
Basic Elements of Hardware

At a top level, a computer consists of processor, memory, and 1/0
components, with one or more modules of each type. These
components are interconnected in some fashion to ichieve the main
function of the computer, which is to execute programs. Thus, there
are four main structural elements:

• Processor: Controls the operation of the computer and performs
its data processing functions. When there is only one processor, it
is often referred to as the central processing unit (CPU).

• Main memory: Stores data and programs. This memory is typically
volatile: it is also referred to as real memory or primary memory.

• 1/0 modules: Move data between the computer and its external
environmcnt. The external environment consists of a variety of
external devices, including secondary memory devices,
communications equipment, and terminals.

• System interconnection: Some structures and mechanisms that
provide for communication among processors, main memory, and
1/0 modules.

The Memory Hierarchy

The design constraints on a computer's memory can be summed up by
three questions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is
there, applications will likely be developed to use it. The question of
how fast is, in a sense, easier to answer. To achieve the greatest
performance, the memory must be able to keep up with the processor.
That is, as the processor is executing instructions, we would not want
it to have to pause for instructions or operands. The final question
must also be considered. For a practical system the cost of memory
must be reasonable in relationship to other components.

As might be expected, there is a tradeoff among the three key
characteristics of memory: namely, cost, capacity, and access time. At
any given time, a variety of technologies are used to implement
memory systems. Across this spectrum of technologies, the following
relationships hold:

· Smaller access time, greater cost per bit
· Greater capacity, smaller cost per bit
· Greater capacity, greater access time.

The dilemma facing the designer is clear. The designer would like to
use memory technologies that provide for large-capacity memory,
both because the capacity is needed and because the cost per bit is
low. However, to meet performance requirements, the designer needs
to use expensive, relatively lower-capacity memories with fast access
times.

The way out of this dilemma is not to rely on a single memory
component or technology, but to employ a memory hierarchy. A
typical hierarchy is illustrated below. As one goes down the hierarchy,
the following occur:

a. Decreasing cost per bit
b. Increasing capacity
c. Increasing access time
d. Decreasing frequency of access of the memory by the processor.

Thus, smaller, more expensive, faster memories are supplemented by
larger, cheaper, slower memories. The key to the success of this
organization is the last item: decreasing frequency of access.

Cache Memory

Operating System Objectives and Functions

An operating system is a program that controls the execution of
application programs and acts as an interface between the user of a
computer and the computer hardware. It can be thought of as having
three objectives:

Convenience: An operating system makes a computer more
convenient to use.

Efficiency: An operating system allows the computer system
resources to be used in an efficient manner.

Ability to evolve: An operating system should be constructed in
such a way as to permit the effective development, testing, and
introduction of new system functions without interfering with
service.

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user
can be viewed in a layered or hierarchical fashion, as depicted in
figure. The user of those applications, the end user, generally is not
concerned with the computer's architecture.

Thus the end user views a computer system in terms of an application.
That application can be expressed in a programming language and is
developed by an application programmer. If one were to develop an
application program as a set of machine instructions that is completely
responsible for controlling the computer hardware, one would be
faced with an overwhelmingly complex task.

To ease this task, a set of system programs is provided. Some of these
programs are referred to as utilities. These implement frequently used
functions that assist in program creation, the management of files, and
the control of I/O devices. A programmer will make use of these
facilities in developing an application, and the application, while it is
running, will invoke the utilities to perform certain functions.

The most important system program is the operating system. The
operating system masks the details of the hardware from the
programmer and provides the programmer with a convenient interface
for using the system. It acts as mediator, making it easier for the
programmer and for application programs to access and use those
facilities and services.

Briefly, the operating system typically provides services in the
following areas:
Program creation: The operating system provides a variety of
facilities and services, such as editors and debuggers, to assist the
programmer in creating programs. Typically, these services are in
the form of utility programs that are not actually part of the
operating system but are accessible through the operating system.

Program execution: A number of tasks need to be performed to
execute a program. Instructions and data must be loaded into main
memory, 1/0 devices and files must be initialized, and other
resources must be prepared. The operating system handles all of this
for the user.

Access to 1/0 devices: Each 1/0 device requires its own peculiar set
of instructions or control signals for operation. The operating
system takes care of the details so that the programmer can think in
terms of simple reads and writes.

Controlled access to files: In the case of files, control must include
an understanding of not only the nature of the 1/0 device (disk
drive, tape drive) but also the file format on the storage medium.
Again, the operating system worries about the details. Further, in
the case of a system with multiple simultaneous users, the operating
system can provide protection mechanisms to control access to the
files.

System access: In the case of a shared or public system, the
operating system controls access to the system as a whole and to
specific system resources. The access function must provide
protection of resources and data from unauthorized users and must
resolve conflicts for resource contention.

Error detection and response: A variety of errors can occur while a
computer system is running. These include internal and external
hardware errors, such as a memory error or a device failure or
malfunction; and various software errors, such as arithmetic
overflow, attempt to access forbidden memory location, and inability
of the operating system to grant the request of an application. In each
case, the operating system must make the response that clears the
error condition with the least impact on running applications. The
response may range from ending the program that caused the error, to
retrying the operation, to simply reporting the error to the
application.

Accounting: A good operating system will collect usage statistics for
various resources and monitor performance parameters such as
response time. On any system, this information is useful in anticipating
the need for future enhancements and in tuning the system to improve
performance. On a multiuser system, the information can be used for
billing purposes.

The Operating System as Resource Manager

A computer is a set of resources for the movement, storage, and
processing of data and for the control of these functions. The
operating system is responsible for managing these resources.

Can we say that it is the operating system that controls the movement,
storage, and processing of data? From one point ot'view, the answer is
yes: By managing the computer's resources, the operating system is in
control of the computer's basic functions. But this control is exercised
in a curious way. Normally, we think of a control mechanism as
something external to that which is controlled, or at least as
something that is a distinct and separate part of that which is
controlled. (For example, a residential heating system is controlled by
a thermostat, which is completely distinct from the heat-generation
and heat-distribution apparatus.) This is not the case with the

operating system, which as a control mechanism is unusual in two
respects:

The operating system functions in the same way as ordinary
computer software; that is, it is a program executed by the
processor.
The operating system frequently relinquishes control and must
depend on the processor to allow it to regain control.

The operating system is, in fact, nothing more than a computer
program. Like other computer programs, it provides instructions for
the processor. The key difference is in the intent of the program. The
operating system directs the processor in the use of the other system
resources and in the timing of its execution of other programs. But in
order for the processor to do any of these things, it must cease
executing the operating system program and execute other programs.
Thus, the operating system relinquishes control for the processor to
do some "useful" work and then resumes control long enough to
prepare the processor to do the next piece of work. The mechanisms
involved in all this should become clear as the chapter proceeds.

Figure suggests the main resources that are managed by the
operating system. A portion of the operating system is in main
memory. This includes the kernel, or nucleus, which contains the
most-frequently-used functions in the operating system and, at a given
time, other portions of the operating system currently in use. The
remainder of main memory contains other user programs and data.
The allocation of this resource (main memory) is controlled jointly by
the operating system and memory-management hardware in the
processor, as we shall see. The operating system decides when an 1/0
device can be used by a program in execution and controls access to
and use of files. The processor itself is a resource, and the operating
system must determine how much processor time is to be devoted to
the execution of a particular user program. In the case of a multiple-
processor system, this decision must span all of the processors.
Ease of Evolution of an Operating System

A major operating system will evolve over time for a number of
reasons:

* Hardware upgrades plus new types of hardware: For
example, early versions of UNIX and OS/2 did not employ a
paging mechanism because they were run on machines without
paging hardware. More recent versions have been modified to
exploit paging capabilities. Also, the use of graphics terminals
and page-mode terminals instead of line-at-a-time scroll mode
terminals may affect operating system design. For example, such
a terminal may allow the user to view several applications at the
same time through "windows" on the screen. This requires more
sophisticated support in the operating system.

* New services: In response to user demand or in response to the
needs of system managers, the operating system will expand to
offer new services. For example, if it is found to be difficult to
maintain good performance for users with existing tools, new
measurement and control tools may be added to the operating
system. Another example is new applications that require the use
of windows on the display screen. This feature will require major
upgrades to the operating system.

* Fixes: Any operating system has faults. These are discovered over
the course of time and fixes are made. Of course, the fix may
introduce new faults.

The need to change an operating system on a regular basis places
certain requirements on its design. An obvious statement is that the
system should be modular in construction, with clearly defined
interfaces between the modules, and that it should be well
documented. For large programs, such as the typical contemporary
operating system, what might be referred to as straightforward
modularization is inadequate. That is, much more must be done than
simply partitioning a program into subroutines.

