
General Information

• expressions — index of descriptions for Maple expressions
• expression sequences — expression sequences
• functions — index of Maple functions
• statements — index of descriptions for Maple statements
• procedure — procedures

Variables

Description of expressions:

! """ "" " $
** * + - .
/ < <= <> =
> >= @ @@ ^
and arithmetic boolean constant ditto
factorial fraction integer intersect minus
mod name neutral not nullstring
operators or ratpoly selection set
uneval union

An expression is of type integer if it is an (optionally signed) sequence
of one or more digits of arbitrary length. The length limit of an integer is
system dependent but generally much larger than users will encounter -
typically greater than 500,000 decimal digits.

In addition to arithmetic operators, other basic functions of integers are:

abs — sign — min — max — factorial
irem — iquo — modp — mods — mod
isqrt — iroot — isprime — ifactor — ifactors
igcd — ilcm — igcdex — iratrecon — rand

There are also many special functions for integers in the number theory
and combinatorial packages including the binomial coefficients,
Fibonacci numbers, Stirling numbers, Jacobi symbol, Eulers totient
function, etc.

Description of expression sequences:

Expression sequences, (or simply sequences), are created using the
comma operator ,.

For example s := 1,2,3 assigns s the sequence 1,2,3. In Maple,
sequences form the basis of many data types. In particular, they appear
in function calls, lists, sets and subscripts.

Example:

• f(s) applies the function f to the sequence 1,2,3,
• [s] creates the list containing the elements 1,2,3,
• {s} creates the set containing the elements 1,2,3, and
• a[s] is the 1,2,3 subscript.

These are equivalent to f(1,2,3), [1,2,3], {1,2,3}, and a[1,2,3]
respectively.

Two key tools for constructing sequences are the seq function and the
repetition operator $. For example, the call seq(f(i), i=1..3) will generate
the sequence f(1), f(2), f(3). The call x$3 will generate the sequence x, x,
x.

Description of statements:

! # ERROR assignment break
by do done elif else
empty fi for from function
if in next od proc
quit read restart save separator
stop then while

Description of Procedures:

Calling sequence:

• proc (argseq) local nseq; global nseq; options nseq; description
stringseq; statseq end

A procedure definition is a valid expression that can be assigned to a
name.

The parenthesized argseq, which may be null, specifies the formal
parameter names. Each parameter is a name followed by an optional
type specifier preceded by a double colon. If the type specification is
supplied, Maple will generate an error if arguments of the incorrect type
are passed to the function. Maple will also generate an error if an
argument is missing, but only at the time that such an argument is first
needed.

The phrases local nseq;, global nseq; and options nseq; are optional. If
present, they specify, respectively, the names of local and global
variables and the options in effect.

If variables are undeclared, the following rules are used to determine
whether a variable is local or global: by default, each variable to which
an assignment is made, or which appears as the controlling variable in a
for loop, is local. All others are global.

Procedures have special evaluation rules (like tables) so that if the name
f has been assigned a procedure then f evaluates to the name f; eval(f)
yields the actual procedure structure; op(eval(f)) yields the sequence of
six operands mentioned above (any or all of which may be null).

A procedure assigned to f is invoked via: f(arguments). The value of a
procedure invocation is the value of the last statement executed, or else
the value specified in a RETURN call.

Example:

> f := proc(x) local y; y := x * 2; g(x) / 4; end;

f:= proc(x) local y; y:= x ∗ 2; g (x) / 4; end

> g := proc(x) local z; z := x^2; z * 2; end;

g:= proc(x) local z ; z:= x ^ 2; z ∗ 2; end

> trace(f,g);
f, g

> f(3);
{--> enter f, args = 3

y:= 6
{--> enter g, args = 3

z:= 9
18

<-- exit g (now in f) = 18}
9
2

<-- exit f (now at top level) = 9/2}
9
2

> f(3):

{--> enter f, args = 3
{--> enter g, args = 3
<-- exit g (now in f) = 18}
<-- exit f (now at top level) = 9/2}

Definition of a type in Maple

Description:

By definition, a type in Maple is any expression which is recognized by the type
function and causes it to return true or false for some set of expressions. For
example, in type(expr, typexpr), expr is of type typexpr if and only if the above
expression evaluates to true.

Any particular type belongs to one of the following four categories:

1. A system type: a type which is a name that is defined in the kernel of the Maple
system. System types usually correspond to primitive algebraic or data structure
concepts, such as integer, float, list, and relation.

2. A procedural type where the type is a name, for example xxx, and there is a
procedure `type/xxx` which will perform the type analysis of the argument and
will return true or false accordingly. This procedure may be available from the
global Maple environment or from the library (for the latter case it is
automatically loaded into the environment). This is one of the mechanisms to
define new types in Maple. monomial, algnum, and odd are presently
implemented as external Maple functions.

3. An assigned type where the type is a name, such as xxx, and the global name
`type/xxx` is assigned a type expression. The type evaluation proceeds as if the
type checking were done with the expression assigned to `type/xxx`. Thus

`type/intargs` := [algebraic, {name, name=algebraic..algebraic}];
. . . .

if not type([args],intargs) then ERROR(...)

4. A type expression which is a general Maple expression as described in
type[structured].

Example: the type algebraic

Description:

An expression is of type algebraic if it is one of the following types:

Integer fraction float string indexed
`+` `*` `^` `**` series
function `!` `.` uneval

5. Input and Output

Input:

• fscanf — formatted printing to a file or pipe
• read — the read statement
• readbytes — read bytes from a file or pipe as a string or list
• readdata — read raw data from files
• readline — read a string from the terminal or a file
• readstat — read one statement from the input stream
• sscanf — scan and parse numbers and strings within a string

Output:

• interface — set or query user interface variables
• fprintf — formatted printing to a file or pipe
• lprint — linear printing of expression
• print — pretty-printing of expressions
• printf — display objects using a specified format
• printlevel — printlevel (display of information; debugging

procedures)
• TEXT — the TEXT data structure
• writebytes — write bytes from a string or list to a file or pipe
• writedata — write numerical data to a text file
• writeline — writes strings to a file or pipe
• writestat — writes a string — or expression(s) to a file or pipe

Translation:

• C — generate C code
• eqn — produce output suitable for troff/eqn printing
• fortran — generate Fortran code
• latex — produce output suitable for latex printing
• optimize — common subexpression optimization

The read statement

Calling sequence:
read filename

Description:

The read statement is used to read Maple language or Maple internal
format files into Maple.

If the filename ends with the characters ".m", the file is assumed to be in
Maple internal format. The objects stored in the file are read into Maple
and become available for use.

If the file is in Maple language format, the statements in the file are read
and executed as if they were being typed in. However, the statements are
not echoed to the display unless interface(echo) is set to 2 or higher.

If filename contains unusual characters (e.g., "/", ".", etc.) then the name
must be enclosed in backquotes.

To load a file from the standard Maple library, use the readlib function.

Examples:

> read `lib/f.m`;
> read temp;
> read `temp.m`;

Readdata - read numerical data from text files

Calling Sequence:

 readdata(fileID, n)
 readdata(fileID, format, n)
 readdata(fileID, format)

Parameters:

• fileID - the name or descriptor of the data file
• n - positive integer: for how many columns of data
• format - specifies if the data is to be read as integer or floating point

values

Description:

The readdata function reads numeric data from an input text file into
Maple. The data must consist of integers or floats arranged in columns
separated by white space. If only one column of data is read, the output
is a list of the data. If more than one column is read, the output is a list
of list of rows of data corresponding to the rows of data in the file.

The fileID argument gives the name or file descriptor of the file from
which to read.

The first form of the readdata function reads n columns of numerical
data from the file specified by fileID in floating point format.

The second and third forms specify whether the data is to be read as
integer, floating point, or string data. The parameter format must be one
of integer, float, or string, or a list containing one or more of these.

If a file name is given (instead of a file descriptor), and the file is not
already open, the file will be opened as a TEXT file in READ mode.
Furthermore, if a file name is given, the file will be closed when
readdata returns.

Examples:

The file data: 1 1 50 1 2 55 2 1 55 2 2 70 read 3 columns of floats from
the file 'data':

> readdata(data,3);
read 3 columns as integers

> readdata(data,integer,3);
read first column of integers

> readdata(data,integer);
read first column as floats

> readdata(data,float);

read the first two columns as integers and the third as floats
> readdata(data,[integer,integer,float]);

Printing files and expressions

Function fprintf - prints expressions to file or pipe based on a format
string
Function: sprintf - Prints expressions to a string based on a format string
Function: printf - Prints expressions to default stream based on a format
string

Calling Sequence:

fprintf(file, fmt, x1, ..., xn);
sprintf(fmt, x1, ...,xn);
printf(fmt, x1, ...,xn);

Parameters:

• file - a file descriptor or file name
• fmt - the output format specification
• x1, ..., xn - the expressions to be formatted

Description:

The fprintf function is based on a C standard library function of the same
name. It uses the formatting specifications in the fmt string to format
and write the expressions to the specified file.

The sprintf function is based on a C standard library function of the
same name. It uses the formatting specifications in the fmt string to
format and write the expressions into a Maple string, which is returned.

The printf function is based on a C standard library function of the same
name. It uses the formatting specifications in the fmt string to format
and display the expressions.

The fprintf function returns a count of the number of characters written.

Flow Control

• break the break construct
• empty statement the empty statement
• ERROR error return from a procedure
• if the selection (conditional) statement
• quit the quit statement
• RETURN explicit return from a procedure

Iteration or Looping:

$ operator for forming an expression sequence
.. expressions of type range
do the repetition (for / while / do) statement
for the repetition (for / while / do) statement
next the next construct
product definite and indefinite product
seq create a sequence
sum definite and indefinite summation
while the repetition (for / while / do) statement

The repetition (for / while / do) statement:

Description:

SYNTAX:

|for <name>| |from <expr>| |by <expr>| |to <expr>| |while <expr>|
 do <statement sequence> od;

OR,

|for <name>| |in <expr>| |while <expr>|
 do <statement sequence> od;

(Note: | | indicates an optional phrase.)

The repetition statement provides the ability to execute a statement
sequence repeatedly, either for a counted number of times (using the for-

to clauses) or until a condition is satisfied (using the while clause). Both
forms of clauses may be present simultaneously.

If the from or by clause is omitted then the default value from 1 or by 1,
respectively, is used.

The tests to expr and while expr are tested at the beginning of each
iteration. If neither clause is present then the loop will be infinite. Exit
from such a loop is possible via the break construct, via a RETURN from
a procedure, or via the quit statement.

The expr in the while clause is a Boolean expression which must
evaluate to true or false; otherwise, an error occurs.

Use of the in expr clause will cause the index variable to take as values
the successive operands of the specified expression expr (as would be
determined via the op function).

Arguments to the in or to clauses are evaluated only once at the
beginning of the loop and not after every iteration.

Examples:

1) print even numbers from 6 to 100:
> for i from 6 by 2 to 100 do print(i) od;

2) find the sum of all two-digit odd numbers:
> sum := 0;
> for i from 11 by 2 while i < 100 do
> sum := sum + i
> od;

3) add together the contents of a list:
> sum:=0;
> for z in bob do
> sum:=sum+z
> od;

4) add together the contents of a list:
> sum:=0;
> for z in bob do
> sum:=sum+z
> od;

The selection (conditional) statement and operator

Calling Sequence:

if conditional expression then statement sequence
| elif conditional expression then statement sequence |
| else statement sequence |
fi
if(conditional, true statement, false statement)

Description:

The construct elif conditional expression then statement sequence may
be repeated any number of times. The keyword elif stands for else if; the
short form avoids the requirement for multiple closing fi delimiters.

A conditional expression is any Boolean expression formed using the
relational operators (<, <=, >, >=, =, <>), the logical operators (and, or,
not), and the logical names (true, false).

When a conditional expression is evaluated in this context, it must
evaluate to true or false; otherwise, an error occurs.

The statement sequence following else will be executed if all of the
conditional expressions evaluate to false.

Examples:
> a := 3; b := 5;
> if (a > b) then a else b fi;
> 5*(Pi + `if`(a > b,a,b));

5 Pi + 25

The next construct

Description:

When the special name next is evaluated, the result is to exit from the
current statement sequence (i.e., the do-od block) corresponding to the
innermost repetition (for/while/do) statement within which it occurs.

To exit from the current statement sequence means to allow execution to
proceed with the next iteration of this repetition statement.

Note that to proceed with the next iteration implies incrementing the
index of iteration and then applying the tests for termination (specified
by the to-clause and while-clause, if present) before proceeding. Thus,
an exit from the loop may occur.

It is an error if the name next is evaluated in a context other than within
a repetition statement.

Note that next is not a reserved word and therefore it is possible (but
unwise) to assign a value to it.

2D

plot create a 2D plot of functions
function acceptable plot functions
branches plot the branches of a multi-valued function
infinity infinity plots
multiple multiple plots
parametric parametric plots
animate create an animation of 2D plots of functions
conformal conformal plot of a complex function
densityplot 2D density plotting
display display a list of plot structures
fieldplot plot a 2D vector field
gradplot plot a 2D gradient vector field
implicitplot 2D implicit plotting
logplot create a 2D log-plot of functions

loglogplot create a 2D log-log plot of functions
odeplot 2D or 3D plot of output from dsolve(, numeric)
polar polar coordinate plots
polygonplot create a plot of one or more polygons
replot redo a plot
sparsematrixplot 2D plot of nonzero values of a matrix
textplot plot text strings
structure plot structure
geometry[draw] drawing geometric objects
options options to the plot command

3D

plot3d 3D plotting of functions
addcoords add a new coordinate system
animate3d create an animation of 3D plots of functions
contourplot contour plotting
cylinderplot plot a 3D surface in cylindrical coordinates
densityplot 2D density plotting
display3d display a set of 3D plot structures
fieldplot3d plot a 3D vector field
gradplot3d plot a 3D gradient vector field
implicitplot3d 3D implicit plotting
matrixplot 3D plot with z values determined by a matrix
odeplot 2D or 3D plot of output from dsolve/numeric
pointplot create a 3D point plot
polygonplot3d create a plot of one or more polygons
polyhedraplot create a 3D point plot with polyhedra
spacecurve plotting of 3D space curves
sphereplot plot a 3D surface in spherical coordinates
surfdata create a 3D surface plot from data
textplot3d plot text strings
tubeplot 3D tube plotting

	General Information
	
	Variables

	Definition of a type in Maple
	
	Example: the type algebraic

	Translation:

	Printing files and expressions
	Flow Control
	
	
	The selection (conditional) statement and operator
	5 Pi + 25

	2D

	3D

