of int, the URI is:

l http://www.w3.org/2001/XMLSchema#int.maxInclusive

3.1 Namespace considerations

The �built-in� datatypes defined by this specification are designed to be used with the XML Schema definition language as well as
other XML specifications. To facilitate usage within the XML Schema definition language, the �built-in� datatypes in this
specification have the namespace name:

l http://www.w3.org/2001/XMLSchema

To facilitate usage in specifications other than the XML Schema definition language, such as those that do not want to know
anything about aspects of the XML Schema definition language other than the datatypes, each �built-in� datatype is also defined in
the namespace whose URI is:

l http://www.w3.org/2001/XMLSchema-datatypes

This applies to both �built-in� �primitive� and �built-in� �derived� datatypes.

Each �user-derived� datatype is also associated with a unique namespace. However, �user-derived� datatypes do not come from
the namespace defined by this specification; rather, they come from the namespace of the schema in which they are defined (see
XML Representation of Schemas in [XML Schema Part 1: Structures]).

3.2 Primitive datatypes
3.2.1 string
3.2.2 boolean
3.2.3 decimal
3.2.4 float
3.2.5 double
3.2.6 duration
3.2.7 dateTime
3.2.8 time
3.2.9 date
3.2.10 gYearMonth
3.2.11 gYear
3.2.12 gMonthDay
3.2.13 gDay
3.2.14 gMonth
3.2.15 hexBinary
3.2.16 base64Binary
3.2.17 anyURI
3.2.18 QName
3.2.19 NOTATION

The �primitive� datatypes defined by this specification are described below. For each datatype, the �value space� and �lexical
space� are defined, �constraining facet�s which apply to the datatype are listed and any datatypes �derived� from this datatype are
specified.

�primitive� datatypes can only be added by revisions to this specification.

11a

3.2.1 string

[Definition:] The string datatype represents character strings in XML. The �value space� of string is the set of finite-length
sequences of characters (as defined in [XML 1.0 (Second Edition)]) that �match� the Char production from [XML 1.0 (Second
Edition)]. A character is an atomic unit of communication; it is not further specified except to note that every character has a
corresponding Universal Character Set code point, which is an integer.

NOTE: Many human languages have writing systems that require child elements for control of aspects such as
bidirectional formating or ruby annotation (see [Ruby] and Section 8.2.4 Overriding the bidirectional algorithm: the
BDO element of [HTML 4.01]). Thus, string, as a simple type that can contain only characters but not child
elements, is often not suitable for representing text. In such situations, a complex type that allows mixed content
should be considered. For more information, see Section 5.5 Any Element, Any Attribute of [XML Schema
Language: Part 2 Primer].

NOTE: As noted in ordered, the fact that this specification does not specify an �order-relation� for �string� does not
preclude other applications from treating strings as being ordered.

3.2.1.1 Constraining facets

string has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.2.1.2 Derived datatypes

The following �built-in� datatypes are �derived� from string:

l normalizedString

3.2.2 boolean

[Definition:] boolean has the �value space� required to support the mathematical concept of binary-valued logic: {true, false}.

3.2.2.1 Lexical representation

An instance of a datatype that is defined as �boolean� can have the following legal literals {true, false, 1, 0}.

3.2.2.2 Canonical representation

The canonical representation for boolean is the set of literals {true, false}.

3.2.2.3 Constraining facets

boolean has the following �constraining facets�:

l pattern
l whiteSpace

3.2.3 decimal

[Definition:] decimal represents arbitrary precision decimal numbers. The �value space� of decimal is the set of the values i × 10^-
n, where i and n are integers such that n >= 0. The �order-relation� on decimal is: x < y iff y - x is positive.

[Definition:] The �value space� of types derived from decimal with a value for �totalDigits� of p is the set of values i × 10^-n, where

12a

n and i are integers such that p >= n >= 0 and the number of significant decimal digits in i is less than or equal to p.

[Definition:] The �value space� of types derived from decimal with a value for �fractionDigits� of s is the set of values i × 10^-n,
where i and n are integers such that 0 <= n <= s.

NOTE: All �minimally conforming� processors �must� support decimal numbers with a minimum of 18 decimal digits
(i.e., with a �totalDigits� of 18). However, �minimally conforming� processors �may� set an application-defined limit
on the maximum number of decimal digits they are prepared to support, in which case that application-defined
maximum number �must� be clearly documented.

3.2.3.1 Lexical representation

decimal has a lexical representation consisting of a finite-length sequence of decimal digits (#x30-#x39) separated by a period as
a decimal indicator. If �totalDigits� is specified, the number of digits must be less than or equal to �totalDigits�. If �fractionDigits� is
specified, the number of digits following the decimal point must be less than or equal to the �fractionDigits�. An optional leading sign
is allowed. If the sign is omitted, "+" is assumed. Leading and trailing zeroes are optional. If the fractional part is zero, the period
and following zero(es) can be omitted. For example: -1.23, 12678967.543233, +100000.00, 210.

3.2.3.2 Canonical representation

The canonical representation for decimal is defined by prohibiting certain options from the Lexical representation (§3.2.3.1).
Specifically, the preceding optional "+" sign is prohibited. The decimal point is required. Leading and trailing zeroes are prohibited
subject to the following: there must be at least one digit to the right and to the left of the decimal point which may be a zero.

3.2.3.3 Constraining facets

decimal has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.3.4 Derived datatypes

The following �built-in� datatypes are �derived� from decimal:

l integer

3.2.4 float

[Definition:] float corresponds to the IEEE single-precision 32-bit floating point type [IEEE 754-1985]. The basic �value space� of
float consists of the values m × 2^e, where m is an integer whose absolute value is less than 2^24, and e is an integer between -
149 and 104, inclusive. In addition to the basic �value space� described above, the �value space� of float also contains the
following special values: positive and negative zero, positive and negative infinity and not-a-number. The �order-relation� on float
is: x < y iff y - x is positive. Positive zero is greater than negative zero. Not-a-number equals itself and is greater than all float values
values including positive infinity.

A literal in the �lexical space� representing a decimal number d maps to the normalized value in the �value space� of float that is
closest to d in the sense defined by [Clinger, WD (1990)]; if d is exactly halfway between two such values then the even value is
chosen.

3.2.4.1 Lexical representation

float values have a lexical representation consisting of a mantissa followed, optionally, by the character "E" or "e", followed by an

13a

exponent. The exponent �must� be an integer. The mantissa must be a decimal number. The representations for exponent and
mantissa must follow the lexical rules for integer and decimal. If the "E" or "e" and the following exponent are omitted, an exponent
value of 0 is assumed.

The special values positive and negative zero, positive and negative infinity and not-a-number have lexical representations 0, -0,
INF, -INF and NaN, respectively.

For example, -1E4, 1267.43233E12, 12.78e-2, 12 and INF are all legal literals for float.

3.2.4.2 Canonical representation

The canonical representation for float is defined by prohibiting certain options from the Lexical representation (§3.2.4.1).
Specifically, the exponent must be indicated by "E". Leading zeroes and the preceding optional "+" sign are prohibited in the
exponent. For the mantissa, the preceding optional "+" sign is prohibited and the decimal point is required. For the exponent, the
preceding optional "+" sign is prohibited. Leading and trailing zeroes are prohibited subject to the following: number representations
must be normalized such that there is a single digit to the left of the decimal point and at least a single digit to the right of the
decimal point.

3.2.4.3 Constraining facets

float has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.5 double

[Definition:] The double datatype corresponds to IEEE double-precision 64-bit floating point type [IEEE 754-1985]. The basic
�value space� of double consists of the values m × 2^e, where m is an integer whose absolute value is less than 2^53, and e is an
integer between -1075 and 970, inclusive. In addition to the basic �value space� described above, the �value space� of double also
contains the following special values: positive and negative zero, positive and negative infinity and not-a-number. The �order-
relation� on double is: x < y iff y - x is positive. Positive zero is greater than negative zero. Not-a-number equals itself and is greater
greater than all double values including positive infinity.

A literal in the �lexical space� representing a decimal number d maps to the normalized value in the �value space� of double that is
closest to d; if d is exactly halfway between two such values then the even value is chosen. This is the best approximation of d
([Clinger, WD (1990)], [Gay, DM (1990)]), which is more accurate than the mapping required by [IEEE 754-1985].

3.2.5.1 Lexical representation

double values have a lexical representation consisting of a mantissa followed, optionally, by the character "E" or "e", followed by
an exponent. The exponent �must� be an integer. The mantissa must be a decimal number. The representations for exponent and
mantissa must follow the lexical rules for integer and decimal. If the "E" or "e" and the following exponent are omitted, an exponent
value of 0 is assumed.

The special values positive and negative zero, positive and negative infinity and not-a-number have lexical representations 0, -0,
INF, -INF and NaN, respectively.

For example, -1E4, 1267.43233E12, 12.78e-2, 12 and INF are all legal literals for double.

3.2.5.2 Canonical representation

The canonical representation for double is defined by prohibiting certain options from the Lexical representation (§3.2.5.1).
Specifically, the exponent must be indicated by "E". Leading zeroes and the preceding optional "+" sign are prohibited in the

14a

exponent. For the mantissa, the preceding optional "+" sign is prohibited and the decimal point is required. For the exponent, the
preceding optional "+" sign is prohibited. Leading and trailing zeroes are prohibited subject to the following: number representations
must be normalized such that there is a single digit to the left of the decimal point and at least a single digit to the right of the
decimal point.

3.2.5.3 Constraining facets

double has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.6 duration

[Definition:] duration represents a duration of time. The �value space� of duration is a six-dimensional space where the
coordinates designate the Gregorian year, month, day, hour, minute, and second components defined in § 5.5.3.2 of [ISO 8601],
respectively. These components are ordered in their significance by their order of appearance i.e. as year, month, day, hour,
minute, and second.

3.2.6.1 Lexical representation

The lexical representation for duration is the [ISO 8601] extended format PnYn MnDTnH nMnS, where nY represents the number
of years, nM the number of months, nD the number of days, 'T' is the date/time separator, nH the number of hours, nM the number
of minutes and nS the number of seconds. The number of seconds can include decimal digits to arbitrary precision.

The values of the Year, Month, Day, Hour and Minutes components are not restricted but allow an arbitrary integer. Similarly, the
value of the Seconds component allows an arbitrary decimal. Thus, the lexical representation of duration does not follow the
alternative format of § 5.5.3.2.1 of [ISO 8601].

An optional preceding minus sign ('-') is allowed, to indicate a negative duration. If the sign is omitted a positive duration is
indicated. See also ISO 8601 Date and Time Formats (§D).

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, one would write:
P1Y2M3DT10H30M. One could also indicate a duration of minus 120 days as: -P120D.

Reduced precision and truncated representations of this format are allowed provided they conform to the following:

l If the number of years, months, days, hours, minutes, or seconds in any expression equals zero, the number and its
corresponding designator �may� be omitted. However, at least one number and its designator �must� be present.

l The seconds part �may� have a decimal fraction.
l The designator 'T' shall be absent if all of the time items are absent. The designator 'P' must always be present.

For example, P1347Y, P1347M and P1Y2MT2H are all allowed; P0Y1347M and P0Y1347M0D are allowed. P-1347M is not
allowed although -P1347M is allowed. P1Y2MT is not allowed.

3.2.6.2 Order relation on duration

In general, the �order-relation� on duration is a partial order since there is no determinate relationship between certain durations
such as one month (P1M) and 30 days (P30D). The �order-relation� of two duration values x and y is x < y iff s+x < s+y for each
qualified dateTime s in the list below. These values for s cause the greatest deviations in the addition of dateTimes and durations.
Addition of durations to time instants is defined in Adding durations to dateTimes (§E).

l 1696-09-01T00:00:00Z
l 1697-02-01T00:00:00Z
l 1903-03-01T00:00:00Z

15a

l 1903-07-01T00:00:00Z

The following table shows the strongest relationship that can be determined between example durations. The symbol <> means
that the order relation is indeterminate. Note that because of leap-seconds, a seconds field can vary from 59 to 60. However,
because of the way that addition is defined in Adding durations to dateTimes (§E), they are still totally ordered.

Implementations are free to optimize the computation of the ordering relationship. For example, the following table can be used to
compare durations of a small number of months against days.

3.2.6.3 Facet Comparison for durations

In comparing duration values with minInclusive, minExclusive, maxInclusive and maxExclusive facet values indeterminate
comparisons should be considered as "false".

3.2.6.4 Totally ordered durations

Certain derived datatypes of durations can be guaranteed have a total order. For this, they must have fields from only one row in
the list below and the time zone must either be required or prohibited.

l year, month
l day, hour, minute, second

For example, a datatype could be defined to correspond to the [SQL] datatype Year-Month interval that required a four digit year
field and a two digit month field but required all other fields to be unspecified. This datatype could be defined as below and would
have a total order.

<simpleType name='SQL-Year-Month-Interval'>
 <restriction base='duration'>
 <pattern value='P\p{Nd}{4}Y\p{Nd}{2}M'/>
 </restriction>
</simpleType>

3.2.6.5 Constraining facets

duration has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.7 dateTime

[Definition:] dateTime represents a specific instant of time. The �value space� of dateTime is the space of Combinations of date

 Relation

P1Y > P364D <> P365D <> P366D < P367D

P1M > P27D <> P28D <> P29D <> P30D <> P31D < P32D

P5M > P149D <> P150D <> P151D <> P152D <> P153D < P154D

 Months 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

Days
Minimum 28 59 89 120 150 181 212 242 273 303 334 365 393 ...

Maximum 31 62 92 123 153 184 215 245 276 306 337 366 397 ...

16a

and time of day values as defined in § 5.4 of [ISO 8601].

3.2.7.1 Lexical representation

A single lexical representation, which is a subset of the lexical representations allowed by [ISO 8601], is allowed for dateTime. This
lexical representation is the [ISO 8601] extended format CCYY-MM-DDThh:mm:ss where "CC" represents the century, "YY" the
year, "MM" the month and "DD" the day, preceded by an optional leading "-" sign to indicate a negative number. If the sign is
omitted, "+" is assumed. The letter "T" is the date/time separator and "hh", "mm", "ss" represent hour, minute and second
respectively. Additional digits can be used to increase the precision of fractional seconds if desired i.e the format ss.ss... with any
number of digits after the decimal point is supported. The fractional seconds part is optional; other parts of the lexical form are not
optional. To accommodate year values greater than 9999 additional digits can be added to the left of this representation. Leading
zeros are required if the year value would otherwise have fewer than four digits; otherwise they are forbidden. The year 0000 is
prohibited.

The CCYY field must have at least four digits, the MM, DD, SS, hh, mm and ss fields exactly two digits each (not counting
fractional seconds); leading zeroes must be used if the field would otherwise have too few digits.

This representation may be immediately followed by a "Z" to indicate Coordinated Universal Time (UTC) or, to indicate the time
zone, i.e. the difference between the local time and Coordinated Universal Time, immediately followed by a sign, + or -, followed by
the difference from UTC represented as hh:mm (note: the minutes part is required). See ISO 8601 Date and Time Formats (§D) for
details about legal values in the various fields. If the time zone is included, both hours and minutes must be present.

For example, to indicate 1:20 pm on May the 31st, 1999 for Eastern Standard Time which is 5 hours behind Coordinated Universal
Time (UTC), one would write: 1999-05-31T13:20:00-05:00.

3.2.7.2 Canonical representation

The canonical representation for dateTime is defined by prohibiting certain options from the Lexical representation (§3.2.7.1).
Specifically, either the time zone must be omitted or, if present, the time zone must be Coordinated Universal Time (UTC) indicated
by a "Z".

3.2.7.3 Order relation on dateTime

In general, the �order-relation� on dateTime is a partial order since there is no determinate relationship between certain instants.
For example, there is no determinate ordering between (a) 2000-01-20T12:00:00 and (b) 2000-01-20T12:00:00Z. Based on
timezones currently in use, (c) could vary from 2000-01-20T12:00:00+12:00 to 2000-01-20T12:00:00-13:00. It is, however, possible
for this range to expand or contract in the future, based on local laws. Because of this, the following definition uses a somewhat
broader range of indeterminate values: +14:00..-14:00.

The following definition uses the notation S[year] to represent the year field of S, S[month] to represent the month field, and so on.
The notation (Q & "-14:00") means adding the timezone -14:00 to Q, where Q did not already have a timezone. This is a logical
explanation of the process. Actual implementations are free to optimize as long as they produce the same results.

The ordering between two dateTimes P and Q is defined by the following algorithm:

A.Normalize P and Q. That is, if there is a timezone present, but it is not Z, convert it to Z using the addition operation defined in
Adding durations to dateTimes (§E)

l Thus 2000-03-04T23:00:00+03:00 normalizes to 2000-03-04T20:00:00Z

B. If P and Q either both have a time zone or both do not have a time zone, compare P and Q field by field from the year field down
to the second field, and return a result as soon as it can be determined. That is:

1. For each i in {year, month, day, hour, minute, second}
1. If P[i] and Q[i] are both not specified, continue to the next i
2. If P[i] is not specified and Q[i] is, or vice versa, stop and return P <> Q
3. If P[i] < Q[i], stop and return P < Q
4. If P[i] > Q[i], stop and return P > Q

2. Stop and return P = Q

17a

C.Otherwise, if P contains a time zone and Q does not, compare as follows:

1. P < Q if P < (Q with time zone +14:00)
2. P > Q if P > (Q with time zone -14:00)
3. P <> Q otherwise, that is, if (Q with time zone +14:00) < P < (Q with time zone -14:00)

D. Otherwise, if P does not contain a time zone and Q does, compare as follows:

1. P < Q if (P with time zone -14:00) < Q.
2. P > Q if (P with time zone +14:00) > Q.
3. P <> Q otherwise, that is, if (P with time zone +14:00) < Q < (P with time zone -14:00)

Examples:

3.2.7.4 Totally ordered dateTimes

Certain derived types from dateTime can be guaranteed have a total order. To do so, they must require that a specific set of fields
are always specified, and that remaining fields (if any) are always unspecified. For example, the date datatype without time zone is
defined to contain exactly year, month, and day. Thus dates without time zone have a total order among themselves.

3.2.7.5 Constraining facets

dateTime has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.8 time

[Definition:] time represents an instant of time that recurs every day. The �value space� of time is the space of time of day values
as defined in § 5.3 of [ISO 8601]. Specifically, it is a set of zero-duration daily time instances.

Since the lexical representation allows an optional time zone indicator, time values are partially ordered because it may not be able
to determine the order of two values one of which has a time zone and the other does not. The order relation on time values is the
Order relation on dateTime (§3.2.7.3) using an arbitrary date. See also Adding durations to dateTimes (§E). Pairs of time values
with or without time zone indicators are totally ordered.

3.2.8.1 Lexical representation

The lexical representation for time is the left truncated lexical representation for dateTime: hh:mm:ss.sss with optional following
time zone indicator. For example, to indicate 1:20 pm for Eastern Standard Time which is 5 hours behind Coordinated Universal
Time (UTC), one would write: 13:20:00-05:00. See also ISO 8601 Date and Time Formats (§D).

3.2.8.2 Canonical representation

The canonical representation for time is defined by prohibiting certain options from the Lexical representation (§3.2.8.1).
Specifically, either the time zone must be omitted or, if present, the time zone must be Coordinated Universal Time (UTC) indicated

Determinate Indeterminate

2000-01-15T00:00:00 < 2000-02-15T00:00:00 2000-01-01T12:00:00 <> 1999-12-31T23:00:00Z

2000-01-15T12:00:00 < 2000-01-16T12:00:00Z 2000-01-16T12:00:00 <> 2000-01-16T12:00:00Z

 2000-01-16T00:00:00 <> 2000-01-16T12:00:00Z

18a

by a "Z". Additionally, the canonical representation for midnight is 00:00:00.

3.2.8.3 Constraining facets

time has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.9 date

[Definition:] date represents a calendar date. The �value space� of date is the set of Gregorian calendar dates as defined in § 5.2.1
of [ISO 8601]. Specifically, it is a set of one-day long, non-periodic instances e.g. lexical 1999-10-26 to represent the calendar date
1999-10-26, independent of how many hours this day has.

Since the lexical representation allows an optional time zone indicator, date values are partially ordered because it may not be
possible to unequivocally determine the order of two values one of which has a time zone and the other does not. If date values
are considered as periods of time, the order relation on date values is the order relation on their starting instants. This is discussed
in Order relation on dateTime (§3.2.7.3). See also Adding durations to dateTimes (§E). Pairs of date values with or without time
zone indicators are totally ordered.

3.2.9.1 Lexical representation

The lexical representation for date is the reduced (right truncated) lexical representation for dateTime: CCYY-MM-DD. No left
truncation is allowed. An optional following time zone qualifier is allowed as for dateTime. To accommodate year values outside the
range from 0001 to 9999, additional digits can be added to the left of this representation and a preceding "-" sign is allowed.

For example, to indicate May the 31st, 1999, one would write: 1999-05-31. See also ISO 8601 Date and Time Formats (§D).

3.2.9.2 Constraining facets

date has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.10 gYearMonth

[Definition:] gYearMonth represents a specific gregorian month in a specific gregorian year. The �value space� of gYearMonth is
the set of Gregorian calendar months as defined in § 5.2.1 of [ISO 8601]. Specifically, it is a set of one-month long, non-periodic
instances e.g. 1999-10 to represent the whole month of 1999-10, independent of how many days this month has.

Since the lexical representation allows an optional time zone indicator, gYearMonth values are partially ordered because it may
not be possible to unequivocally determine the order of two values one of which has a time zone and the other does not. If
gYearMonth values are considered as periods of time, the order relation on gYearMonth values is the order relation on their
starting instants. This is discussed in Order relation on dateTime (§3.2.7.3). See also Adding durations to dateTimes (§E). Pairs of
gYearMonth values with or without time zone indicators are totally ordered.

NOTE: Because month/year combinations in one calendar only rarely correspond to month/year combinations in
other calendars, values of this type are not, in general, convertible to simple values corresponding to month/year

19a

combinations in other calendars. This type should therefore be used with caution in contexts where conversion to
other calendars is desired.

3.2.10.1 Lexical representation

The lexical representation for gYearMonth is the reduced (right truncated) lexical representation for dateTime: CCYY-MM. No left
truncation is allowed. An optional following time zone qualifier is allowed. To accommodate year values outside the range from
0001 to 9999, additional digits can be added to the left of this representation and a preceding "-" sign is allowed.

For example, to indicate the month of May 1999, one would write: 1999-05. See also ISO 8601 Date and Time Formats (§D).

3.2.10.2 Constraining facets

gYearMonth has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.11 gYear

[Definition:] gYear represents a gregorian calendar year. The �value space� of gYear is the set of Gregorian calendar years as
defined in § 5.2.1 of [ISO 8601]. Specifically, it is a set of one-year long, non-periodic instances e.g. lexical 1999 to represent the
whole year 1999, independent of how many months and days this year has.

Since the lexical representation allows an optional time zone indicator, gYear values are partially ordered because it may not be
possible to unequivocally determine the order of two values one of which has a time zone and the other does not. If gYear values
are considered as periods of time, the order relation on gYear values is the order relation on their starting instants. This is
discussed in Order relation on dateTime (§3.2.7.3). See also Adding durations to dateTimes (§E). Pairs of gYear values with or
without time zone indicators are totally ordered.

NOTE: Because years in one calendar only rarely correspond to years in other calendars, values of this type are
not, in general, convertible to simple values corresponding to years in other calendars. This type should therefore
be used with caution in contexts where conversion to other calendars is desired.

3.2.11.1 Lexical representation

The lexical representation for gYear is the reduced (right truncated) lexical representation for dateTime: CCYY. No left truncation is
allowed. An optional following time zone qualifier is allowed as for dateTime. To accommodate year values outside the range from
0001 to 9999, additional digits can be added to the left of this representation and a preceding "-" sign is allowed.

For example, to indicate 1999, one would write: 1999. See also ISO 8601 Date and Time Formats (§D).

3.2.11.2 Constraining facets

gYear has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.12 gMonthDay

20a

[Definition:] gMonthDay is a gregorian date that recurs, specifically a day of the year such as the third of May. Arbitrary recurring
dates are not supported by this datatype. The �value space� of gMonthDay is the set of calendar dates, as defined in § 3 of [ISO
8601]. Specifically, it is a set of one-day long, annually periodic instances.

Since the lexical representation allows an optional time zone indicator, gMonthDay values are partially ordered because it may not
be possible to unequivocally determine the order of two values one of which has a time zone and the other does not. If gMonthDay
values are considered as periods of time, the order relation on gMonthDay values is the order relation on their starting instants.
This is discussed in Order relation on dateTime (§3.2.7.3). See also Adding durations to dateTimes (§E). Pairs of gMonthDay
values with or without time zone indicators are totally ordered.

NOTE: Because day/month combinations in one calendar only rarely correspond to day/month combinations in
other calendars, values of this type do not, in general, have any straightforward or intuitive representation in terms
of most other calendars. This type should therefore be used with caution in contexts where conversion to other
calendars is desired.

3.2.12.1 Lexical representation

The lexical representation for gMonthDay is the left truncated lexical representation for date: --MM-DD. An optional following time
zone qualifier is allowed as for date. No preceding sign is allowed. No other formats are allowed. See also ISO 8601 Date and
Time Formats (§D).

This datatype can be used to represent a specific day in a month. To say, for example, that my birthday occurs on the 14th of
September ever year.

3.2.12.2 Constraining facets

gMonthDay has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.13 gDay

[Definition:] gDay is a gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary recurring
days are not supported by this datatype. The �value space� of gDay is the space of a set of calendar dates as defined in § 3 of [ISO
8601]. Specifically, it is a set of one-day long, monthly periodic instances.

This datatype can be used to represent a specific day of the month. To say, for example, that I get my paycheck on the 15th of
each month.

Since the lexical representation allows an optional time zone indicator, gDay values are partially ordered because it may not be
possible to unequivocally determine the order of two values one of which has a time zone and the other does not. If gDay values
are considered as periods of time, the order relation on gDay values is the order relation on their starting instants. This is
discussed in Order relation on dateTime (§3.2.7.3). See also Adding durations to dateTimes (§E). Pairs of gDay values with or
without time zone indicators are totally ordered.

NOTE: Because days in one calendar only rarely correspond to days in other calendars, values of this type do not,
in general, have any straightforward or intuitive representation in terms of most other calendars. This type should
therefore be used with caution in contexts where conversion to other calendars is desired.

3.2.13.1 Lexical representation

The lexical representation for gDay is the left truncated lexical representation for date: ---DD . An optional following time zone
qualifier is allowed as for date. No preceding sign is allowed. No other formats are allowed. See also ISO 8601 Date and Time
Formats (§D).

21a

3.2.13.2 Constraining facets

gDay has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.14 gMonth

[Definition:] gMonth is a gregorian month that recurs every year. The �value space� of gMonth is the space of a set of calendar
months as defined in § 3 of [ISO 8601]. Specifically, it is a set of one-month long, yearly periodic instances.

This datatype can be used to represent a specific month. To say, for example, that Thanksgiving falls in the month of November.

Since the lexical representation allows an optional time zone indicator, gMonth values are partially ordered because it may not be
possible to unequivocally determine the order of two values one of which has a time zone and the other does not. If gMonth values
are considered as periods of time, the order relation on gMonth is the order relation on their starting instants. This is discussed in
Order relation on dateTime (§3.2.7.3). See also Adding durations to dateTimes (§E). Pairs of gMonth values with or without time
zone indicators are totally ordered.

NOTE: Because months in one calendar only rarely correspond to months in other calendars, values of this type
do not, in general, have any straightforward or intuitive representation in terms of most other calendars. This type
should therefore be used with caution in contexts where conversion to other calendars is desired.

3.2.14.1 Lexical representation

The lexical representation for gMonth is the left and right truncated lexical representation for date: --MM--. An optional following
time zone qualifier is allowed as for date. No preceding sign is allowed. No other formats are allowed. See also ISO 8601 Date and
Time Formats (§D).

3.2.14.2 Constraining facets

gMonth has the following �constraining facets�:

l pattern
l enumeration
l whiteSpace
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.2.15 hexBinary

[Definition:] hexBinary represents arbitrary hex-encoded binary data. The �value space� of hexBinary is the set of finite-length
sequences of binary octets.

3.2.15.1 Lexical Representation

hexBinary has a lexical representation where each binary octet is encoded as a character tuple, consisting of two hexadecimal
digits ([0-9a-fA-F]) representing the octet code. For example, "0FB7" is a hex encoding for the 16-bit integer 4023 (whose binary
representation is 111110110111).

3.2.15.2 Canonical Rrepresentation

22a

The canonical representation for hexBinary is defined by prohibiting certain options from the Lexical Representation (§3.2.15.1).
Specifically, the lower case hexadecimal digits ([a-f]) are not allowed.

3.2.15.3 Constraining facets

hexBinary has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.2.16 base64Binary

[Definition:] base64Binary represents Base64-encoded arbitrary binary data. The �value space� of base64Binary is the set of
finite-length sequences of binary octets. For base64Binary data the entire binary stream is encoded using the Base64 Content-
Transfer-Encoding defined in Section 6.8 of [RFC 2045].

3.2.16.1 Constraining facets

base64Binary has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.2.17 anyURI

[Definition:] anyURI represents a Uniform Resource Identifier Reference (URI). An anyURI value can be absolute or relative, and
may have an optional fragment identifier (i.e., it may be a URI Reference). This type should be used to specify the intention that the
value fulfills the role of a URI as defined by [RFC 2396], as amended by [RFC 2732].

The mapping from anyURI values to URIs is as defined in Section 5.4 Locator Attribute of [XML Linking Language] (see also
Section 8 Character Encoding in URI References of [Character Model]). This means that a wide range of internationalized resource
identifiers can be specified when an anyURI is called for, and still be understood as URIs per [RFC 2396], as amended by [RFC
2732], where appropriate to identify resources.

NOTE: Each URI scheme imposes specialized syntax rules for URIs in that scheme, including restrictions on the
syntax of allowed fragement identifiers. Because it is impractical for processors to check that a value is a context-
appropriate URI reference, this specification follows the lead of [RFC 2396] (as amended by [RFC 2732]) in this
matter: such rules and restrictions are not part of type validity and are not checked by �minimally conforming�
processors. Thus in practice the above definition imposes only very modest obligations on �minimally conforming�
processors.

3.2.17.1 Lexical representation

The �lexical space� of anyURI is finite-length character sequences which, when the algorithm defined in Section 5.4 of [XML
Linking Language] is applied to them, result in strings which are legal URIs according to [RFC 2396], as amended by [RFC 2732].

NOTE: Spaces are, in principle, allowed in the �lexical space� of anyURI, however, their use is highly discouraged
(unless they are encoded by %20).

3.2.17.2 Constraining facets

anyURI has the following �constraining facets�:

23a

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.2.18 QName

[Definition:] QName represents XML qualified names. The �value space� of QName is the set of tuples {namespace name, local
part}, where namespace name is an anyURI and local part is an NCName. The �lexical space� of QName is the set of strings that
�match� the QName production of [Namespaces in XML].

NOTE: The mapping between literals in the �lexical space� and values in the �value space� of QName requires a
namespace declaration to be in scope for the context in which QName is used.

3.2.18.1 Constraining facets

QName has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.2.19 NOTATION

[Definition:] NOTATION represents the NOTATION attribute type from [XML 1.0 (Second Edition)]. The �value space� of
NOTATION is the set QNames. The �lexical space� of NOTATION is the set of all names of notations declared in the current
schema.

Schema Component Constraint: enumeration facet value required for NOTATION
It is an �error� for NOTATION to be used directly in a schema. Only datatypes that are �derived� from NOTATION by specifying a
value for �enumeration� can be used in a schema.

For compatibility (see Terminology (§1.4)) NOTATION should be used only on attributes.

3.2.19.1 Constraining facets

NOTATION has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3 Derived datatypes
3.3.1 normalizedString
3.3.2 token
3.3.3 language
3.3.4 NMTOKEN
3.3.5 NMTOKENS
3.3.6 Name
3.3.7 NCName
3.3.8 ID
3.3.9 IDREF

24a

3.3.10 IDREFS
3.3.11 ENTITY
3.3.12 ENTITIES
3.3.13 integer
3.3.14 nonPositiveInteger
3.3.15 negativeInteger
3.3.16 long
3.3.17 int
3.3.18 short
3.3.19 byte
3.3.20 nonNegativeInteger
3.3.21 unsignedLong
3.3.22 unsignedInt
3.3.23 unsignedShort
3.3.24 unsignedByte
3.3.25 positiveInteger

This section gives conceptual definitions for all �built-in� �derived� datatypes defined by this specification. The XML representation
used to define �derived� datatypes (whether �built-in� or �user-derived�) is given in section XML Representation of Simple Type
Definition Schema Components (§4.1.2) and the complete definitions of the �built-in� �derived� datatypes are provided in Appendix
A Schema for Datatype Definitions (normative) (§A).

3.3.1 normalizedString

[Definition:] normalizedString represents white space normalized strings. The �value space� of normalizedString is the set of
strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The �lexical space� of
normalizedString is the set of strings that do not contain the carriage return (#xD) nor tab (#x9) characters. The �base type� of
normalizedString is string.

3.3.1.1 Constraining facets

normalizedString has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.1.2 Derived datatypes

The following �built-in� datatypes are �derived� from normalizedString:

l token

3.3.2 token

[Definition:] token represents tokenized strings. The �value space� of token is the set of strings that do not contain the line feed
(#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more
spaces. The �lexical space� of token is the set of strings that do not contain the line feed (#xA) nor tab (#x9) characters, that have
no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The �base type� of token is
normalizedString.

3.3.2.1 Constraining facets

token has the following �constraining facets�:

l length
l minLength

25a

l maxLength
l pattern
l enumeration
l whiteSpace

3.3.2.2 Derived datatypes

The following �built-in� datatypes are �derived� from token:

l language
l NMTOKEN
l Name

3.3.3 language

[Definition:] language represents natural language identifiers as defined by [RFC 1766]. The �value space� of language is the set
of all strings that are valid language identifiers as defined in the language identification section of [XML 1.0 (Second Edition)]. The
�lexical space� of language is the set of all strings that are valid language identifiers as defined in the language identification
section of [XML 1.0 (Second Edition)]. The �base type� of language is token.

3.3.3.1 Constraining facets

language has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.4 NMTOKEN

[Definition:] NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 (Second Edition)]. The �value space� of
NMTOKEN is the set of tokens that �match� the Nmtoken production in [XML 1.0 (Second Edition)]. The �lexical space� of
NMTOKEN is the set of strings that �match� the Nmtoken production in [XML 1.0 (Second Edition)]. The �base type� of NMTOKEN
is token.

For compatibility (see Terminology (§1.4)) NMTOKEN should be used only on attributes.

3.3.4.1 Constraining facets

NMTOKEN has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.4.2 Derived datatypes

The following �built-in� datatypes are �derived� from NMTOKEN:

l NMTOKENS

3.3.5 NMTOKENS

26a

[Definition:] NMTOKENS represents the NMTOKENS attribute type from [XML 1.0 (Second Edition)]. The �value space� of
NMTOKENS is the set of finite, non-zero-length sequences of �NMTOKEN�s. The �lexical space� of NMTOKENS is the set of white
space separated lists of tokens, of which each token is in the �lexical space� of NMTOKEN. The �itemType� of NMTOKENS is
NMTOKEN.

For compatibility (see Terminology (§1.4)) NMTOKENS should be used only on attributes.

3.3.5.1 Constraining facets

NMTOKENS has the following �constraining facets�:

l length
l minLength
l maxLength
l enumeration
l whiteSpace

3.3.6 Name

[Definition:] Name represents XML Names. The �value space� of Name is the set of all strings which �match� the Name production
of [XML 1.0 (Second Edition)]. The �lexical space� of Name is the set of all strings which �match� the Name production of [XML 1.0
(Second Edition)]. The �base type� of Name is token.

3.3.6.1 Constraining facets

Name has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.6.2 Derived datatypes

The following �built-in� datatypes are �derived� from Name:

l NCName

3.3.7 NCName

[Definition:] NCName represents XML "non-colonized" Names. The �value space� of NCName is the set of all strings which
�match� the NCName production of [Namespaces in XML]. The �lexical space� of NCName is the set of all strings which �match�
the NCName production of [Namespaces in XML]. The �base type� of NCName is Name.

3.3.7.1 Constraining facets

NCName has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.7.2 Derived datatypes

27a

The following �built-in� datatypes are �derived� from NCName:

l ID
l IDREF
l ENTITY

3.3.8 ID

[Definition:] ID represents the ID attribute type from [XML 1.0 (Second Edition)]. The �value space� of ID is the set of all strings
that �match� the NCName production in [Namespaces in XML]. The �lexical space� of ID is the set of all strings that �match� the
NCName production in [Namespaces in XML]. The �base type� of ID is NCName.

For compatibility (see Terminology (§1.4)) ID should be used only on attributes.

3.3.8.1 Constraining facets

ID has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.9 IDREF

[Definition:] IDREF represents the IDREF attribute type from [XML 1.0 (Second Edition)]. The �value space� of IDREF is the set of
all strings that �match� the NCName production in [Namespaces in XML]. The �lexical space� of IDREF is the set of strings that
�match� the NCName production in [Namespaces in XML]. The �base type� of IDREF is NCName.

For compatibility (see Terminology (§1.4)) this datatype should be used only on attributes.

3.3.9.1 Constraining facets

IDREF has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.9.2 Derived datatypes

The following �built-in� datatypes are �derived� from IDREF:

l IDREFS

3.3.10 IDREFS

[Definition:] IDREFS represents the IDREFS attribute type from [XML 1.0 (Second Edition)]. The �value space� of IDREFS is the
set of finite, non-zero-length sequences of IDREFs. The �lexical space� of IDREFS is the set of white space separated lists of
tokens, of which each token is in the �lexical space� of IDREF. The �itemType� of IDREFS is IDREF.

For compatibility (see Terminology (§1.4)) IDREFS should be used only on attributes.

3.3.10.1 Constraining facets

28a

IDREFS has the following �constraining facets�:

l length
l minLength
l maxLength
l enumeration
l whiteSpace

3.3.11 ENTITY

[Definition:] ENTITY represents the ENTITY attribute type from [XML 1.0 (Second Edition)]. The �value space� of ENTITY is the
set of all strings that �match� the NCName production in [Namespaces in XML] and have been declared as an unparsed entity in a
document type definition. The �lexical space� of ENTITY is the set of all strings that �match� the NCName production in
[Namespaces in XML]. The �base type� of ENTITY is NCName.

NOTE: The �value space� of ENTITY is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) ENTITY should be used only on attributes.

3.3.11.1 Constraining facets

ENTITY has the following �constraining facets�:

l length
l minLength
l maxLength
l pattern
l enumeration
l whiteSpace

3.3.11.2 Derived datatypes

The following �built-in� datatypes are �derived� from ENTITY:

l ENTITIES

3.3.12 ENTITIES

[Definition:] ENTITIES represents the ENTITIES attribute type from [XML 1.0 (Second Edition)]. The �value space� of ENTITIES is
the set of finite, non-zero-length sequences of �ENTITY�s that have been declared as unparsed entities in a document type
definition. The �lexical space� of ENTITIES is the set of white space separated lists of tokens, of which each token is in the �lexical
space� of ENTITY. The �itemType� of ENTITIES is ENTITY.

NOTE: The �value space� of ENTITIES is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) ENTITIES should be used only on attributes.

3.3.12.1 Constraining facets

ENTITIES has the following �constraining facets�:

l length
l minLength
l maxLength
l enumeration
l whiteSpace

3.3.13 integer

29a

[Definition:] integer is �derived� from decimal by fixing the value of �fractionDigits� to be 0. This results in the standard
mathematical concept of the integer numbers. The �value space� of integer is the infinite set {...,-2,-1,0,1,2,...}. The �base type� of
integer is decimal.

3.3.13.1 Lexical representation

integer has a lexical representation consisting of a finite-length sequence of decimal digits (#x30-#x39) with an optional leading
sign. If the sign is omitted, "+" is assumed. For example: -1, 0, 12678967543233, +100000.

3.3.13.2 Canonical representation

The canonical representation for integer is defined by prohibiting certain options from the Lexical representation (§3.3.13.1).
Specifically, the preceding optional "+" sign is prohibited and leading zeroes are prohibited.

3.3.13.3 Constraining facets

integer has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.13.4 Derived datatypes

The following �built-in� datatypes are �derived� from integer:

l nonPositiveInteger
l long
l nonNegativeInteger

3.3.14 nonPositiveInteger

[Definition:] nonPositiveInteger is �derived� from integer by setting the value of �maxInclusive� to be 0. This results in the
standard mathematical concept of the non-positive integers. The �value space� of nonPositiveInteger is the infinite set {...,-2,-1,0}.
The �base type� of nonPositiveInteger is integer.

3.3.14.1 Lexical representation

nonPositiveInteger has a lexical representation consisting of a negative sign ("-") followed by a finite-length sequence of decimal
digits (#x30-#x39). If the sequence of digits consists of all zeros then the sign is optional. For example: -1, 0, -12678967543233, -
100000.

3.3.14.2 Canonical representation

The canonical representation for nonPositiveInteger is defined by prohibiting certain options from the Lexical representation
(§3.3.14.1). Specifically, the negative sign ("-") is required with the token "0" and leading zeroes are prohibited.

3.3.14.3 Constraining facets

nonPositiveInteger has the following �constraining facets�:

l totalDigits
l fractionDigits

30a

l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.14.4 Derived datatypes

The following �built-in� datatypes are �derived� from nonPositiveInteger:

l negativeInteger

3.3.15 negativeInteger

[Definition:] negativeInteger is �derived� from nonPositiveInteger by setting the value of �maxInclusive� to be -1. This results in
the standard mathematical concept of the negative integers. The �value space� of negativeInteger is the infinite set {...,-2,-1}. The
�base type� of negativeInteger is nonPositiveInteger.

3.3.15.1 Lexical representation

negativeInteger has a lexical representation consisting of a negative sign ("-") followed by a finite-length sequence of decimal
digits (#x30-#x39). For example: -1, -12678967543233, -100000.

3.3.15.2 Canonical representation

The canonical representation for negativeInteger is defined by prohibiting certain options from the Lexical representation
(§3.3.15.1). Specifically, leading zeroes are prohibited.

3.3.15.3 Constraining facets

negativeInteger has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.16 long

[Definition:] long is �derived� from integer by setting the value of �maxInclusive� to be 9223372036854775807 and �minInclusive�
to be -9223372036854775808. The �base type� of long is integer.

3.3.16.1 Lexical representation

long has a lexical representation consisting of an optional sign followed by a finite-length sequence of decimal digits (#x30-#x39). If
the sign is omitted, "+" is assumed. For example: -1, 0, 12678967543233, +100000.

3.3.16.2 Canonical representation

The canonical representation for long is defined by prohibiting certain options from the Lexical representation (§3.3.16.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

31a

3.3.16.3 Constraining facets

long has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.16.4 Derived datatypes

The following �built-in� datatypes are �derived� from long:

l int

3.3.17 int

[Definition:] int is �derived� from long by setting the value of �maxInclusive� to be 2147483647 and �minInclusive� to be -
2147483648. The �base type� of int is long.

3.3.17.1 Lexical representation

int has a lexical representation consisting of an optional sign followed by a finite-length sequence of decimal digits (#x30-#x39). If
the sign is omitted, "+" is assumed. For example: -1, 0, 126789675, +100000.

3.3.17.2 Canonical representation

The canonical representation for int is defined by prohibiting certain options from the Lexical representation (§3.3.17.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.3.17.3 Constraining facets

int has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.17.4 Derived datatypes

The following �built-in� datatypes are �derived� from int:

l short

3.3.18 short

[Definition:] short is �derived� from int by setting the value of �maxInclusive� to be 32767 and �minInclusive� to be -32768. The
�base type� of short is int.

32a

3.3.18.1 Lexical representation

short has a lexical representation consisting of an optional sign followed by a finite-length sequence of decimal digits (#x30-#x39).
If the sign is omitted, "+" is assumed. For example: -1, 0, 12678, +10000.

3.3.18.2 Canonical representation

The canonical representation for short is defined by prohibiting certain options from the Lexical representation (§3.3.18.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.3.18.3 Constraining facets

short has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.18.4 Derived datatypes

The following �built-in� datatypes are �derived� from short:

l byte

3.3.19 byte

[Definition:] byte is �derived� from short by setting the value of �maxInclusive� to be 127 and �minInclusive� to be -128. The �base
type� of byte is short.

3.3.19.1 Lexical representation

byte has a lexical representation consisting of an optional sign followed by a finite-length sequence of decimal digits (#x30-#x39). If
the sign is omitted, "+" is assumed. For example: -1, 0, 126, +100.

3.3.19.2 Canonical representation

The canonical representation for byte is defined by prohibiting certain options from the Lexical representation (§3.3.19.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.3.19.3 Constraining facets

byte has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

33a

3.3.20 nonNegativeInteger

[Definition:] nonNegativeInteger is �derived� from integer by setting the value of �minInclusive� to be 0. This results in the
standard mathematical concept of the non-negative integers. The �value space� of nonNegativeInteger is the infinite set {0,1,2,...}.
The �base type� of nonNegativeInteger is integer.

3.3.20.1 Lexical representation

nonNegativeInteger has a lexical representation consisting of an optional sign followed by a finite-length sequence of decimal
digits (#x30-#x39). If the sign is omitted, "+" is assumed. For example: 1, 0, 12678967543233, +100000.

3.3.20.2 Canonical representation

The canonical representation for nonNegativeInteger is defined by prohibiting certain options from the Lexical representation
(§3.3.20.1). Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.3.20.3 Constraining facets

nonNegativeInteger has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.20.4 Derived datatypes

The following �built-in� datatypes are �derived� from nonNegativeInteger:

l unsignedLong
l positiveInteger

3.3.21 unsignedLong

[Definition:] unsignedLong is �derived� from nonNegativeInteger by setting the value of �maxInclusive� to be
18446744073709551615. The �base type� of unsignedLong is nonNegativeInteger.

3.3.21.1 Lexical representation

unsignedLong has a lexical representation consisting of a finite-length sequence of decimal digits (#x30-#x39). For example: 0,
12678967543233, 100000.

3.3.21.2 Canonical representation

The canonical representation for unsignedLong is defined by prohibiting certain options from the Lexical representation
(§3.3.21.1). Specifically, leading zeroes are prohibited.

3.3.21.3 Constraining facets

unsignedLong has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern

34a

l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.21.4 Derived datatypes

The following �built-in� datatypes are �derived� from unsignedLong:

l unsignedInt

3.3.22 unsignedInt

[Definition:] unsignedInt is �derived� from unsignedLong by setting the value of �maxInclusive� to be 4294967295. The �base
type� of unsignedInt is unsignedLong.

3.3.22.1 Lexical representation

unsignedInt has a lexical representation consisting of a finite-length sequence of decimal digits (#x30-#x39). For example: 0,
1267896754, 100000.

3.3.22.2 Canonical representation

The canonical representation for unsignedInt is defined by prohibiting certain options from the Lexical representation (§3.3.22.1).
Specifically, leading zeroes are prohibited.

3.3.22.3 Constraining facets

unsignedInt has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.22.4 Derived datatypes

The following �built-in� datatypes are �derived� from unsignedInt:

l unsignedShort

3.3.23 unsignedShort

[Definition:] unsignedShort is �derived� from unsignedInt by setting the value of �maxInclusive� to be 65535. The �base type� of
unsignedShort is unsignedInt.

3.3.23.1 Lexical representation

unsignedShort has a lexical representation consisting of a finite-length sequence of decimal digits (#x30-#x39). For example: 0,
12678, 10000.

3.3.23.2 Canonical representation

35a

The canonical representation for unsignedShort is defined by prohibiting certain options from the Lexical representation
(§3.3.23.1). Specifically, the leading zeroes are prohibited.

3.3.23.3 Constraining facets

unsignedShort has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.23.4 Derived datatypes

The following �built-in� datatypes are �derived� from unsignedShort:

l unsignedByte

3.3.24 unsignedByte

[Definition:] unsignedByte is �derived� from unsignedShort by setting the value of �maxInclusive� to be 255. The �base type� of
unsignedByte is unsignedShort.

3.3.24.1 Lexical representation

unsignedByte has a lexical representation consisting of a finite-length sequence of decimal digits (#x30-#x39). For example: 0,
126, 100.

3.3.24.2 Canonical representation

The canonical representation for unsignedByte is defined by prohibiting certain options from the Lexical representation
(§3.3.24.1). Specifically, leading zeroes are prohibited.

3.3.24.3 Constraining facets

unsignedByte has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

3.3.25 positiveInteger

[Definition:] positiveInteger is �derived� from nonNegativeInteger by setting the value of �minInclusive� to be 1. This results in the
standard mathematical concept of the positive integer numbers. The �value space� of positiveInteger is the infinite set {1,2,...}.
The �base type� of positiveInteger is nonNegativeInteger.

3.3.25.1 Lexical representation

36a

positiveInteger has a lexical representation consisting of an optional positive sign ("+") followed by a finite-length sequence of
decimal digits (#x30-#x39). For example: 1, 12678967543233, +100000.

3.3.25.2 Canonical representation

The canonical representation for positiveInteger is defined by prohibiting certain options from the Lexical representation
(§3.3.25.1). Specifically, the optional "+" sign is prohibited and leading zeroes are prohibited.

3.3.25.3 Constraining facets

positiveInteger has the following �constraining facets�:

l totalDigits
l fractionDigits
l pattern
l whiteSpace
l enumeration
l maxInclusive
l maxExclusive
l minInclusive
l minExclusive

4 Datatype components

The following sections provide full details on the properties and significance of each kind of schema component involved in
datatype definitions. For each property, the kinds of values it is allowed to have is specified. Any property not identified as optional
is required to be present; optional properties which are not present have absent as their value. Any property identified as a having
a set, subset or �list� value may have an empty value unless this is explicitly ruled out: this is not the same as absent. Any property
value identified as a superset or a subset of some set may be equal to that set, unless a proper superset or subset is explicitly
called for.

For more information on the notion of datatype (schema) components, see Schema Component Details of [XML Schema Part 1:
Structures].

4.1 Simple Type Definition
4.1.1 The Simple Type Definition Schema Component
4.1.2 XML Representation of Simple Type Definition Schema Components
4.1.3 Constraints on XML Representation of Simple Type Definition
4.1.4 Simple Type Definition Validation Rules
4.1.5 Constraints on Simple Type Definition Schema Components
4.1.6 Simple Type Definition for anySimpleType

Simple Type definitions provide for:

l Establishing the �value space� and �lexical space� of a datatype, through the combined set of �constraining facet�s
specified in the definition;

l Attaching a unique name (actually a QName) to the �value space� and �lexical space�.

4.1.1 The Simple Type Definition Schema Component

The Simple Type Definition schema component has the following properties:

Schema Component: Simple Type Definition

{name}
Optional. An NCName as defined by [Namespaces in XML].

{target namespace}
Either absent or a namespace name, as defined in [Namespaces in XML].

{variety}

37a

One of {atomic, list, union}. Depending on the value of {variety}, further properties are defined as follows:
atomic

{primitive type definition}
A �built-in� �primitive� datatype definition (or the simple ur-type definition).

list
{item type definition}

An �atomic� or �union� simple type definition.

union
{member type definitions}

A non-empty sequence of simple type definitions.

{facets}
A possibly empty set of Facets (§2.4).

{fundamental facets}
A set of Fundamental facets (§2.4.1)

{base type definition}
If the datatype has been �derived� by �restriction� then the Simple Type Definition component from which it is
�derived�, otherwise the Simple Type Definition for anySimpleType (§4.1.6).

{final}
A subset of {restriction, list, union}.

{annotation}
Optional. An annotation.

Datatypes are identified by their {name} and {target namespace}. Except for anonymous datatypes (those with no {name}), datatype
definitions �must� be uniquely identified within a schema.

If {variety} is �atomic� then the �value space� of the datatype defined will be a subset of the �value space� of {base type definition}
(which is a subset of the �value space� of {primitive type definition}). If {variety} is �list� then the �value space� of the datatype defined
will be the set of finite-length sequence of values from the �value space� of {item type definition}. If {variety} is �union� then the �value
space� of the datatype defined will be the union of the �value space�s of each datatype in {member type definitions}.

If {variety} is �atomic� then the {variety} of {base type definition} must be �atomic�. If {variety} is �list� then the {variety} of {item type
definition} must be either �atomic� or �union�. If {variety} is �union� then {member type definitions} must be a list of datatype
definitions.

The value of {facets} consists of the set of �facet�s specified directly in the datatype definition unioned with the possibly empty set of
{facets} of {base type definition}.

The value of {fundamental facets} consists of the set of �fundamental facet�s and their values.

If {final} is the empty set then the type can be used in deriving other types; the explicit values restriction, list and union prevent further
derivations by �restriction�, �list� and �union� respectively.

4.1.2 XML Representation of Simple Type Definition Schema Components

The XML representation for a Simple Type Definition schema component is a <simpleType> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: simpleType Element Information Item

<simpleType
 final = (#all | (list | union | restriction))
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | list | union))
</simpleType>

Datatype Definition Schema Component

38a

Property Representation

{name} The actual value of the name [attribute], if present, otherwise null

{final} A set corresponding to the actual value of the final [attribute], if present, otherwise of the actual
value of the finalDefault [attribute] the ancestor schema element information item, if present,
otherwise the empty string, as follows:

the empty string
the empty set;

#all
{restriction, list, union};

otherwise
a set with members drawn from the set above, each being present or absent depending on
whether the string contains an equivalently named space-delimited substring.

NOTE: Although the finalDefault [attribute] of schema may include
values other than restriction, list or union, those values are ignored in the
determination of {final}

{target
namespace}

The actual value of the targetNamespace [attribute] of the parent schema element
information item.

{annotation} The annotation corresponding to the <annotation> element information item in the [children], if
present, otherwise null

A �derived� datatype can be �derived� from a �primitive� datatype or another �derived� datatype by one of three means: by restriction,
by list or by union.

4.1.2.1 Derivation by restriction

XML Representation Summary: restriction Element Information Item

<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?, (minExclusive | minInclusive | maxExclusive | maxInclusive
| totalDigits | fractionDigits | length | minLength | maxLength | enumeration | whiteSpace | pattern)
*))
</restriction>

Simple Type Definition Schema Component

Property Representation

{variety} The actual value of {variety} of {base type definition}

{facets} The union of the set of Facets (§2.4) components resolved to by the facet [children] merged with
{facets} from {base type definition}, subject to the Facet Restriction Valid constraints specified in
Facets (§2.4).

{base type
definition}

The Simple Type Definition component resolved to by the actual value of the base [attribute] or the
<simpleType> [children], whichever is present.

Example
An electronic commerce schema might define a datatype called Sku (the barcode number that appears on products) from the
�built-in� datatype string by supplying a value for the �pattern� facet.

<simpleType name='Sku'>
 <restriction base='string'>
 <pattern value='\d{3}-[A-Z]{2}'/>

39a

 </restriction>
</simpleType>

In this case, Sku is the name of the new �user-derived� datatype, string is its �base type� and �pattern� is the facet.

4.1.2.2 Derivation by list

XML Representation Summary: list Element Information Item

<list
 id = ID
 itemType = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?))
</list>

Simple Type Definition Schema Component

Property Representation

{variety} list

{item type
definition}

The Simple Type Definition component resolved to by the actual value of the itemType
[attribute] or the <simpleType> [children], whichever is present.

A �list� datatype must be �derived� from an �atomic� or a �union� datatype, known as the �itemType� of the �list� datatype. This yields a
datatype whose �value space� is composed of finite-length sequences of values from the �value space� of the �itemType� and whose
�lexical space� is composed of white space separated lists of literals of the �itemType�.

Example
A system might want to store lists of floating point values.

<simpleType name='listOfFloat'>
 <list itemType='float'/>
</simpleType>

In this case, listOfFloat is the name of the new �user-derived� datatype, float is its �itemType� and �list� is the derivation method.

As mentioned in List datatypes (§2.5.1.2), when a datatype is �derived� from a �list� datatype, the following �constraining facet�s can
be used:

l �length�
l �maxLength�
l �minLength�
l �enumeration�
l �pattern�
l �whiteSpace�

regardless of the �constraining facet�s that are applicable to the �atomic� datatype that serves as the �itemType� of the �list�.

For each of �length�, �maxLength� and �minLength�, the unit of length is measured in number of list items. The value of �whiteSpace�
is fixed to the value collapse.

4.1.2.3 Derivation by union

XML Representation Summary: union Element Information Item

<union
 id = ID

40a

 memberTypes = List of QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType*))
</union>

Simple Type Definition Schema Component

Property Representation

{variety} union

{member type
definitions}

The sequence of Simple Type Definition components resolved to by the items in the actual value of the
memberTypes [attribute], if any, in order, followed by the Simple Type Definition components
resolved to by the <simpleType> [children], if any, in order. If {variety} is union for any Simple Type
Definition components resolved to above, then the that Simple Type Definition is replaced by its
{member type definitions}.

A �union� datatype can be �derived� from one or more �atomic�, �list� or other �union� datatypes, known as the �memberTypes� of that
�union� datatype.

Example
As an example, taken from a typical display oriented text markup language, one might want to express font sizes as an integer
between 8 and 72, or with one of the tokens "small", "medium" or "large". The �union� type definition below would accomplish that.

<xsd:attribute name="size">
 <xsd:simpleType>
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="8"/>
 <xsd:maxInclusive value="72"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
</xsd:attribute>
<p>
A header
</p>
<p>
this is a test
</p>

As mentioned in Union datatypes (§2.5.1.3), when a datatype is �derived� from a �union� datatype, the only following �constraining
facet�s can be used:

l �pattern�
l �enumeration�

regardless of the �constraining facet�s that are applicable to the datatypes that participate in the �union�

4.1.3 Constraints on XML Representation of Simple Type Definition

Schema Representation Constraint: Single Facet Value

41a

Unless otherwise specifically allowed by this specification (Multiple patterns (§4.3.4.3) and Multiple enumerations (§4.3.5.3)) any
given �constraining facet� can only be specifed once within a single derivation step.

Schema Representation Constraint: itemType attribute or simpleType child
Either the itemType [attribute] or the <simpleType> [child] of the <list> element must be present, but not both.

Schema Representation Constraint: base attribute or simpleType child
Either the base [attribute] or the simpleType [child] of the <restriction> element must be present, but not both.

Schema Representation Constraint: memberTypes attribute or simpleType children
Either the memberTypes [attribute] of the <union> element must be non-empty or there must be at least one
simpleType [child].

4.1.4 Simple Type Definition Validation Rules

Validation Rule: Facet Valid
A value in a �value space� is facet-valid with respect to a �constraining facet� component if:
1 the value is facet-valid with respect to the particular �constraining facet� as specified below.

Validation Rule: Datatype Valid
A string is datatype-valid with respect to a datatype definition if:
1 it �match�es a literal in the �lexical space� of the datatype, determined as follows:

1.1 if �pattern� is a member of {facets}, then the string must be pattern valid (§4.3.4.4);
1.2 if �pattern� is not a member of {facets}, then

1.2.1 if {variety} is �atomic� then the string must �match� a literal in the �lexical space� of {base type definition}
1.2.2 if {variety} is �list� then the string must be a sequence of white space separated tokens, each of which �match�es a

literal in the �lexical space� of {item type definition}
1.2.3 if {variety} is �union� then the string must �match� a literal in the �lexical space� of at least one member of {member

type definitions}
2 the value denoted by the literal �match�ed in the previous step is a member of the �value space� of the datatype, as

determined by it being Facet Valid (§4.1.4) with respect to each member of {facets} (except for �pattern�).

4.1.5 Constraints on Simple Type Definition Schema Components

Schema Component Constraint: applicable facets
The �constraining facet�s which are allowed to be members of {facets} are dependent on {base type definition} as specified in the
the following table:

{base type
definition} applicable {facets}

If {variety} is list, then

[all datatypes] length, minLength, maxLength, pattern, enumeration, whiteSpace

If {variety} is union, then

[all datatypes] pattern, enumeration

else if {variety} is atomic, then

string length, minLength, maxLength, pattern, enumeration, whiteSpace

boolean pattern, whiteSpace

float pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

double pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

decimal totalDigits, fractionDigits, pattern, whiteSpace, enumeration, maxInclusive, maxExclusive, minInclusive,
minExclusive

duration pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

dateTime pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

time pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

date pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

gYearMonth pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

gYear pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

42a

Schema Component Constraint: list of atomic
If {variety} is �list�, then the {variety} of {item type definition} �must� be �atomic� or �union�.

Schema Component Constraint: no circular unions
If {variety} is �union�, then it is an �error� if {name} and {target namespace} �match� {name} and {target namespace} of any
member of {member type definitions}.

4.1.6 Simple Type Definition for anySimpleType

There is a simple type definition nearly equivalent to the simple version of the ur-type definition present in every schema by
definition. It has the following properties:

Schema Component: anySimpleType

{name}
anySimpleType

{target namespace}
http://www.w3.org/2001/XMLSchema

{basetype definition}
the ur-type definition

{final}
the empty set

{variety}
absent

4.2 Fundamental Facets
4.2.1 equal
4.2.2 ordered
4.2.3 bounded
4.2.4 cardinality
4.2.5 numeric

4.2.1 equal

Every �value space� supports the notion of equality, with the following rules:

l for any a and b in the �value space�, either a is equal to b, denoted a = b, or a is not equal to b, denoted a != b
l there is no pair a and b from the �value space� such that both a = b and a != b
l for all a in the �value space�, a = a
l for any a and b in the �value space�, a = b if and only if b = a
l for any a, b and c in the �value space�, if a = b and b = c, then a = c
l for any a and b in the �value space� if a = b, then a and b cannot be distinguished (i.e., equality is identity)

Note that a consequence of the above is that, given �value space� A and �value space� B where A and B are not related by
�restriction� or �union�, for every pair of values a from A and b from B, a != b.

On every datatype, the operation Equal is defined in terms of the equality property of the �value space�: for any values a, b drawn
from the �value space�, Equal(a,b) is true if a = b, and false otherwise.

gMonthDay pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

gDay pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

gMonth pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive

hexBinary length, minLength, maxLength, pattern, enumeration, whiteSpace

base64Binary length, minLength, maxLength, pattern, enumeration, whiteSpace

anyURI length, minLength, maxLength, pattern, enumeration, whiteSpace

QName length, minLength, maxLength, pattern, enumeration, whiteSpace

NOTATION length, minLength, maxLength, pattern, enumeration, whiteSpace

43a

NOTE: There is no schema component corresponding to the equal �fundamental facet�.

4.2.2 ordered

[Definition:] An order relation on a �value space� is a mathematical relation that imposes a �total order� or a �partial order� on the
members of the �value space�.

[Definition:] A �value space�, and hence a datatype, is said to be ordered if there exists an �order-relation� defined for that �value
space�.

[Definition:] A partial order is an �order-relation� that is irreflexive, asymmetric and transitive.

A �partial order� has the following properties:

l for no a in the �value space�, a < a (irreflexivity)
l for all a and b in the �value space�, a < b implies not(b < a) (asymmetry)
l for all a, b and c in the �value space�, a < b and b < c implies a < c (transitivity)

The notation a <> b is used to indicate the case when a != b and neither a < b nor b < a

[Definition:] A total order is an �partial order� such that for no a and b is it the case that a <> b.

A �total order� has all of the properties specified above for �partial order�, plus the following property:

l for all a and b in the �value space�, either a < b or b < a or a = b

NOTE: The fact that this specification does not define an �order-relation� for some datatype does not mean that
some other application cannot treat that datatype as being ordered by imposing its own order relation.

�ordered� provides for:

l indicating whether an �order-relation� is defined on a �value space�, and if so, whether that �order-relation� is a �partial
order� or a �total order�

4.2.2.1 The ordered Schema Component

Schema Component: ordered

{value}
One of {false, partial, total}.

{value} depends on {variety}, {facets} and {member type definitions} in the Simple Type Definition component in which a �ordered�
component appears as a member of {fundamental facets}.

When {variety} is �atomic�, {value} is inherited from {value} of {base type definition}. For all �primitive� types {value} is as specified in
the table in Fundamental Facets (§C.1).

When {variety} is �list�, {value} is false.

When {variety} is �union�, if {value} is true for every member of {member type definitions} and all members of {member type
definitions} share a common ancestor, then {value} is true; else {value} is false.

4.2.3 bounded

[Definition:] A value u in an �ordered� �value space� U is said to be an inclusive upper bound of a �value space� V (where V is a
subset of U) if for all v in V, u >= v.

44a

[Definition:] A value u in an �ordered� �value space� U is said to be an exclusive upper bound of a �value space� V (where V is a
subset of U) if for all v in V, u > v.

[Definition:] A value l in an �ordered� �value space� L is said to be an inclusive lower bound of a �value space� V (where V is a
subset of L) if for all v in V, l <= v.

[Definition:] A value l in an �ordered� �value space� L is said to be an exclusive lower bound of a �value space� V (where V is a
subset of L) if for all v in V, l < v.

[Definition:] A datatype is bounded if its �value space� has either an �inclusive upper bound� or an �exclusive upper bound� and
either an �inclusive lower bound� and an �exclusive lower bound�.

�bounded� provides for:

l indicating whether a �value space� is �bounded�

4.2.3.1 The bounded Schema Component

Schema Component: bounded

{value}
A boolean.

{value} depends on {variety}, {facets} and {member type definitions} in the Simple Type Definition component in which a �bounded�
component appears as a member of {fundamental facets}.

When {variety} is �atomic�, if one of �minInclusive� or �minExclusive� and one of �maxInclusive� or �maxExclusive� are among
{facets} , then {value} is true; else {value} is false.

When {variety} is �list�, if �length� or both of �minLength� and �maxLength� are among {facets}, then {value} is true; else {value} is
false.

When {variety} is �union�, if {value} is true for every member of {member type definitions} and all members of {member type
definitions} share a common ancestor, then {value} is true; else {value} is false.

4.2.4 cardinality

[Definition:] Every �value space� has associated with it the concept of cardinality. Some �value space�s are finite, some are
countably infinite while still others could conceivably be uncountably infinite (although no �value space� defined by this specification
is uncountable infinite). A datatype is said to have the cardinality of its �value space�.

It is sometimes useful to categorize �value space�s (and hence, datatypes) as to their cardinality. There are two significant cases:

l �value space�s that are finite
l �value space�s that are countably infinite

�cardinality� provides for:

l indicating whether the �cardinality� of a �value space� is finite or countably infinite

4.2.4.1 The cardinality Schema Component

Schema Component: cardinality

{value}
One of {finite, countably infinite}.

45a

{value} depends on {variety}, {facets} and {member type definitions} in the Simple Type Definition component in which a
�cardinality� component appears as a member of {fundamental facets}.

When {variety} is �atomic� and {value} of {base type definition} is finite, then {value} is finite.

When {variety} is �atomic� and {value} of {base type definition} is countably infinite and either of the following conditions are true,
then {value} is finite; else {value} is countably infinite:

1. one of �length�, �maxLength�, �totalDigits� is among {facets},
2. all of the following are true:

1. one of �minInclusive� or �minExclusive� is among {facets}
2. one of �maxInclusive� or �maxExclusive� is among {facets}
3. either of the following are true:

1. �fractionDigits� is among {facets}
2. {base type definition} is one of date, gYearMonth, gYear, gMonthDay, gDay or gMonth or any type

�derived� from them

When {variety} is �list�, if �length� or both of �minLength� and �maxLength� are among {facets}, then {value} is finite; else {value} is
countably infinite.

When {variety} is �union�, if {value} is finite for every member of {member type definitions}, then {value} is finite; else {value} is
countably infinite.

4.2.5 numeric

[Definition:] A datatype is said to be numeric if its values are conceptually quantities (in some mathematical number system).

[Definition:] A datatype whose values are not �numeric� is said to be non-numeric.

�numeric� provides for:

l indicating whether a �value space� is �numeric�

4.2.5.1 The numeric Schema Component

Schema Component: numeric

{value}
A boolean

{value} depends on {variety}, {facets}, {base type definition} and {member type definitions} in the Simple Type Definition component
in which a �cardinality� component appears as a member of {fundamental facets}.

When {variety} is �atomic�, {value} is inherited from {value} of {base type definition}. For all �primitive� types {value} is as specified in
the table in Fundamental Facets (§C.1).

When {variety} is �list�, {value} is false.

When {variety} is �union�, if {value} is true for every member of {member type definitions}, then {value} is true; else {value} is false.

4.3 Constraining Facets
4.3.1 length
4.3.2 minLength
4.3.3 maxLength
4.3.4 pattern
4.3.5 enumeration
4.3.6 whiteSpace
4.3.7 maxInclusive

46a

4.3.8 maxExclusive
4.3.9 minExclusive
4.3.10 minInclusive
4.3.11 totalDigits
4.3.12 fractionDigits

4.3.1 length

[Definition:] length is the number of units of length, where units of length varies depending on the type that is being �derived�
from. The value of length �must� be a nonNegativeInteger.

For string and datatypes �derived� from string, length is measured in units of characters as defined in [XML 1.0 (Second Edition)].
For anyURI, length is measured in units of characters (as for string). For hexBinary and base64Binary and datatypes �derived�
from them, length is measured in octets (8 bits) of binary data. For datatypes �derived� by �list�, length is measured in number of
list items.

NOTE: For string and datatypes �derived� from string, length will not always coincide with "string length" as
perceived by some users or with the number of storage units in some digital representation. Therefore, care
should be taken when specifying a value for length and in attempting to infer storage requirements from a given
value for length.

�length� provides for:

l Constraining a �value space� to values with a specific number of units of length, where units of length varies depending on
{base type definition}.

Example
The following is the definition of a �user-derived� datatype to represent product codes which must be exactly 8 characters in
length. By fixing the value of the length facet we ensure that types derived from productCode can change or set the values of
other facets, such as pattern, but cannot change the length.

<simpleType name='productCode'>
 <restriction base='string'>
 <length value='8' fixed='true'/>
 </restriction>
</simpleType>

4.3.1.1 The length Schema Component

Schema Component: length

{value}
A nonNegativeInteger.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for length other than
{value}.

4.3.1.2 XML Representation of length Schema Components

The XML representation for a length schema component is a <length> element information item. The correspondences between
the properties of the information item and properties of the component are as follows:

XML Representation Summary: length Element Information Item

47a

<length
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</length>

length Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if any.

4.3.1.3 length Validation Rules

Validation Rule: Length Valid
A value in a �value space� is facet-valid with respect to �length�, determined as follows:
1 if the {variety} is �atomic� then

1.1 if {primitive type definition} is string, then the length of the value, as measured in characters �must� be equal to {value};
1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value, as measured in octets of the binary

data, �must� be equal to {value};
2 if the {variety} is �list�, then the length of the value, as measured in list items, �must� be equal to {value}

4.3.1.4 Constraints on length Schema Components

Schema Component Constraint: length and minLength or maxLength
It is an �error� for both length and either of minLength or maxLength to be members of {facets}.

Schema Component Constraint: length valid restriction
It is an �error� if length is among the members of {facets} of {base type definition} and {value} is not equal to the {value} of the
parent length.

4.3.2 minLength

[Definition:] minLength is the minimum number of units of length, where units of length varies depending on the type that is being
�derived� from. The value of minLength �must� be a nonNegativeInteger.

For string and datatypes �derived� from string, minLength is measured in units of characters as defined in [XML 1.0 (Second
Edition)]. For hexBinary and base64Binary and datatypes �derived� from them, minLength is measured in octets (8 bits) of binary
data. For datatypes �derived� by �list�, minLength is measured in number of list items.

NOTE: For string and datatypes �derived� from string, minLength will not always coincide with "string length" as
perceived by some users or with the number of storage units in some digital representation. Therefore, care should
be taken when specifying a value for minLength and in attempting to infer storage requirements from a given value
for minLength.

�minLength� provides for:

l Constraining a �value space� to values with at least a specific number of units of length, where units of length varies
depending on {base type definition}.

Example
The following is the definition of a �user-derived� datatype which requires strings to have at least one character (i.e., the empty
string is not in the �value space� of this datatype).

48a

<simpleType name='non-empty-string'>
 <restriction base='string'>
 <minLength value='1'/>
 </restriction>
</simpleType>

4.3.2.1 The minLength Schema Component

Schema Component: minLength

{value}
A nonNegativeInteger.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for minLength other than
{value}.

4.3.2.2 XML Representation of minLength Schema Component

The XML representation for a minLength schema component is a <minLength> element information item. The correspondences
between the properties of the information item and properties of the component are as follows:

XML Representation Summary: minLength Element Information Item

<minLength
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</minLength>

minLength Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if any.

4.3.2.3 minLength Validation Rules

Validation Rule: minLength Valid
A value in a �value space� is facet-valid with respect to �minLength�, determined as follows:
1 if the {variety} is �atomic� then

1.1 if {primitive type definition} is string, then the length of the value, as measured in characters �must� be greater than or equal
to {value};

1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value, as measured in octets of the binary
data, �must� be greater than or equal to {value};

2 if the {variety} is �list�, then the length of the value, as measured in list items, �must� be greater than or equal to {value}

4.3.2.4 Constraints on minLength Schema Components

Schema Component Constraint: minLength <= maxLength

49a

If both minLength and maxLength are members of {facets}, then the {value} of minLength �must� be less than or equal to the
{value} of maxLength.

Schema Component Constraint: minLength valid restriction
It is an �error� if minLength is among the members of {facets} of {base type definition} and {value} is less than the {value} of the
parent minLength.

4.3.3 maxLength

[Definition:] maxLength is the maximum number of units of length, where units of length varies depending on the type that is
being �derived� from. The value of maxLength �must� be a nonNegativeInteger.

For string and datatypes �derived� from string, maxLength is measured in units of characters as defined in [XML 1.0 (Second
Edition)]. For hexBinary and base64Binary and datatypes �derived� from them, maxLength is measured in octets (8 bits) of binary
data. For datatypes �derived� by �list�, maxLength is measured in number of list items.

NOTE: For string and datatypes �derived� from string, maxLength will not always coincide with "string length" as
perceived by some users or with the number of storage units in some digital representation. Therefore, care
should be taken when specifying a value for maxLength and in attempting to infer storage requirements from a
given value for maxLength.

�maxLength� provides for:

l Constraining a �value space� to values with at most a specific number of units of length, where units of length varies
depending on {base type definition}.

Example

The following is the definition of a �user-derived� datatype which might be used to accept form input with an upper limit to the
number of characters that are acceptable.

<simpleType name='form-input'>
 <restriction base='string'>
 <maxLength value='50'/>
 </restriction>
</simpleType>

4.3.3.1 The maxLength Schema Component

Schema Component: maxLength

{value}
A nonNegativeInteger.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for maxLength other than
{value}.

4.3.3.2 XML Representation of maxLength Schema Components

The XML representation for a maxLength schema component is a <maxLength> element information item. The correspondences
between the properties of the information item and properties of the component are as follows:

XML Representation Summary: maxLength Element Information Item

50a

<maxLength
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</maxLength>

maxLength Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if any.

4.3.3.3 maxLength Validation Rules

Validation Rule: maxLength Valid
A value in a �value space� is facet-valid with respect to �maxLength�, determined as follows:
1 if the {variety} is �atomic� then

1.1 if {primitive type definition} is string, then the length of the value, as measured in characters �must� be less than or equal to
{value};

1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value, as measured in octets of the binary
data, �must� be less than or equal to {value};

2 if the {variety} is �list�, then the length of the value, as measured in list items, �must� be less than or equal to {value}

4.3.3.4 Constraints on maxLength Schema Components

Schema Component Constraint: maxLength valid restriction
It is an �error� if maxLength is among the members of {facets} of {base type definition} and {value} is greater than the {value} of the
parent maxLength.

4.3.4 pattern

[Definition:] pattern is a constraint on the �value space� of a datatype which is achieved by constraining the �lexical space� to literals
literals which match a specific pattern. The value of pattern �must� be a �regular expression�.

�pattern� provides for:

l Constraining a �value space� to values that are denoted by literals which match a specific �regular expression�.

Example
The following is the definition of a �user-derived� datatype which is a better representation of postal codes in the United States, by
limiting strings to those which are matched by a specific �regular expression�.

<simpleType name='better-us-zipcode'>
 <restriction base='string'>
 <pattern value='[0-9]{5}(-[0-9]{4})?'/>
 </restriction>
</simpleType>

4.3.4.1 The pattern Schema Component

Schema Component: pattern

{value}

51a

A �regular expression�.
{annotation}

Optional. An annotation.

4.3.4.2 XML Representation of pattern Schema Components

The XML representation for a pattern schema component is a <pattern> element information item. The correspondences between
the properties of the information item and properties of the component are as follows:

XML Representation Summary: pattern Element Information Item

<pattern
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</pattern>

{value} �must� be a valid �regular expression�.

pattern Schema Component

Property Representation

{value} The actual value of the value [attribute]

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if any.

4.3.4.3 Constraints on XML Representation of pattern

Schema Representation Constraint: Multiple patterns
If multiple <pattern> element information items appear as [children] of a <simpleType>, the [value]s should be combined as if
they appeared in a single �regular expression� as separate �branch�es.

NOTE: It is a consequence of the schema representation constraint Multiple patterns (§4.3.4.3) and of the rules for
�restriction� that �pattern� facets specified on the same step in a type derivation are ORed together, while �pattern�
facets specified on different steps of a type derivation are ANDed together.

Thus, to impose two �pattern� constraints simultaneously, schema authors may either write a single �pattern� which
expresses the intersection of the two �pattern�s they wish to impose, or define each �pattern� on a separate type
derivation step.

4.3.4.4 pattern Validation Rules

Validation Rule: pattern valid
A literal in a �lexical space� is facet-valid with respect to �pattern� if:
1 the literal is among the set of character sequences denoted by the �regular expression� specified in {value}.

4.3.5 enumeration

[Definition:] enumeration constrains the �value space� to a specified set of values.

enumeration does not impose an order relation on the �value space� it creates; the value of the �ordered� property of the �derived�
datatype remains that of the datatype from which it is �derived�.

�enumeration� provides for:

l Constraining a �value space� to a specified set of values.

52a

Example

The following example is a datatype definition for a �user-derived� datatype which limits the values of dates to the three US
holidays enumerated. This datatype definition would appear in a schema authored by an "end-user" and shows how to define a
datatype by enumerating the values in its �value space�. The enumerated values must be type-valid literals for the �base type�.

<simpleType name='holidays'>
 <annotation>
 <documentation>some US holidays</documentation>
 </annotation>
 <restriction base='gMonthDay'>
 <enumeration value='--01-01'>
 <annotation>
 <documentation>New Year's day</documentation>
 </annotation>
 </enumeration>
 <enumeration value='--07-04'>
 <annotation>
 <documentation>4th of July</documentation>
 </annotation>
 </enumeration>
 <enumeration value='--12-25'>
 <annotation>
 <documentation>Christmas</documentation>
 </annotation>
 </enumeration>
 </restriction>
</simpleType>

4.3.5.1 The enumeration Schema Component

Schema Component: enumeration

{value}
A set of values from the �value space� of the {base type definition}.

{annotation}
Optional. An annotation.

4.3.5.2 XML Representation of enumeration Schema Components

The XML representation for an enumeration schema component is an <enumeration> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: enumeration Element Information Item

<enumeration
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</enumeration>

{value} �must� be in the �value space� of {base type definition}.

53a

enumeration Schema Component

Property Representation

{value} The actual value of the value [attribute]

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if any.

4.3.5.3 Constraints on XML Representation of enumeration

Schema Representation Constraint: Multiple enumerations
If multiple <enumeration> element information items appear as [children] of a <simpleType> the {value} of the enumeration
component should be the set of all such [value]s.

4.3.5.4 enumeration Validation Rules

Validation Rule: enumeration valid
A value in a �value space� is facet-valid with respect to �enumeration� if the value is one of the values specified in {value}

4.3.5.5 Constraints on enumeration Schema Components

Schema Component Constraint: enumeration valid restriction
It is an �error� if any member of {value} is not in the �value space� of {base type definition}.

4.3.6 whiteSpace

[Definition:] whiteSpace constrains the �value space� of types �derived� from string such that the various behaviors specified in
Attribute Value Normalization in [XML 1.0 (Second Edition)] are realized. The value of whiteSpace must be one of {preserve,
replace, collapse}.

preserve
No normalization is done, the value is not changed (this is the behavior required by [XML 1.0 (Second Edition)] for element
content)

replace
All occurrences of #x9 (tab), #xA (line feed) and #xD (carriage return) are replaced with #x20 (space)

collapse
After the processing implied by replace, contiguous sequences of #x20's are collapsed to a single #x20, and leading and
trailing #x20's are removed.

NOTE: The notation #xA used here (and elsewhere in this specification) represents the Universal Character Set
(UCS) code point hexadecimal A (line feed), which is denoted by U+000A. This notation is to be distinguished
from
, which is the XML character reference to that same UCS code point.

whiteSpace is applicable to all �atomic� and �list� datatypes. For all �atomic� datatypes other than string (and types �derived� by
�restriction� from it) the value of whiteSpace is collapse and cannot be changed by a schema author; for string the value of
whiteSpace is preserve; for any type �derived� by �restriction� from string the value of whiteSpace can be any of the three legal
values. For all datatypes �derived� by �list� the value of whiteSpace is collapse and cannot be changed by a schema author. For
all datatypes �derived� by �union� whiteSpace does not apply directly; however, the normalization behavior of �union� types is
controlled by the value of whiteSpace on that one of the �memberTypes� against which the �union� is successfully validated.

NOTE: For more information on whiteSpace, see the discussion on white space normalization in Schema
Component Details in [XML Schema Part 1: Structures].

�whiteSpace� provides for:

l Constraining a �value space� according to the white space normalization rules.

Example
The following example is the datatype definition for the token �built-in� �derived� datatype.

54a

<simpleType name='token'>
 <restriction base='normalizedString'>
 <whiteSpace value='collapse'/>
 </restriction>
</simpleType>

4.3.6.1 The whiteSpace Schema Component

Schema Component: whiteSpace

{value}
One of {preserve, replace, collapse}.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for whiteSpace other than
{value}.

4.3.6.2 XML Representation of whiteSpace Schema Components

The XML representation for a whiteSpace schema component is a <whiteSpace> element information item. The correspondences
between the properties of the information item and properties of the component are as follows:

XML Representation Summary: whiteSpace Element Information Item

<whiteSpace
 fixed = boolean : false
 id = ID
 value = (collapse | preserve | replace)
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</whiteSpace>

whiteSpace Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if any.

4.3.6.3 whiteSpace Validation Rules

NOTE: There are no �Validation Rule�s associated �whiteSpace�. For more information, see the discussion on white
space normalization in Schema Component Details in [XML Schema Part 1: Structures].

4.3.6.4 Constraints on whiteSpace Schema Components

Schema Component Constraint: whiteSpace valid restriction
It is an �error� if whiteSpace is among the members of {facets} of {base type definition} and any of the following conditions is true:
1 {value} is replace or preserve and the {value} of the parent whiteSpace is collapse
2 {value} is preserve and the {value} of the parent whiteSpace is replace

4.3.7 maxInclusive

55a

[Definition:] maxInclusive is the �inclusive upper bound� of the �value space� for a datatype with the �ordered� property. The value
of maxInclusive �must� be in the �value space� of the �base type�.

�maxInclusive� provides for:

l Constraining a �value space� to values with a specific �inclusive upper bound�.

Example
The following is the definition of a �user-derived� datatype which limits values to integers less than or equal to 100, using
�maxInclusive�.

<simpleType name='one-hundred-or-less'>
 <restriction base='integer'>
 <maxInclusive value='100'/>
 </restriction>
</simpleType>

4.3.7.1 The maxInclusive Schema Component

Schema Component: maxInclusive

{value}
A value from the �value space� of the {base type definition}.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for maxInclusive other than
{value}.

4.3.7.2 XML Representation of maxInclusive Schema Components

The XML representation for a maxInclusive schema component is a <maxInclusive> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: maxInclusive Element Information Item

<maxInclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</maxInclusive>

{value} �must� be in the �value space� of {base type definition}.

maxInclusive Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false, if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if
any.

56a

4.3.7.3 maxInclusive Validation Rules

Validation Rule: maxInclusive Valid
A value in an �ordered� �value space� is facet-valid with respect to �maxInclusive�, determined as follows:
1 if the �numeric� property in {fundamental facets} is true, then the value �must� be numerically less than or equal to {value};
2 if the �numeric� property in {fundamental facets} is false (i.e., {base type definition} is one of the date and time related

datatypes), then the value �must� be chronologically less than or equal to {value};

4.3.7.4 Constraints on maxInclusive Schema Components

Schema Component Constraint: minInclusive <= maxInclusive
It is an �error� for the value specified for �minInclusive� to be greater than the value specified for �maxInclusive� for the same
datatype.

Schema Component Constraint: maxInclusive valid restriction
It is an �error� if any of the following conditions is true:
1 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater than the {value} of the parent

maxInclusive
2 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than or equal to the {value} of

the parent maxExclusive
3 minInclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of the parent

minInclusive
4 minExclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of the

parent minExclusive

4.3.8 maxExclusive

[Definition:] maxExclusive is the �exclusive upper bound� of the �value space� for a datatype with the �ordered� property. The
value of maxExclusive �must� be in the �value space� of the �base type�.

�maxExclusive� provides for:

l Constraining a �value space� to values with a specific �exclusive upper bound�.

Example
The following is the definition of a �user-derived� datatype which limits values to integers less than or equal to 100, using
�maxExclusive�.

<simpleType name='less-than-one-hundred-and-one'>
 <restriction base='integer'>
 <maxExclusive value='101'/>
 </restriction>
</simpleType>

Note that the �value space� of this datatype is identical to the previous one (named 'one-hundred-or-less').

4.3.8.1 The maxExclusive Schema Component

Schema Component: maxExclusive

{value}
A value from the �value space� of the {base type definition}.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for maxExclusive other
than {value}.

57a

4.3.8.2 XML Representation of maxExclusive Schema Components

The XML representation for a maxExclusive schema component is a <maxExclusive> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: maxExclusive Element Information Item

<maxExclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</maxExclusive>

{value} �must� be in the �value space� of {base type definition}.

maxExclusive Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if
any.

4.3.8.3 maxExclusive Validation Rules

Validation Rule: maxExclusive Valid
A value in an �ordered� �value space� is facet-valid with respect to �maxExclusive�, determined as follows:
1 if the �numeric� property in {fundamental facets} is true, then the value �must� be numerically less than {value};
2 if the �numeric� property in {fundamental facets} is false (i.e., {base type definition} is one of the date and time related

datatypes), then the value �must� be chronologically less than {value};

4.3.8.4 Constraints on maxExclusive Schema Components

Schema Component Constraint: maxInclusive and maxExclusive
It is an �error� for both �maxInclusive� and �maxExclusive� to be specified in the same derivation step of a datatype definition.

Schema Component Constraint: minExclusive <= maxExclusive
It is an �error� for the value specified for �minExclusive� to be greater than the value specified for �maxExclusive� for the same
datatype.

Schema Component Constraint: maxExclusive valid restriction
It is an �error� if any of the following conditions is true:
1 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than the {value} of the parent

maxExclusive
2 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater than the {value} of the parent

maxInclusive
3 minInclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of the

parent minInclusive
4 minExclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of the

parent minExclusive

4.3.9 minExclusive

[Definition:] minExclusive is the �exclusive lower bound� of the �value space� for a datatype with the �ordered� property. The
value of minExclusive �must� be in the �value space� of the �base type�.

�minExclusive� provides for:

58a

l Constraining a �value space� to values with a specific �exclusive lower bound�.

Example

The following is the definition of a �user-derived� datatype which limits values to integers greater than or equal to 100, using
�minExclusive�.

<simpleType name='more-than-ninety-nine'>
 <restriction base='integer'>
 <minExclusive value='99'/>
 </restriction>
</simpleType>

Note that the �value space� of this datatype is identical to the previous one (named 'one-hundred-or-more').

4.3.9.1 The minExclusive Schema Component

Schema Component: minExclusive

{value}
A value from the �value space� of the {base type definition}.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for minExclusive other than
{value}.

4.3.9.2 XML Representation of minExclusive Schema Components

The XML representation for a minExclusive schema component is a <minExclusive> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: minExclusive Element Information Item

<minExclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</minExclusive>

{value} �must� be in the �value space� of {base type definition}.

minExclusive Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if
any.

4.3.9.3 minExclusive Validation Rules

Validation Rule: minExclusive Valid

59a

A value in an �ordered� �value space� is facet-valid with respect to �minExclusive� if:
1 if the �numeric� property in {fundamental facets} is true, then the value �must� be numerically greater than {value};
2 if the �numeric� property in {fundamental facets} is false (i.e., {base type definition} is one of the date and time related

datatypes), then the value �must� be chronologically greater than {value};

4.3.9.4 Constraints on minExclusive Schema Components

Schema Component Constraint: minInclusive and minExclusive
It is an �error� for both �minInclusive� and �minExclusive� to be specified for the same datatype.

Schema Component Constraint: minExclusive < maxInclusive
It is an �error� for the value specified for �minExclusive� to be greater than or equal to the value specified for �maxInclusive� for
the same datatype.

Schema Component Constraint: minExclusive valid restriction
It is an �error� if any of the following conditions is true:
1 minExclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of the parent

minExclusive
2 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater the {value} of the parent

maxInclusive
3 minInclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of the parent

minInclusive
4 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than or equal to the {value} of

the parent maxExclusive

4.3.10 minInclusive

[Definition:] minInclusive is the �inclusive lower bound� of the �value space� for a datatype with the �ordered� property. The value
of minInclusive �must� be in the �value space� of the �base type�.

�minInclusive� provides for:

l Constraining a �value space� to values with a specific �inclusive lower bound�.

Example
The following is the definition of a �user-derived� datatype which limits values to integers greater than or equal to 100, using
�minInclusive�.

<simpleType name='one-hundred-or-more'>
 <restriction base='integer'>
 <minInclusive value='100'/>
 </restriction>
</simpleType>

4.3.10.1 The minInclusive Schema Component

Schema Component: minInclusive

{value}
A value from the �value space� of the {base type definition}.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for minInclusive other than
{value}.

4.3.10.2 XML Representation of minInclusive Schema Components

60a

The XML representation for a minInclusive schema component is a <minInclusive> element information item. The correspondences
between the properties of the information item and properties of the component are as follows:

XML Representation Summary: minInclusive Element Information Item

<minInclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</minInclusive>

{value} �must� be in the �value space� of {base type definition}.

minInclusive Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if
any.

4.3.10.3 minInclusive Validation Rules

Validation Rule: minInclusive Valid
A value in an �ordered� �value space� is facet-valid with respect to �minInclusive� if:
1 if the �numeric� property in {fundamental facets} is true, then the value �must� be numerically greater than or equal to {value};
2 if the �numeric� property in {fundamental facets} is false (i.e., {base type definition} is one of the date and time related

datatypes), then the value �must� be chronologically greater than or equal to {value};

4.3.10.4 Constraints on minInclusive Schema Components

Schema Component Constraint: minInclusive < maxExclusive
It is an �error� for the value specified for �minInclusive� to be greater than or equal to the value specified for �maxExclusive� for
the same datatype.

Schema Component Constraint: minInclusive valid restriction
It is an �error� if any of the following conditions is true:
1 minInclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of the parent

minInclusive
2 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater the {value} of the parent

maxInclusive
3 minExclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of the

parent minExclusive
4 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than or equal to the {value} of

the parent maxExclusive

4.3.11 totalDigits

[Definition:] totalDigits is the maximum number of digits in values of datatypes �derived� from decimal. The value of
totalDigits �must� be a positiveInteger.

�totalDigits� provides for:

l Constraining a �value space� to values with a specific maximum number of decimal digits (#x30-#x39).

Example

61a

The following is the definition of a �user-derived� datatype which could be used to represent monetary amounts, such as in a
financial management application which does not have figures of $1M or more and only allows whole cents. This definition would
appear in a schema authored by an "end-user" and shows how to define a datatype by specifying facet values which constrain the
range of the �base type� in a manner specific to the �base type� (different than specifying max/min values as before).

<simpleType name='amount'>
 <restriction base='decimal'>
 <totalDigits value='8'/>
 <fractionDigits value='2' fixed='true'/>
 </restriction>
</simpleType>

4.3.11.1 The totalDigits Schema Component

Schema Component: totalDigits

{value}
A positiveInteger.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for totalDigits other than
{value}.

4.3.11.2 XML Representation of totalDigits Schema Components

The XML representation for a totalDigits schema component is a <totalDigits> element information item. The correspondences
between the properties of the information item and properties of the component are as follows:

XML Representation Summary: totalDigits Element Information Item

<totalDigits
 fixed = boolean : false
 id = ID
 value = positiveInteger
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</totalDigits>

totalDigits Schema Component

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if any.

4.3.11.3 totalDigits Validation Rules

Validation Rule: totalDigits Valid
A value in a �value space� is facet-valid with respect to �totalDigits� if:
1 the number of decimal digits in the value is less than or equal to {value};

4.3.11.4 Constraints on totalDigits Schema Components

62a

Schema Component Constraint: totalDigits valid restriction
It is an �error� if totalDigits is among the members of {facets} of {base type definition} and {value} is greater than the {value} of
the parent totalDigits

4.3.12 fractionDigits

[Definition:] fractionDigits is the maximum number of digits in the fractional part of values of datatypes �derived� from decimal.
The value of fractionDigits �must� be a nonNegativeInteger .

�fractionDigits� provides for:

l Constraining a �value space� to values with a specific maximum number of decimal digits in the fractional part.

Example
The following is the definition of a �user-derived� datatype which could be used to represent the magnitude of a person's body
temperature on the Celsius scale. This definition would appear in a schema authored by an "end-user" and shows how to define
a datatype by specifying facet values which constrain the range of the �base type�.

<simpleType name='celsiusBodyTemp'>
 <restriction base='decimal'>
 <totalDigits value='4'/>
 <fractionDigits value='1'/>
 <minInclusive value='36.4'/>
 <maxInclusive value='40.5'/>
 </restriction>
</simpleType>

4.3.12.1 The fractionDigits Schema Component

Schema Component: fractionDigits

{value}
A nonNegativeInteger.

{fixed}
A boolean.

{annotation}
Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for fractionDigits other than
{value}.

4.3.12.2 XML Representation of fractionDigits Schema Components

The XML representation for a fractionDigits schema component is a <fractionDigits> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: fractionDigits Element Information Item

<fractionDigits
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
</fractionDigits>

fractionDigits Schema Component

63a

Property Representation

{value} The actual value of the value [attribute]

{fixed} The actual value of the fixed [attribute], if present, otherwise false

{annotation} The annotations corresponding to all the <annotation> element information items in the [children], if
any.

4.3.12.3 fractionDigits Validation Rules

Validation Rule: fractionDigits Valid
A value in a �value space� is facet-valid with respect to �fractionDigits� if:
1 the number of decimal digits in the fractional part of the value is less than or equal to {value};

4.3.12.4 Constraints on fractionDigits Schema Components

Schema Component Constraint: fractionDigits less than or equal to totalDigits
It is an �error� for �fractionDigits� to be greater than �totalDigits�.

5 Conformance

This specification describes two levels of conformance for datatype processors. The first is required of all processors. Support for the
other will depend on the application environments for which the processor is intended.

[Definition:] Minimally conforming processors �must� completely and correctly implement the �Constraint on Schemas� and
�Validation Rule� .

[Definition:] Processors which accept schemas in the form of XML documents as described in XML Representation of Simple Type
Definition Schema Components (§4.1.2) (and other relevant portions of Datatype components (§4)) are additionally said to provide
conformance to the XML Representation of Schemas, and �must�, when processing schema documents, completely and correctly
correctly implement all �Schema Representation Constraint�s in this specification, and �must� adhere exactly to the specifications in
XML Representation of Simple Type Definition Schema Components (§4.1.2) (and other relevant portions of Datatype components
(§4)) for mapping the contents of such documents to schema components for use in validation.

NOTE: By separating the conformance requirements relating to the concrete syntax of XML schema documents, this
this specification admits processors which validate using schemas stored in optimized binary representations,
dynamically created schemas represented as programming language data structures, or implementations in which
particular schemas are compiled into executable code such as C or Java. Such processors can be said to be
�minimally conforming� but not necessarily in �conformance to the XML Representation of Schemas�.

A Schema for Datatype Definitions (normative)

<?xml version='1.0'?>
<!-- XML Schema schema for XML Schemas: Part 2: Datatypes -->
<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN"
 "XMLSchema.dtd" [

<!--
 keep this schema XML1.0 DTD valid
 -->
 <!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'>

 <!ELEMENT hfp:hasFacet EMPTY>
 <!ATTLIST hfp:hasFacet
 name NMTOKEN #REQUIRED>

 <!ELEMENT hfp:hasProperty EMPTY>

64a

 <!ATTLIST hfp:hasProperty
 name NMTOKEN #REQUIRED
 value CDATA #REQUIRED>
<!--
 Make sure that processors that do not read the external
 subset will know about the various IDs we declare
 -->
 <!ATTLIST xs:simpleType id ID #IMPLIED>
 <!ATTLIST xs:maxExclusive id ID #IMPLIED>
 <!ATTLIST xs:minExclusive id ID #IMPLIED>
 <!ATTLIST xs:maxInclusive id ID #IMPLIED>
 <!ATTLIST xs:minInclusive id ID #IMPLIED>
 <!ATTLIST xs:totalDigits id ID #IMPLIED>
 <!ATTLIST xs:fractionDigits id ID #IMPLIED>
 <!ATTLIST xs:length id ID #IMPLIED>
 <!ATTLIST xs:minLength id ID #IMPLIED>
 <!ATTLIST xs:maxLength id ID #IMPLIED>
 <!ATTLIST xs:enumeration id ID #IMPLIED>
 <!ATTLIST xs:pattern id ID #IMPLIED>
 <!ATTLIST xs:appinfo id ID #IMPLIED>
 <!ATTLIST xs:documentation id ID #IMPLIED>
 <!ATTLIST xs:list id ID #IMPLIED>
 <!ATTLIST xs:union id ID #IMPLIED>
]>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 version="Id: datatypes.xsd,v 1.52 2001/04/27 11:49:21 ht Exp "
 xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
 elementFormDefault="qualified"
 blockDefault="#all"
 xml:lang="en">

 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/datatypes">
 The schema corresponding to this document is normative,
 with respect to the syntactic constraints it expresses in the
 XML Schema language. The documentation (within <documentation>
 elements) below, is not normative, but rather highlights important
 aspects of the W3C Recommendation of which this is a part
 </xs:documentation>
 </xs:annotation>

 <xs:annotation>
 <xs:documentation>
 First the built-in primitive datatypes. These definitions are for
 information only, the real built-in definitions are magic. Note in
 particular that there is no type named 'anySimpleType'. The
 primitives should really be derived from no type at all, and
 anySimpleType should be derived as a union of all the primitives.
 </xs:documentation>

 <xs:documentation>
 For each built-in datatype in this schema (both primitive and
 derived) can be uniquely addressed via a URI constructed
 as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype

 For example, to address the int datatype, the URI is:

 http://www.w3.org/2001/XMLSchema#int

 Additionally, each facet definition element can be uniquely
 addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace

65a

 2) the fragment identifier is the name of the facet

 For example, to address the maxInclusive facet, the URI is:

 http://www.w3.org/2001/XMLSchema#maxInclusive

 Additionally, each facet usage in a built-in datatype definition
 can be uniquely addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype, followed
 by a period (".") followed by the name of the facet

 For example, to address the usage of the maxInclusive facet in
 the definition of int, the URI is:

 http://www.w3.org/2001/XMLSchema#int.maxInclusive

 </xs:documentation>
 </xs:annotation>

 <xs:simpleType name="string" id="string">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#string"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="preserve" id="string.preserve"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="boolean" id="boolean">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#boolean"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="boolean.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="float" id="float">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>

66a

 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="total"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#float"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="float.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="double" id="double">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="total"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#double"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="double.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="decimal" id="decimal">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="totalDigits"/>
 <hfp:hasFacet name="fractionDigits"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="total"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#decimal"/>
 </xs:annotation>

67a

 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="decimal.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="duration" id="duration">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#duration"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="duration.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="dateTime" id="dateTime">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#dateTime"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="dateTime.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="time" id="time">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>

68a

 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#time"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="time.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="date" id="date">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#date"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="date.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="gYearMonth" id="gYearMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#gYearMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="gYearMonth.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

69a

 <xs:simpleType name="gYear" id="gYear">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#gYear"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="gYear.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="gMonthDay" id="gMonthDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#gMonthDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="gMonthDay.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="gDay" id="gDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>

70a

 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#gDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="gDay.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="gMonth" id="gMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#gMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="gMonth.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="hexBinary" id="hexBinary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#binary"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="hexBinary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="base64Binary" id="base64Binary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>

71a

 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#base64Binary"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="base64Binary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="anyURI" id="anyURI">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#anyURI"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="anyURI.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="QName" id="QName">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#QName"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="QName.whiteSpace"/>
 </xs:restriction>

72a

 </xs:simpleType>

 <xs:simpleType name="NOTATION" id="NOTATION">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#NOTATION"/>
 <xs:documentation>
 NOTATION cannot be used directly in a schema; rather a type
 must be derived from it by specifying at least one enumeration
 facet whose value is the name of a NOTATION declared in the
 schema.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="collapse" fixed="true"
 id="NOTATION.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:annotation>
 <xs:documentation>
 Now the derived primitive types
 </xs:documentation>
 </xs:annotation>

 <xs:simpleType name="normalizedString" id="normalizedString">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#normalizedString"/>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="replace"
 id="normalizedString.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="token" id="token">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#token"/>
 </xs:annotation>
 <xs:restriction base="xs:normalizedString">
 <xs:whiteSpace value="collapse" id="token.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="language" id="language">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#language"/>
 </xs:annotation>
 <xs:restriction base="xs:token">

73a

 <xs:pattern
 value="([a-zA-Z]{2}|[iI]-[a-zA-Z]+|[xX]-[a-zA-Z]{1,8})(-[a-zA-Z]{1,8})*"
 id="language.pattern">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/REC-xml#NT-LanguageID">
 pattern specifies the content of section 2.12 of XML 1.0e2
 and RFC 1766
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="IDREFS" id="IDREFS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#IDREFS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:IDREF"/>
 </xs:simpleType>
 <xs:minLength value="1" id="IDREFS.minLength"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ENTITIES" id="ENTITIES">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#ENTITIES"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:ENTITY"/>
 </xs:simpleType>
 <xs:minLength value="1" id="ENTITIES.minLength"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="NMTOKEN" id="NMTOKEN">

74a

 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#NMTOKEN"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\c+" id="NMTOKEN.pattern">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/REC-xml#NT-Nmtoken">
 pattern matches production 7 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="NMTOKENS" id="NMTOKENS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality"
 value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#NMTOKENS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:NMTOKEN"/>
 </xs:simpleType>
 <xs:minLength value="1" id="NMTOKENS.minLength"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="Name" id="Name">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#Name"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\i\c*" id="Name.pattern">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/REC-xml#NT-Name">
 pattern matches production 5 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="NCName" id="NCName">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#NCName"/>
 </xs:annotation>
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][\c-[:]]*" id="NCName.pattern">

75a

 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/REC-xml-names/#NT-NCName">
 pattern matches production 4 from the Namespaces in XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ID" id="ID">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#ID"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>

 <xs:simpleType name="IDREF" id="IDREF">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#IDREF"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>

 <xs:simpleType name="ENTITY" id="ENTITY">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#ENTITY"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>

 <xs:simpleType name="integer" id="integer">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#integer"/>
 </xs:annotation>
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="0" fixed="true" id="integer.fractionDigits"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="nonPositiveInteger" id="nonPositiveInteger">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#nonPositiveInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:maxInclusive value="0" id="nonPositiveInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="negativeInteger" id="negativeInteger">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#negativeInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:nonPositiveInteger">
 <xs:maxInclusive value="-1" id="negativeInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="long" id="long">

76a

 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#long"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-9223372036854775808" id="long.minInclusive"/>
 <xs:maxInclusive value="9223372036854775807" id="long.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="int" id="int">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#int"/>
 </xs:annotation>
 <xs:restriction base="xs:long">
 <xs:minInclusive value="-2147483648" id="int.minInclusive"/>
 <xs:maxInclusive value="2147483647" id="int.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="short" id="short">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#short"/>
 </xs:annotation>
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-32768" id="short.minInclusive"/>
 <xs:maxInclusive value="32767" id="short.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="byte" id="byte">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#byte"/>
 </xs:annotation>
 <xs:restriction base="xs:short">
 <xs:minInclusive value="-128" id="byte.minInclusive"/>
 <xs:maxInclusive value="127" id="byte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="nonNegativeInteger" id="nonNegativeInteger">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#nonNegativeInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0" id="nonNegativeInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="unsignedLong" id="unsignedLong">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#unsignedLong"/>

77a

 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:maxInclusive value="18446744073709551615"
 id="unsignedLong.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="unsignedInt" id="unsignedInt">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#unsignedInt"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedLong">
 <xs:maxInclusive value="4294967295"
 id="unsignedInt.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="unsignedShort" id="unsignedShort">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#unsignedShort"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedInt">
 <xs:maxInclusive value="65535"
 id="unsignedShort.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="unsignedByte" id="unsignedBtype">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#unsignedByte"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedShort">
 <xs:maxInclusive value="255" id="unsignedByte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="positiveInteger" id="positiveInteger">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#positiveInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="1" id="positiveInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="derivationControl">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="substitution"/>
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:group name="simpleDerivation">
 <xs:choice>

78a

 <xs:element ref="xs:restriction"/>
 <xs:element ref="xs:list"/>
 <xs:element ref="xs:union"/>
 </xs:choice>
 </xs:group>

 <xs:simpleType name="simpleDerivationSet">
 <xs:annotation>
 <xs:documentation>
 #all or (possibly empty) subset of {restriction, union, list}
 </xs:documentation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 <xs:enumeration value="restriction"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>

 <xs:complexType name="simpleType" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:simpleDerivation"/>
 <xs:attribute name="final" type="xs:simpleDerivationSet"/>
 <xs:attribute name="name" type="xs:NCName">
 <xs:annotation>
 <xs:documentation>
 Can be restricted to required or forbidden
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="topLevelSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" use="required"
 type="xs:NCName">
 <xs:annotation>
 <xs:documentation>
 Required at the top level
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

79a

 <xs:complexType name="localSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" use="prohibited">
 <xs:annotation>
 <xs:documentation>
 Forbidden when nested
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="final" use="prohibited"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="simpleType" type="xs:topLevelSimpleType" id="simpleType">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-simpleType"/>
 </xs:annotation>
 </xs:element>

 <xs:group name="facets">
 <xs:annotation>
 <xs:documentation>
 We should use a substitution group for facets, but
 that's ruled out because it would allow users to
 add their own, which we're not ready for yet.
 </xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element ref="xs:minExclusive"/>
 <xs:element ref="xs:minInclusive"/>
 <xs:element ref="xs:maxExclusive"/>
 <xs:element ref="xs:maxInclusive"/>
 <xs:element ref="xs:totalDigits"/>
 <xs:element ref="xs:fractionDigits"/>
 <xs:element ref="xs:length"/>
 <xs:element ref="xs:minLength"/>
 <xs:element ref="xs:maxLength"/>
 <xs:element ref="xs:enumeration"/>
 <xs:element ref="xs:whiteSpace"/>
 <xs:element ref="xs:pattern"/>
 </xs:choice>
 </xs:group>

 <xs:group name="simpleRestrictionModel">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType" minOccurs="0"/>
 <xs:group ref="xs:facets" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:group>

 <xs:element name="restriction" id="restriction">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-restriction">
 base attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>

80a

 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:simpleRestrictionModel"/>
 <xs:attribute name="base" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="list" id="list">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-list">
 itemType attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="itemType" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="union" id="union">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-union">
 memberTypes attribute must be non-empty or there must be
 at least one simpleType child
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="memberTypes" use="optional">
 <xs:simpleType>
 <xs:list itemType="xs:QName"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="facet">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="value" use="required"/>
 <xs:attribute name="fixed" type="xs:boolean" use="optional"
 default="false"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

81a

 <xs:complexType name="noFixedFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="fixed" use="prohibited"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="minExclusive" id="minExclusive" type="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-minExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minInclusive" id="minInclusive" type="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-minInclusive"/>
 </xs:annotation>
 </xs:element>

 <xs:element name="maxExclusive" id="maxExclusive" type="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-maxExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxInclusive" id="maxInclusive" type="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-maxInclusive"/>
 </xs:annotation>
 </xs:element>

 <xs:complexType name="numFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:nonNegativeInteger" use="required"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="totalDigits" id="totalDigits">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-totalDigits"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:numFacet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:positiveInteger" use="required"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

82a

 <xs:element name="fractionDigits" id="fractionDigits" type="xs:numFacet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-fractionDigits"/>
 </xs:annotation>
 </xs:element>

 <xs:element name="length" id="length" type="xs:numFacet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-length"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minLength" id="minLength" type="xs:numFacet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-minLength"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxLength" id="maxLength" type="xs:numFacet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-maxLength"/>
 </xs:annotation>
 </xs:element>

 <xs:element name="enumeration" id="enumeration" type="xs:noFixedFacet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-enumeration"/>
 </xs:annotation>
 </xs:element>

 <xs:element name="whiteSpace" id="whiteSpace">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-whiteSpace"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="preserve"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="collapse"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="pattern" id="pattern" type="xs:noFixedFacet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-pattern"/>
 </xs:annotation>
 </xs:element>

83a

</xs:schema>

B DTD for Datatype Definitions (non-normative)

<!--
 DTD for XML Schemas: Part 2: Datatypes
 Id: datatypes.dtd,v 1.23 2001/03/16 17:36:30 ht Exp
 Note this DTD is NOT normative, or even definitive.
 -->

<!--
 This DTD cannot be used on its own, it is intended
 only for incorporation in XMLSchema.dtd, q.v.
 -->

<!-- Define all the element names, with optional prefix -->
<!ENTITY % simpleType "%p;simpleType">
<!ENTITY % restriction "%p;restriction">
<!ENTITY % list "%p;list">
<!ENTITY % union "%p;union">
<!ENTITY % maxExclusive "%p;maxExclusive">
<!ENTITY % minExclusive "%p;minExclusive">
<!ENTITY % maxInclusive "%p;maxInclusive">
<!ENTITY % minInclusive "%p;minInclusive">
<!ENTITY % totalDigits "%p;totalDigits">
<!ENTITY % fractionDigits "%p;fractionDigits">
<!ENTITY % length "%p;length">
<!ENTITY % minLength "%p;minLength">
<!ENTITY % maxLength "%p;maxLength">
<!ENTITY % enumeration "%p;enumeration">
<!ENTITY % whiteSpace "%p;whiteSpace">
<!ENTITY % pattern "%p;pattern">

<!--
 Customisation entities for the ATTLIST of each element
 type. Define one of these if your schema takes advantage
 of the anyAttribute='##other' in the schema for schemas
 -->

<!ENTITY % simpleTypeAttrs "">
<!ENTITY % restrictionAttrs "">
<!ENTITY % listAttrs "">
<!ENTITY % unionAttrs "">
<!ENTITY % maxExclusiveAttrs "">
<!ENTITY % minExclusiveAttrs "">
<!ENTITY % maxInclusiveAttrs "">
<!ENTITY % minInclusiveAttrs "">
<!ENTITY % totalDigitsAttrs "">
<!ENTITY % fractionDigitsAttrs "">
<!ENTITY % lengthAttrs "">
<!ENTITY % minLengthAttrs "">
<!ENTITY % maxLengthAttrs "">
<!ENTITY % enumerationAttrs "">
<!ENTITY % whiteSpaceAttrs "">
<!ENTITY % patternAttrs "">

<!-- Define some entities for informative use as attribute
 types -->
<!ENTITY % URIref "CDATA">
<!ENTITY % XPathExpr "CDATA">
<!ENTITY % QName "NMTOKEN">
<!ENTITY % QNames "NMTOKENS">
<!ENTITY % NCName "NMTOKEN">
<!ENTITY % nonNegativeInteger "NMTOKEN">

84a

<!ENTITY % boolean "(true|false)">
<!ENTITY % simpleDerivationSet "CDATA">
<!--
 #all or space-separated list drawn from derivationChoice
 -->

<!--
 Note that the use of 'facet' below is less restrictive
 than is really intended: There should in fact be no
 more than one of each of minInclusive, minExclusive,
 maxInclusive, maxExclusive, totalDigits, fractionDigits,
 length, maxLength, minLength within datatype,
 and the min- and max- variants of Inclusive and Exclusive
 are mutually exclusive. On the other hand, pattern and
 enumeration may repeat.
 -->
<!ENTITY % minBound "(%minInclusive; | %minExclusive;)">
<!ENTITY % maxBound "(%maxInclusive; | %maxExclusive;)">
<!ENTITY % bounds "%minBound; | %maxBound;">
<!ENTITY % numeric "%totalDigits; | %fractionDigits;">
<!ENTITY % ordered "%bounds; | %numeric;">
<!ENTITY % unordered
 "%pattern; | %enumeration; | %whiteSpace; | %length; |
 %maxLength; | %minLength;">
<!ENTITY % facet "%ordered; | %unordered;">
<!ENTITY % facetAttr
 "value CDATA #REQUIRED
 id ID #IMPLIED">
<!ENTITY % fixedAttr "fixed %boolean; #IMPLIED">
<!ENTITY % facetModel "(%annotation;)?">
<!ELEMENT %simpleType;
 ((%annotation;)?, (%restriction; | %list; | %union;))>
<!ATTLIST %simpleType;
 name %NCName; #IMPLIED
 final %simpleDerivationSet; #IMPLIED
 id ID #IMPLIED
 %simpleTypeAttrs;>
<!-- name is required at top level -->
<!ELEMENT %restriction; ((%annotation;)?,
 (%restriction1; |
 ((%simpleType;)?,(%facet;)*)),
 (%attrDecls;))>
<!ATTLIST %restriction;
 base %QName; #IMPLIED
 id ID #IMPLIED
 %restrictionAttrs;>
<!--
 base and simpleType child are mutually exclusive,
 one is required.

 restriction is shared between simpleType and
 simpleContent and complexContent (in XMLSchema.xsd).
 restriction1 is for the latter cases, when this
 is restricting a complex type, as is attrDecls.
 -->
<!ELEMENT %list; ((%annotation;)?,(%simpleType;)?)>
<!ATTLIST %list;
 itemType %QName; #IMPLIED
 id ID #IMPLIED
 %listAttrs;>
<!--
 itemType and simpleType child are mutually exclusive,
 one is required
 -->
<!ELEMENT %union; ((%annotation;)?,(%simpleType;)*)>

85a

<!ATTLIST %union;
 id ID #IMPLIED
 memberTypes %QNames; #IMPLIED
 %unionAttrs;>
<!--
 At least one item in memberTypes or one simpleType
 child is required
 -->

<!ELEMENT %maxExclusive; %facetModel;>
<!ATTLIST %maxExclusive;
 %facetAttr;
 %fixedAttr;
 %maxExclusiveAttrs;>
<!ELEMENT %minExclusive; %facetModel;>
<!ATTLIST %minExclusive;
 %facetAttr;
 %fixedAttr;
 %minExclusiveAttrs;>

<!ELEMENT %maxInclusive; %facetModel;>
<!ATTLIST %maxInclusive;
 %facetAttr;
 %fixedAttr;
 %maxInclusiveAttrs;>
<!ELEMENT %minInclusive; %facetModel;>
<!ATTLIST %minInclusive;
 %facetAttr;
 %fixedAttr;
 %minInclusiveAttrs;>

<!ELEMENT %totalDigits; %facetModel;>
<!ATTLIST %totalDigits;
 %facetAttr;
 %fixedAttr;
 %totalDigitsAttrs;>
<!ELEMENT %fractionDigits; %facetModel;>
<!ATTLIST %fractionDigits;
 %facetAttr;
 %fixedAttr;
 %fractionDigitsAttrs;>

<!ELEMENT %length; %facetModel;>
<!ATTLIST %length;
 %facetAttr;
 %fixedAttr;
 %lengthAttrs;>
<!ELEMENT %minLength; %facetModel;>
<!ATTLIST %minLength;
 %facetAttr;
 %fixedAttr;
 %minLengthAttrs;>
<!ELEMENT %maxLength; %facetModel;>
<!ATTLIST %maxLength;
 %facetAttr;
 %fixedAttr;
 %maxLengthAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %enumeration; %facetModel;>
<!ATTLIST %enumeration;
 %facetAttr;
 %enumerationAttrs;>

<!ELEMENT %whiteSpace; %facetModel;>

86a

<!ATTLIST %whiteSpace;
 %facetAttr;
 %fixedAttr;
 %whiteSpaceAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %pattern; %facetModel;>
<!ATTLIST %pattern;
 %facetAttr;
 %patternAttrs;>

C Datatypes and Facets

C.1 Fundamental Facets

The following table shows the values of the fundamental facets for each �built-in� datatype.

 Datatype ordered bounded cardinality numeric

primitive

string false false countably infinite false

boolean false false finite false

float total true finite true

double total true finite true

decimal total false countably infinite true

duration partial false countably infinite false

dateTime partial false countably infinite false

time partial false countably infinite false

date partial false countably infinite false

gYearMonth partial false countably infinite false

gYear partial false countably infinite false

gMonthDay partial false countably infinite false

gDay partial false countably infinite false

gMonth partial false countably infinite false

hexBinary false false countably infinite false

base64Binary false false countably infinite false

anyURI false false countably infinite false

QName false false countably infinite false

NOTATION false false countably infinite false

normalizedString false false countably infinite false

token false false countably infinite false

language false false countably infinite false

IDREFS false false countably infinite false

ENTITIES false false countably infinite false

NMTOKEN false false countably infinite false

NMTOKENS false false countably infinite false

Name false false countably infinite false

NCName false false countably infinite false

ID false false countably infinite false

IDREF false false countably infinite false

ENTITY false false countably infinite false

87a

D ISO 8601 Date and Time Formats

D.1 ISO 8601 Conventions

The �primitive� datatypes duration, dateTime, time, date, gYearMonth, gMonthDay, gDay, gMonth and gYear use lexical formats
inspired by [ISO 8601]. This appendix provides more detail on the ISO formats and discusses some deviations from them for the
datatypes defined in this specification.

[ISO 8601] "specifies the representation of dates in the proleptic Gregorian calendar and times and representations of periods of
time". The proleptic Gregorian calendar includes dates prior to 1582 (the year it came into use as an ecclesiastical calendar). It
should be pointed out that the datatypes described in this specification do not cover all the types of data covered by [ISO 8601], nor
do they support all the lexical representations for those types of data.

[ISO 8601] lexical formats are described using "pictures" in which characters are used in place of digits. For the primitive datatypes
dateTime, time, date, gYearMonth, gMonthDay, gDay, gMonth and gYear. these characters have the following meanings:

l C -- represents a digit used in the thousands and hundreds components, the "century" component, of the time element
"year". Legal values are from 0 to 9.

l Y -- represents a digit used in the tens and units components of the time element "year". Legal values are from 0 to 9.
l M -- represents a digit used in the time element "month". The two digits in a MM format can have values from 1 to 12.
l D -- represents a digit used in the time element "day". The two digits in a DD format can have values from 1 to 28 if the

month value equals 2, 1 to 29 if the month value equals 2 and the year is a leap year, 1 to 30 if the month value equals 4,
6, 9 or 11, and 1 to 31 if the month value equals 1, 3, 5, 7, 8, 10 or 12.

l h -- represents a digit used in the time element "hour". The two digits in a hh format can have values from 0 to 23.
l m -- represents a digit used in the time element "minute". The two digits in a mm format can have values from 0 to 59.
l s -- represents a digit used in the time element "second". The two digits in a ss format can have values from 0 to 60. In the

formats described in this specification the whole number of seconds �may� be followed by decimal seconds to an arbitrary
level of precision. This is represented in the picture by "ss.sss". A value of 60 or more is allowed only in the case of leap
seconds.

Strictly speaking, a value of 60 or more is not sensible unless the month and day could represent March 31, June 30,
September 30, or December 31 in UTC. Because the leap second is added or subtracted as the last second of the day in
UTC time, the long (or short) minute could occur at other times in local time. In cases where the leap second is used with
an inappropriate month and day it, and any fractional seconds, should considered as added or subtracted from the
following minute.

For all the information items indicated by the above characters, leading zeros are required where indicated.

In addition to the above, certain characters are used as designators and appear as themselves in lexical formats.

l T -- is used as time designator to indicate the start of the representation of the time of day in dateTime.
l Z -- is used as time-zone designator, immediately (without a space) following a data element expressing the time of day in

derived

integer total false countably infinite true

nonPositiveInteger total false countably infinite true

negativeInteger total false countably infinite true

long total true finite true

int total true finite true

short total true finite true

byte total true finite true

nonNegativeInteger total false countably infinite true

unsignedLong total true finite true

unsignedInt total true finite true

unsignedShort total true finite true

unsignedByte total true finite true

positiveInteger total false countably infinite true

88a

Coordinated Universal Time (UTC) in dateTime, time, date, gYearMonth, gMonthDay, gDay, gMonth, and gYear.

In the lexical format for duration the following characters are also used as designators and appear as themselves in lexical formats:

l P -- is used as the time duration designator, preceding a data element representing a given duration of time.
l Y -- follows the number of years in a time duration.
l M -- follows the number of months or minutes in a time duration.
l D -- follows the number of days in a time duration.
l H -- follows the number of hours in a time duration.
l S -- follows the number of seconds in a time duration.

The values of the Year, Month, Day, Hour and Minutes components are not restricted but allow an arbitrary integer. Similarly, the
value of the Seconds component allows an arbitrary decimal. Thus, the lexical format for duration and datatypes derived from it
does not follow the alternative format of § 5.5.3.2.1 of [ISO 8601].

D.2 Truncated and Reduced Formats

[ISO 8601] supports a variety of "truncated" formats in which some of the characters on the left of specific formats, for example, the
century, can be omitted. Truncated formats are, in general, not permitted for the datatypes defined in this specification with three
exceptions. The time datatype uses a truncated format for dateTime which represents an instant of time that recurs every day.
Similarly, the gMonthDay and gDay datatypes use left-truncated formats for date. The datatype gMonth uses a right and left
truncated format for date.

[ISO 8601] also supports a variety of "reduced" or right-truncated formats in which some of the characters to the right of specific
formats, such as the time specification, can be omitted. Right truncated formats are also, in general, not permitted for the datatypes
defined in this specification with the following exceptions: right-truncated representations of dateTime are used as lexical
representations for date, gMonth, gYear.

D.3 Deviations from ISO 8601 Formats
D.3.1 Sign Allowed
D.3.2 No Year Zero
D.3.3 More Than 9999 Years

D.3.1 Sign Allowed

An optional minus sign is allowed immediately preceding, without a space, the lexical representations for duration, dateTime, date,
gMonth, gYear.

D.3.2 No Year Zero

The year "0000" is an illegal year value.

D.3.3 More Than 9999 Years

To accommodate year values greater than 9999, more than four digits are allowed in the year representations of dateTime, date,
gYearMonth, and gYear. This follows [ISO 8601 Draft Revision].

E Adding durations to dateTimes

Given a dateTime S and a duration D, this appendix specifies how to compute a dateTime E where E is the end of the time period
with start S and duration D i.e. E = S + D. Such computations are used, for example, to determine whether a dateTime is within a
specific time period. This appendix also addresses the addition of durations to the datatypes date, gYearMonth, gYear, gDay and
gMonth, which can be viewed as a set of dateTimes. In such cases, the addition is made to the first or starting dateTime in the set.

This is a logical explanation of the process. Actual implementations are free to optimize as long as they produce the same results.
The calculation uses the notation S[year] to represent the year field of S, S[month] to represent the month field, and so on. It also
depends on the following functions:

l fQuotient(a, b) = the greatest integer less than or equal to a/b

89a

¡ fQuotient(-1,3) = -1
¡ fQuotient(0,3)...fQuotient(2,3) = 0
¡ fQuotient(3,3) = 1
¡ fQuotient(3.123,3) = 1

l modulo(a, b) = a - fQuotient(a,b)*b
¡ modulo(-1,3) = 2
¡ modulo(0,3)...modulo(2,3) = 0...2
¡ modulo(3,3) = 0
¡ modulo(3.123,3) = 0.123

l fQuotient(a, low, high) = fQuotient(a - low, high - low)
¡ fQuotient(0, 1, 13) = -1
¡ fQuotient(1, 1, 13) ... fQuotient(12, 1, 13) = 0
¡ fQuotient(13, 1, 13) = 1
¡ fQuotient(13.123, 1, 13) = 1

l modulo(a, low, high) = modulo(a - low, high - low) + low
¡ modulo(0, 1, 13) = 12
¡ modulo(1, 1, 13) ... modulo(12, 1, 13) = 1...12
¡ modulo(13, 1, 13) = 1
¡ modulo(13.123, 1, 13) = 1.123

l maximumDayInMonthFor(yearValue, monthValue) =
¡ M := modulo(monthValue, 1, 13)
¡ Y := yearValue + fQuotient(monthValue, 1, 13)
¡ Return a value based on M and Y:

E.1 Algorithm

Essentially, this calculation is equivalent to separating D into <year,month> and <day,hour,minute,second> fields. The
<year,month> is added to S. If the day is out of range, it is pinned to be within range. Thus April 31 turns into April 30. Then the
<day,hour,minute,second> is added. This latter addition can cause the year and month to change.

Leap seconds are handled by the computation by treating them as overflows. Essentially, a value of 60 seconds in S is treated as if
it were a duration of 60 seconds added to S (with a zero seconds field). All calculations thereafter use 60 seconds per minute.

Thus the addition of either PT1M or PT60S to any dateTime will always produce the same result. This is a special definition of
addition which is designed to match common practice, and -- most importantly -- be stable over time.

A definition that attempted to take leap-seconds into account would need to be constantly updated, and could not predict the
results of future implementation's additions. The decision to introduce a leap second in UTC is the responsibility of the
[International Earth Rotation Service (IERS)]. They make periodic announcements as to when leap seconds are to be added, but
this is not known more than a year in advance. For more information on leap seconds, see [U.S. Naval Observatory Time Service
Department].

The following is the precise specification. These steps must be followed in the same order. If a field in D is not specified, it is
treated as if it were zero. If a field in S is not specified, it is treated in the calculation as if it were the minimum allowed value in that
field, however, after the calculation is concluded, the corresponding field in E is removed (set to unspecified).

l Months (may be modified additionally below)
¡ temp := S[month] + D[month]
¡ E[month] := modulo(temp, 1, 13)
¡ carry := fQuotient(temp, 1, 13)

l Years (may be modified additionally below)
¡ E[year] := S[year] + D[year] + carry

l Zone
¡ E[zone] := S[zone]

l Seconds

31 M = January, March, May, July, August, October, or December

30 M = April, June, September, or November

29 M = February AND (modulo(Y, 400) = 0 OR (modulo(Y, 100) != 0) AND modulo(Y, 4) = 0)

28 Otherwise

90a

¡ temp := S[second] + D[second]
¡ E[second] := modulo(temp, 60)
¡ carry := fQuotient(temp, 60)

l Minutes
¡ temp := S[minute] + D[minute] + carry
¡ E[minute] := modulo(temp, 60)
¡ carry := fQuotient(temp, 60)

l Hours
¡ temp := S[hour] + D[hour] + carry
¡ E[hour] := modulo(temp, 24)
¡ carry := fQuotient(temp, 24)

l Days
¡ if S[day] > maximumDayInMonthFor(E[year], E[month])

n tempDays := maximumDayInMonthFor(E[year], E[month])
¡ else if S[day] < 1

n tempDays := 1
¡ else

n tempDays := S[day]
¡ E[day] := tempDays + D[day] + carry
¡ START LOOP

n IF E[day] < 1
n E[day] := E[day] + maximumDayInMonthFor(E[year], E[month] - 1)
n carry := -1

n ELSE IF E[day] > maximumDayInMonthFor(E[year], E[month])
n E[day] := E[day] - maximumDayInMonthFor(E[year], E[month])
n carry := 1

n ELSE EXIT LOOP
n temp := E[month] + carry
n E[month] := modulo(temp, 1, 13)
n E[year] := E[year] + fQuotient(temp, 1, 13)
n GOTO START LOOP

Examples:

E.2 Commutativity and Associativity

Time durations are added by simply adding each of their fields, respectively, without overflow.

The order of addition of durations to instants is significant. For example, there are cases where:

((dateTime + duration1) + duration2) != ((dateTime + duration2) + duration1)

Example:

(2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2001-04-30

(2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-05-01

F Regular Expressions

A �regular expression� R is a sequence of characters that denote a set of strings L(R). When used to constrain a �lexical space�,
a regular expression R asserts that only strings in L(R) are valid literals for values of that type.

dateTime duration result

2000-01-12T12:13:14Z P1Y3M5DT7H10M3.3S 2001-04-17T19:23:17.3Z

2000-01 -P3M 1999-10

2000-01-12 PT33H 2000-01-13

91a

[Definition:] A regular expression is composed from zero or more �branch�es, separated by | characters.

[Definition:] A branch consists of zero or more �piece�s, concatenated together.

[Definition:] A piece is an �atom�, possibly followed by a �quantifier�.

NOTE: The regular expression language in the Perl Programming Language [Perl] does not include a quantifier of
the form S{,m), since it is logically equivalent to S{0,m}. We have, therefore, left this logical possibility out of

Regular Expression

[1] regExp ::= branch ('|' branch)*

For all �branch�es S, and for all �regular expression�s T,
valid �regular expression�s R are: Denoting the set of strings L(R) containing:

(empty string) the set containing just the empty string

S all strings in L(S)

S|T all strings in L(S) and all strings in L(T)

Branch

[2] branch ::= piece*

For all �piece�s S, and for all �branch�es T, valid �branch�es
R are: Denoting the set of strings L(R) containing:

S all strings in L(S)

ST all strings st with s in L(S) and t in L(T)

Piece

[3] piece ::= atom quantifier?

For all �atom�s S and non-negative integers n, m such that
n <= m, valid �piece�s R are: Denoting the set of strings L(R) containing:

S all strings in L(S)

S? the empty string, and all strings in L(S).

S* All strings in L(S?) and all strings st with s in L(S*) and t in L(S).
(all concatenations of zero or more strings from L(S))

S+ All strings st with s in L(S) and t in L(S*). (all concatenations of
one or more strings from L(S))

S{n,m} All strings st with s in L(S) and t in L(S{n-1,m-1}). (All
sequences of at least n, and at most m, strings from L(S))

S{n} All strings in L(S{n,n}). (All sequences of exactly n strings from
L(S))

S{n,} All strings in L(S{n}S*) (All sequences of at least n, strings from
L(S))

S{0,m} All strings st with s in L(S?) and t in L(S{0,m-1}). (All
sequences of at most m, strings from L(S))

S{0,0} The set containing only the empty string

92a

the regular expression language defined by this specification. We welcome further input from implementors and
schema authors on this issue.

[Definition:] A quantifier is one of ?, *, +, {n,m} or {n,}, which have the meanings defined in the table above.

[Definition:] An atom is either a �normal character�, a �character class�, or a parenthesized �regular expression�.

[Definition:] A metacharacter is either ., \, ?, *, +, {, } (,), [or]. These characters have special meanings in �regular
expression�s, but can be escaped to form �atom�s that denote the sets of strings containing only themselves, i.e., an escaped
�metacharacter� behaves like a �normal character�.

[Definition:] A normal character is any XML character that is not a metacharacter. In �regular expression�s, a normal character is
an atom that denotes the singleton set of strings containing only itself.

Note that a �normal character� can be represented either as itself, or with a character reference.

F.1 Character Classes

[Definition:] A character class is an �atom� R that identifies a set of characters C(R). The set of strings L(R) denoted by a
character class R contains one single-character string "c" for each character c in C(R).

A character class is either a �character class escape� or a �character class expression�.

[Definition:] A character class expression is a �character group� surrounded by [and] characters. For all character groups G,

Quanitifer

[4] quantifier ::= [?*+] | ('{' quantity '}')

[5] quantity ::= quantRange | quantMin | QuantExact

[6] quantRange ::= QuantExact ',' QuantExact

[7] quantMin ::= QuantExact ','

[8] QuantExact ::= [0-9]+

Atom

[9] atom ::= Char | charClass | ('(' regExp ')')

For all �normal character�s c, �character class�es C, and
�regular expression�s S, valid �atom�s R are: Denoting the set of strings L(R) containing:

c the single string consisting only of c

C all strings in L(C)

(S) all strings in L(S)

Normal Character

[10] Char ::= [^.\?*+()|#x5B#x5D]

Character Class

[11] charClass ::= charClassEsc | charClassExpr

93a

[G] is a valid character class expression, identifying the set of characters C([G]) = C(G).

[Definition:] A character group is either a �positive character group�, a �negative character group�, or a �character class
subtraction�.

[Definition:] A positive character group consists of one or more �character range�s or �character class escape�s, concatenated
together. A positive character group identifies the set of characters containing all of the characters in all of the sets identified by
its constituent ranges or escapes.

[Definition:] A negative character group is a �positive character group� preceded by the ^ character. For all �positive character
group�s P, ^P is a valid negative character group, and C(^P) contains all XML characters that are not in C(P).

[Definition:] A character class subtraction is a �character class expression� subtracted from a �positive character group� or
�negative character group�, using the - character.

For any �positive character group� or �negative character group� G, and any �character class expression� C, G-C is a valid
�character class subtraction�, identifying the set of all characters in C(G) that are not also in C(C).

[Definition:] A character range R identifies a set of characters C(R) containing all XML characters with UCS code points in a
specified range.

Character Class Expression

[12] charClassExpr ::= '[' charGroup ']'

Character Group

[13] charGroup ::= posCharGroup | negCharGroup | charClassSub

Positive Character Group

[14] posCharGroup ::= (charRange | charClassEsc)+

For all �character range�s R, all �character class escape�s
E, and all �positive character group�s P, valid �positive

character group�s G are:
Identifying the set of characters C(G) containing:

R all characters in C(R).

E all characters in C(E).

RP all characters in C(R) and all characters in C(P).

EP all characters in C(E) and all characters in C(P).

Negative Character Group

[15] negCharGroup ::= '^' posCharGroup

Character Class Subtraction

[16] charClassSub ::= (posCharGroup | negCharGroup) '-'
charClassExpr

94a

A single XML character is a �character range� that identifies the set of characters containing only itself. All XML characters are valid
character ranges, except as follows:

l The [,], and \ characters are not valid character ranges;
l The ^ character is only valid at the beginning of a �positive character group� if it is part of a �negative character group�; and
l The - character is a valid character range only at the beginning or end of a �positive character group�.

A �character range� �may� also be written in the form s-e, identifying the set that contains all XML characters with UCS code points
greater than or equal to the code point of s, but not greater than the code point of e.

s-e is a valid character range iff:

l s is a �single character escape�, or an XML character;
l s is not \
l If s is the first character in a �character class expression�, then s is not ^
l e is a �single character escape�, or an XML character;
l e is not \ or [; and
l The code point of e is greater than or equal to the code point of s;

NOTE: The code point of a �single character escape� is the code point of the single character in the set of
characters that it identifies.

F.1.1 Character Class Escapes

[Definition:] A character class escape is a short sequence of characters that identifies predefined character class. The valid
character class escapes are the �single character escape�s, the �multi-character escape�s, and the �category escape�s (including
the �block escape�s).

[Definition:] A single character escape identifies a set containing a only one character -- usually because that character is
difficult or impossible to write directly into a �regular expression�.

Character Range

[17] charRange ::= seRange | XmlCharRef | XmlCharIncDash

[18] seRange ::= charOrEsc '-' charOrEsc

[19] XmlCharRef ::= ('&#' [0-9]+ ';') | (' &#x' [0-9a-fA-F]+
';')

[20] charOrEsc ::= XmlChar | SingleCharEsc

[21] XmlChar ::= [^\#x2D#x5B#x5D]

[22] XmlCharIncDash ::= [^\#x5B#x5D]

Character Class Escape

[23] charClassEsc ::= (SingleCharEsc | MultiCharEsc | catEsc |
complEsc)

Single Character Escape

[24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]
#x2D#x5B#x5D#x5E]

The valid �single character escape�s are: Identifying the set of characters C(R) containing:

95a

[Definition:] [Unicode Database] specifies a number of possible values for the "General Category" property and provides mappings
mappings from code points to specific character properties. The set containing all characters that have property X, can be identified
with a category escape \p{X}. The complement of this set is specified with the category escape \P{X}. ([\P{X}] =
[^\p{X}]).

NOTE: [Unicode Database] is subject to future revision. For example, the mapping from code points to character
properties might be updated. All �minimally conforming� processors �must� support the character properties defined
defined in the version of [Unicode Database] that is current at the time this specification became a W3C
Recommendation. However, implementors are encouraged to support the character properties defined in any
future version.

The following table specifies the recognized values of the "General Category" property.

\n the newline character (#xA)

\r the return character (#xD)

\t the tab character (#x9)

\\ \

\| |

\. .

\- -

\^ ^

\? ?

* *

\+ +

\{ {

\} }

\((

\))

\[[

\]]

Category Escape

[25] catEsc ::= '\p{' charProp '}'

[26] complEsc ::= '\P{' charProp '}'

[27] charProp ::= IsCategory | IsBlock

Category Property Meaning

Letters

L All Letters

Lu uppercase

Ll lowercase

Lt titlecase

Lm modifier

Lo other

Marks
M All Marks

Mn nonspacing

96a

NOTE: The properties mentioned above exclude the Cs property. The Cs property identifies "surrogate"

Mc spacing combining

Me enclosing

Numbers

N All Numbers

Nd decimal digit

Nl letter

No other

Punctuation

P All Punctuation

Pc connector

Pd dash

Ps open

Pe close

Pi initial quote (may behave like Ps or Pe depending on usage)

Pf final quote (may behave like Ps or Pe depending on usage)

Po other

Separators

Z All Separators

Zs space

Zl line

Zp paragraph

Symbols

S All Symbols

Sm math

Sc currency

Sk modifier

So other

Other

C All Others

Cc control

Cf format

Co private use

Cn not assigned

Categories

[28] IsCategory ::= Letters | Marks | Numbers | Punctuation |
Separators | Symbols | Others

[29] Letters ::= 'L' [ultmo]?

[30] Marks ::= 'M' [nce]?

[31] Numbers ::= 'N' [dlo]?

[32] Punctuation ::= 'P' [cdseifo]?

[33] Separators ::= 'Z' [slp]?
[34] Symbols ::= 'S' [mcko]?

[35] Others ::= 'C' [cfon]?

97a

characters, which do not occur at the level of the "character abstraction" that XML instance documents operate on.

[Definition:] [Unicode Database] groups code points into a number of blocks such as Basic Latin (i.e., ASCII), Latin-1 Supplement,
Hangul Jamo, CJK Compatibility, etc. The set containing all characters that have block name X (with all white space stripped out),
can be identified with a block escape \p{IsX}. The complement of this set is specified with the block escape \P{IsX}.
([\P{IsX}] = [^\p{IsX}]).

The following table specifies the recognized block names (for more information, see the "Blocks.txt" file in [Unicode Database]).

Block Escape

[36] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+

Start Code End Code Block Name Start Code End Code Block Name

#x0000 #x007F BasicLatin #x0080 #x00FF Latin-1Supplement

#x0100 #x017F LatinExtended-A #x0180 #x024F LatinExtended-B

#x0250 #x02AF IPAExtensions #x02B0 #x02FF SpacingModifierLetters

#x0300 #x036F CombiningDiacriticalMarks #x0370 #x03FF Greek

#x0400 #x04FF Cyrillic #x0530 #x058F Armenian

#x0590 #x05FF Hebrew #x0600 #x06FF Arabic

#x0700 #x074F Syriac #x0780 #x07BF Thaana

#x0900 #x097F Devanagari #x0980 #x09FF Bengali

#x0A00 #x0A7F Gurmukhi #x0A80 #x0AFF Gujarati

#x0B00 #x0B7F Oriya #x0B80 #x0BFF Tamil

#x0C00 #x0C7F Telugu #x0C80 #x0CFF Kannada

#x0D00 #x0D7F Malayalam #x0D80 #x0DFF Sinhala

#x0E00 #x0E7F Thai #x0E80 #x0EFF Lao

#x0F00 #x0FFF Tibetan #x1000 #x109F Myanmar

#x10A0 #x10FF Georgian #x1100 #x11FF HangulJamo

#x1200 #x137F Ethiopic #x13A0 #x13FF Cherokee

#x1400 #x167F UnifiedCanadianAboriginalSyllabics #x1680 #x169F Ogham

#x16A0 #x16FF Runic #x1780 #x17FF Khmer

#x1800 #x18AF Mongolian #x1E00 #x1EFF LatinExtendedAdditional

#x1F00 #x1FFF GreekExtended #x2000 #x206F GeneralPunctuation

#x2070 #x209F SuperscriptsandSubscripts #x20A0 #x20CF CurrencySymbols

#x20D0 #x20FF CombiningMarksforSymbols #x2100 #x214F LetterlikeSymbols

#x2150 #x218F NumberForms #x2190 #x21FF Arrows

#x2200 #x22FF MathematicalOperators #x2300 #x23FF MiscellaneousTechnical

#x2400 #x243F ControlPictures #x2440 #x245F OpticalCharacterRecognition

#x2460 #x24FF EnclosedAlphanumerics #x2500 #x257F BoxDrawing

#x2580 #x259F BlockElements #x25A0 #x25FF GeometricShapes

#x2600 #x26FF MiscellaneousSymbols #x2700 #x27BF Dingbats

98a

NOTE: [Unicode Database] is subject to future revision. For example, the grouping of code points into blocks might
might be updated. All �minimally conforming� processors �must� support the blocks defined in the version of
[Unicode Database] that is current at the time this specification became a W3C Recommendation. However,
implementors are encouraged to support the blocks defined in any future version of the Unicode Standard.

For example, the �block escape� for identifying the ASCII characters is \p{IsBasicLatin}.

[Definition:] A multi-character escape provides a simple way to identify a commonly used set of characters:

#x2800 #x28FF BraillePatterns #x2E80 #x2EFF CJKRadicalsSupplement

#x2F00 #x2FDF KangxiRadicals #x2FF0 #x2FFF IdeographicDescriptionCharacters

#x3000 #x303F CJKSymbolsandPunctuation #x3040 #x309F Hiragana

#x30A0 #x30FF Katakana #x3100 #x312F Bopomofo

#x3130 #x318F HangulCompatibilityJamo #x3190 #x319F Kanbun

#x31A0 #x31BF BopomofoExtended #x3200 #x32FF EnclosedCJKLettersandMonths

#x3300 #x33FF CJKCompatibility #x3400 #x4DB5 CJKUnifiedIdeographsExtensionA

#x4E00 #x9FFF CJKUnifiedIdeographs #xA000 #xA48F YiSyllables

#xA490 #xA4CF YiRadicals #xAC00 #xD7A3 HangulSyllables

#xD800 #xDB7F HighSurrogates #xDB80 #xDBFF HighPrivateUseSurrogates

#xDC00 #xDFFF LowSurrogates #xE000 #xF8FF PrivateUse

#xF900 #xFAFF CJKCompatibilityIdeographs #xFB00 #xFB4F AlphabeticPresentationForms

#xFB50 #xFDFF ArabicPresentationForms-A #xFE20 #xFE2F CombiningHalfMarks

#xFE30 #xFE4F CJKCompatibilityForms #xFE50 #xFE6F SmallFormVariants

#xFE70 #xFEFE ArabicPresentationForms-B #xFEFF #xFEFF Specials

#xFF00 #xFFEF HalfwidthandFullwidthForms #xFFF0 #xFFFD Specials

#x10300 #x1032F OldItalic #x10330 #x1034F Gothic

#x10400 #x1044F Deseret #x1D000 #x1D0FF ByzantineMusicalSymbols

#x1D100 #x1D1FF MusicalSymbols #x1D400 #x1D7FF MathematicalAlphanumericSymbols

#x20000 #x2A6D6 CJKUnifiedIdeographsExtensionB #x2F800 #x2FA1F CJKCompatibilityIdeographsSupplement

#xE0000 #xE007F Tags #xF0000 #xFFFFD PrivateUse

#x100000 #x10FFFD PrivateUse

Multi-Character Escape

[37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])

Character sequence Equivalent �character class�

. [^\n\r]

\s [#x20\t\n\r]

\S [^\s]

\i the set of initial name characters, those �match�ed by Letter |
'_' | ':'

99a

NOTE: The �regular expression� language defined here does not attempt to provide a general solution to "regular
expressions" over UCS character sequences. In particular, it does not easily provide for matching sequences of
base characters and combining marks. The language is targeted at support of "Level 1" features as defined in
[Unicode Regular Expression Guidelines]. It is hoped that future versions of this specification will provide support
for "Level 2" features.

G Glossary (non-normative)

The listing below is for the benefit of readers of a printed version of this document: it collects together all the definitions which
appear in the document above.

atomic
Atomic datatypes are those having values which are regarded by this specification as being indivisible.

base type
Every datatype that is �derived� by restriction is defined in terms of an existing datatype, referred to as its base type.
base types can be either �primitive� or �derived�.

bounded
A datatype is bounded if its �value space� has either an �inclusive upper bound� or an �exclusive upper bound� and either
an �inclusive lower bound� and an �exclusive lower bound�.

built-in
Built-in datatypes are those which are defined in this specification, and can be either �primitive� or �derived�;

canonical lexical representation
A canonical lexical representation is a set of literals from among the valid set of literals for a datatype such that there is
a one-to-one mapping between literals in the canonical lexical representation and values in the �value space�.

cardinality
Every �value space� has associated with it the concept of cardinality. Some �value space�s are finite, some are countably
infinite while still others could conceivably be uncountably infinite (although no �value space� defined by this specification is
uncountable infinite). A datatype is said to have the cardinality of its �value space�.

conformance to the XML Representation of Schemas
Processors which accept schemas in the form of XML documents as described in XML Representation of Simple Type
Definition Schema Components (§4.1.2) (and other relevant portions of Datatype components (§4)) are additionally said to
provide conformance to the XML Representation of Schemas, and �must�, when processing schema documents,
completely and correctly implement all �Schema Representation Constraint�s in this specification, and �must� adhere
exactly to the specifications in XML Representation of Simple Type Definition Schema Components (§4.1.2) (and other
relevant portions of Datatype components (§4)) for mapping the contents of such documents to schema components for
use in validation.

constraining facet
A constraining facet is an optional property that can be applied to a datatype to constrain its �value space�.

Constraint on Schemas
Constraint on Schemas

datatype
In this specification, a datatype is a 3-tuple, consisting of a) a set of distinct values, called its �value space�, b) a set of
lexical representations, called its �lexical space�, and c) a set of �facet�s that characterize properties of the �value space�,
individual values or lexical items.

derived
Derived datatypes are those that are defined in terms of other datatypes.

error

\I [^\i]

\c the set of name characters, those �match�ed by NameChar

\C [^\c]

\d \p{Nd}

\D [^\d]

\w [#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}] (all characters except
the set of "punctuation", "separator" and "other" characters)

\W [^\w]

100a

error
exclusive lower bound

A value l in an �ordered� �value space� L is said to be an exclusive lower bound of a �value space� V (where V is a
subset of L) if for all v in V, l < v.

exclusive upper bound
A value u in an �ordered� �value space� U is said to be an exclusive upper bound of a �value space� V (where V is a
subset of U) if for all v in V, u > v.

facet
A facet is a single defining aspect of a �value space�. Generally speaking, each facet characterizes a �value space� along
independent axes or dimensions.

for compatibility
for compatibility

fundamental facet
A fundamental facet is an abstract property which serves to semantically characterize the values in a �value space�.

inclusive lower bound
A value l in an �ordered� �value space� L is said to be an inclusive lower bound of a �value space� V (where V is a subset
of L) if for all v in V, l <= v.

inclusive upper bound
A value u in an �ordered� �value space� U is said to be an inclusive upper bound of a �value space� V (where V is a
subset of U) if for all v in V, u >= v.

itemType
The �atomic� datatype that participates in the definition of a �list� datatype is known as the itemType of that �list� datatype.

lexical space
A lexical space is the set of valid literals for a datatype.

list
List datatypes are those having values each of which consists of a finite-length (possibly empty) sequence of values of an
�atomic� datatype.

match
match

may
may

memberTypes
The datatypes that participate in the definition of a �union� datatype are known as the memberTypes of that �union�
datatype.

minimally conforming
Minimally conforming processors �must� completely and correctly implement the �Constraint on Schemas� and
�Validation Rule� .

must
must

non-numeric
A datatype whose values are not �numeric� is said to be non-numeric.

numeric
A datatype is said to be numeric if its values are conceptually quantities (in some mathematical number system).

ordered
A �value space�, and hence a datatype, is said to be ordered if there exists an �order-relation� defined for that �value
space�.

order-relation
An order relation on a �value space� is a mathematical relation that imposes a �total order� or a �partial order� on the
members of the �value space�.

partial order
A partial order is an �order-relation� that is irreflexive, asymmetric and transitive.

primitive
Primitive datatypes are those that are not defined in terms of other datatypes; they exist ab initio.

regular expression
A regular expression is composed from zero or more �branch�es, separated by | characters.

restriction
A datatype is said to be �derived� by restriction from another datatype when values for zero or more �constraining facet�s
are specified that serve to constrain its �value space� and/or its �lexical space� to a subset of those of its �base type�.

Schema Representation Constraint
Schema Representation Constraint

total order
A total order is an �partial order� such that for no a and b is it the case that a <> b.

union
Union datatypes are those whose �value space�s and �lexical space�s are the union of the �value space�s and �lexical

101a

space�s of one or more other datatypes.
user-derived

User-derived datatypes are those �derived� datatypes that are defined by individual schema designers.
Validation Rule

Validation Rule
value space

A value space is the set of values for a given datatype. Each value in the value space of a datatype is denoted by one or
more literals in its �lexical space�.

H References

H.1 Normative

Clinger, WD (1990)
William D Clinger. How to Read Floating Point Numbers Accurately. In Proceedings of Conference on Programming
Language Design and Implementation, pages 92-101. Available at: ftp://ftp.ccs.neu.edu/pub/people/will/howtoread.ps

IEEE 754-1985
IEEE. IEEE Standard for Binary Floating-Point Arithmetic. See
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html

Namespaces in XML
World Wide Web Consortium. Namespaces in XML. Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114/

RFC 1766
H. Alvestrand, ed. RFC 1766: Tags for the Identification of Languages 1995. Available at: http://www.ietf.org/rfc/rfc1766.txt

RFC 2045
N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. 1996. Available at: http://www.ietf.org/rfc/rfc2045.txt

RFC 2396
Tim Berners-Lee, et. al. RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax.. 1998. Available at:
http://www.ietf.org/rfc/rfc2396.txt

RFC 2732
RFC 2732: Format for Literal IPv6 Addresses in URL's. 1999. Available at: http://www.ietf.org/rfc/rfc2732.txt

Unicode Database
The Unicode Consortium. The Unicode Character Database. Available at: http://www.unicode.org/Public/3.1-
Update/UnicodeCharacterDatabase-3.1.0.html

XML 1.0 (Second Edition)
World Wide Web Consortium. Extensible Markup Language (XML) 1.0, Second Edition. Available at:
http://www.w3.org/TR/2000/WD-xml-2e-20000814

XML Linking Language
World Wide Web Consortium. XML Linking Language (XLink). Available at: http://www.w3.org/TR/2000/PR-xlink-
20001220/

XML Schema Part 1: Structures
XML Schema Part 1: Structures. Available at: http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

XML Schema Requirements
World Wide Web Consortium. XML Schema Requirements. Available at: http://www.w3.org/TR/1999/NOTE-xml-schema-
req-19990215

H.2 Non-normative

Character Model
Martin J. Dürst and François Yergeau, eds. Character Model for the World Wide Web. World Wide Web Consortium
Working Draft. 2001. Available at: http://www.w3.org/TR/2001/WD-charmod-20010126/

Gay, DM (1990)
David M. Gay. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. AT&T Bell Laboratories Numerical
Analysis Manuscript 90-10, November 1990. Available at: http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz

HTML 4.01
World Wide Web Consortium. Hypertext Markup Language, version 4.01. Available at: http://www.w3.org/TR/1999/REC-
html401-19991224/

IETF INTERNET-DRAFT: IRIs
L. Masinter and M. Durst. Internationalized Resource Identifiers 2001. Available at: http://www.ietf.org/internet-drafts/draft-
masinter-url-i18n-07.txt

International Earth Rotation Service (IERS)
International Earth Rotation Service (IERS). See http://maia.usno.navy.mil/

102a

ISO 11404
ISO (International Organization for Standardization). Language-independent Datatypes. See
http://www.iso.ch/cate/d19346.html

ISO 8601
ISO (International Organization for Standardization). Representations of dates and times, 1988-06-15. Available at:
http://www.iso.ch/markete/8601.pdf

ISO 8601 Draft Revision
ISO (International Organization for Standardization). Representations of dates and times, draft revision, 2000.

Perl
The Perl Programming Language. See http://www.perl.com/pub/language/info/software.html

RDF Schema
World Wide Web Consortium. RDF Schema Specification. Available at: http://www.w3.org/TR/2000/CR-rdf-schema-
20000327/

Ruby
World Wide Web Consortium. Ruby Annotation. Available at: http://www.w3.org/TR/2001/WD-ruby-20010216/

SQL
ISO (International Organization for Standardization). ISO/IEC 9075-2:1999, Information technology --- Database languages
--- SQL --- Part 2: Foundation (SQL/Foundation). [Geneva]: International Organization for Standardization, 1999. See
http://www.iso.ch/cate/d26197.html

U.S. Naval Observatory Time Service Department
Information about Leap Seconds Available at: http://tycho.usno.navy.mil/leapsec.990505.html

Unicode Regular Expression Guidelines
Mark Davis. Unicode Regular Expression Guidelines, 1988. Available at: http://www.unicode.org/unicode/reports/tr18/

XML Schema Language: Part 2 Primer
World Wide Web Consortium. XML Schema Language: Part 2 Primer. Available at: http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/

XSL
World Wide Web Consortium. Extensible Stylesheet Language (XSL). Available at: http://www.w3.org/TR/2000/CR-xsl-
20001121/

I Acknowledgements (non-normative)

The following have contributed material to this draft:

l Asir S. Vedamuthu, webMethods, Inc
l Mark Davis, IBM

Co-editor Ashok Malhotra's work on this specification from March 1999 until February 2001 was supported by IBM.

The editors acknowledge the members of the XML Schema Working Group, the members of other W3C Working Groups, and
industry experts in other forums who have contributed directly or indirectly to the process or content of creating this document. The
Working Group is particularly grateful to Lotus Development Corp. and IBM for providing teleconferencing facilities.

The current members of the XML Schema Working Group are:

Jim Barnette, Defense Information Systems Agency (DISA); Paul V. Biron, Health Level Seven; Don Box, DevelopMentor; Allen
Brown, Microsoft; Lee Buck, TIBCO Extensibility; Charles E. Campbell, Informix; Wayne Carr, Intel; Peter Chen, Bootstrap Alliance
and LSU; David Cleary, Progress Software; Dan Connolly, W3C (staff contact); Ugo Corda, Xerox; Roger L. Costello, MITRE;
Haavard Danielson, Progress Software; Josef Dietl, Mozquito Technologies; David Ezell, Hewlett-Packard Company; Alexander
Falk, Altova GmbH; David Fallside, IBM; Dan Fox, Defense Logistics Information Service (DLIS); Matthew Fuchs, Commerce One;
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd); Paul Grosso, Arbortext, Inc; Martin Gudgin,
DevelopMentor; Dave Hollander, Contivo, Inc (co-chair); Mary Holstege, Invited Expert; Jane Hunter, Distributed Systems
Technology Centre (DSTC Pty Ltd); Rick Jelliffe, Academia Sinica; Simon Johnston, Rational Software; Bob Lojek, Mozquito
Technologies; Ashok Malhotra, Microsoft; Lisa Martin, IBM; Noah Mendelsohn, Lotus Development Corporation; Adrian Michel,
Commerce One; Alex Milowski, Invited Expert; Don Mullen, TIBCO Extensibility; Dave Peterson, Graphic Communications
Association; Jonathan Robie, Software AG; Eric Sedlar, Oracle Corp.; C. M. Sperberg-McQueen, W3C (co-chair); Bob Streich,
Calico Commerce; William K. Stumbo, Xerox; Henry S. Thompson, University of Edinburgh; Mark Tucker, Health Level Seven; Asir
S. Vedamuthu, webMethods, Inc; Priscilla Walmsley, XMLSolutions; Norm Walsh, Sun Microsystems; Aki Yoshida, SAP AG;
Kongyi Zhou, Oracle Corp.

The XML Schema Working Group has benefited in its work from the participation and contributions of a number of people not
currently members of the Working Group, including in particular those named below. Affiliations given are those current at the time

103a

of their work with the WG.

Paula Angerstein, Vignette Corporation; David Beech, Oracle Corp.; Gabe Beged-Dov, Rogue Wave Software; Greg Bumgardner,
Rogue Wave Software; Dean Burson, Lotus Development Corporation; Mike Cokus, MITRE; Andrew Eisenberg, Progress
Software; Rob Ellman, Calico Commerce; George Feinberg, Object Design; Charles Frankston, Microsoft; Ernesto Guerrieri, Inso;
Michael Hyman, Microsoft; Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd); Dianne Kennedy, Graphic
Communications Association; Janet Koenig, Sun Microsystems; Setrag Khoshafian, Technology Deployment International (TDI);
Ara Kullukian, Technology Deployment International (TDI); Andrew Layman, Microsoft; Dmitry Lenkov, Hewlett-Packard Company;
John McCarthy, Lawrence Berkeley National Laboratory; Murata Makoto, Xerox; Eve Maler, Sun Microsystems; Murray Maloney,
Muzmo Communication, acting for Commerce One; Chris Olds, Wall Data; Frank Olken, Lawrence Berkeley National Laboratory;
Shriram Revankar, Xerox; Mark Reinhold, Sun Microsystems; John C. Schneider, MITRE; Lew Shannon, NCR; William Shea,
Merrill Lynch; Ralph Swick, W3C; Tony Stewart, Rivcom; Matt Timmermans, Microstar; Jim Trezzo, Oracle Corp.; Steph
Tryphonas, Microstar

104a

