Function: array - create an array

Calling sequence:

array(indexfcn, bounds, list)

Parameters:

i ndexfcn - (optional) an indexing function
bounds - (optional) sequence of ranges
list - (optional) list of initial values

Description:

- An array is a specialization of a table, with zero or more specified dimensions, where each

dimension is an integer range. The result of executing the array function is to create an array.
For example, V := array(1..10) creates a one dimensional array (a Maple vector) of length 10
but with no explicit entries. The command A := array(1..m,1..n) creates a two dimensional
array (a Maple matrix) with m rows and n columns.

- All parameters to the array function are optional and may appear in any order. The bounds

parameter is a sequence of integer ranges which must appear consecutively. If the bounds are
not specified then they are deduced from the list of initial values.

- The indexfcn can be a procedure or a name specifying how indexing is to be performed - see

indexfcn for more information. The built-in indexing functions are symmetric, antisymmetric,
sparse, diagonal, and identity. If indexfcn is not specified, then *“ordinary" indexing is used.

- The list of initial values may be a list of equations (cf. tables), or a list of values

(one-dimensional), or a nested list of lists (row-by-row).

- The map function can be used to apply a function to each entry of an array. For example, map

(simplify, A) simplifies each entry of the array A.

- Arrays have special evaluation rules (like procedures) so that if the name A has been assigned

an array then A evaluates to the name A and eval(A) yields the actual array structure.

- The op function can be used to pick apart an array structure. op(1,eval(A)) yields indexfcn, if

one is specified. If no indexfcn has been specified, it returns nothing. op(2,eval(A)) yields
bounds; and op(3,eval(A)) yields entries, where entries is a list of equations corresponding to
the explicit entries in the array (cf. entries).

Examples:
(> v := array(l..4):
for i to 3 do v[i] :=1i”"2 od:
print(v);
[174797V4]
> v[2];
4
> v[O0];

| Error, 1st index, 0, smaller than | ower array bound 1

> A :=array(l..2,1..2):
All,2] :=x:
AL, 1];

A 1, 2];
X
print(A);
A XU
By Al

A := array(symetric, 1..2,1..2, [[1,x],
op(1,eval (A));

symmetric
op(2, eval (A));

1..2,1..2
op(3, eval (A));

[(1,2)=x(1,1)=1,(2,2)=X]

map(di ff, A X);

o 1)

€ 2xu

[x,x"2]]):

