
PHP

("PHP: Hypertext Preprocessor")

It is a server-side HTML-embedded scripting language.

An introductory example
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <?php echo "Hi, I'm a PHP script!"; ?>
 </body>
</html>

Notice how this is different -- instead of writing a program with lots of
commands to output HTML, you write an HTML script with a some
embedded code to do something (in this case, output some text). The
PHP code is enclosed in special start and end tags that allow you to
jump into and out of PHP mode.

What distinguishes PHP from something like client-side Javascript is
that the code is executed on the server.

If you were to have a script similar to the above on your server, the
client would receive the results of running that script, with no way of
determining what the underlying code may be.

You can even configure your web server to process all your HTML files
with PHP, and then there's really no way that users can tell what you
have up your sleeve.

Escaping from HTML

There are four ways of escaping from HTML and entering "PHP code
mode":

Example: Ways of escaping from HTML
1. <? echo ("this is the simplest, an SGML
 processing instruction\n"); ?>

2. <?php echo("if you want to serve XML
 documents, do like this\n"); ?>

3. <script language="php">
 echo ("some editors (like FrontPage)
 don't like processing instructions");
 </script>

4. <% echo ("You may optionally use ASP-style
 tags"); %> <%= $variable; # This is a
 shortcut for "<%echo .." %>

The first way is only available if short tags have been enabled. This can
be done via the short_tags() function, by enabling the short open tag
configuration setting in the PHP config file, or by compiling PHP with
the - enable-short-tags option to configure.

The fourth way is only available if ASP-style tags have been enabled
using the asp_tags configuration setting.

The closing tag for the block will include the immediately trailing
newline if one is present.

Instructions are separated the same as in C or perl - terminate each
statement with a semicolon.

The closing tag (?>) also implies the end of the statement, so the
following are equivalent:

<?php
 echo "This is a test";
?>

<?php echo "This is a test" ?>

Comments

PHP supports 'C', 'C++' and Unix shell-style comments. For example:

<?php
 echo "It is a test"; //one-line c style comment
 /* This is a multi line comment
 yet another line of comment */
 echo "This is yet another test";
 echo "One Final Test"; # This is shell-style
style comment
?>

The "one-line" comment styles actually only comment to the end of the
line or the current block of PHP code, whichever comes first.

<h1>This is an <?# echo "simple";?>
example.</h1>
<p>The header above will say 'This is an
example'.

You should be careful not to nest C style comments, which can happen
when commenting out large blocks.

<?php
 /*
 echo "This is a test"; /* This comment will
 cause a problem */
 */
?>

Types:

Integers
Floating point numbers
Strings
Arrays
Objects
Type Juggling

PHP supports the following types:

• array
• floating-point numbers
• integer
• object
• string

The type of a variable is usually not set by the programmer; rather, it is
decided at runtime by PHP depending on the context in which that
variable is used.

If you would like to force a variable to be converted to a certain type,
you may either cast the variable or use the settype() function on it.

Note that a variable may behave in different manners in certain
situations, depending on what type it is at the time.
Integers

Integers can be specified using any of the following syntaxes:

$a = 1234; # decimal number
$a = -123; # a negative number
$a = 0123; # octal number (equivalent to 83
decimal)
$a = 0x12; # hexadecimal number (equivalent to
18 decimal)

The size of an integer is platform-dependent, although a maximum value
of about 2 billion is the usual value (that's 32 bits signed).

Floating point numbers

Floating point numbers ("doubles") can be specified using any of the
following syntaxes:

$a = 1.234; $a = 1.2e3;

The size of a floating point number is platform-dependent, although a
maximum of ~1.8e308 with a precision of roughly 14 decimal digits is
a common value (that's 64 bit IEEE format).

Warning

It is quite usual that simple decimal fractions like 0.1 or 0.7 cannot be
converted into their internal binary counterparts without a little loss of
precision. This can lead to confusing results: for example,

floor((0.1+0.7)*10) will usually return 7 instead of the expected 8 as the
result of the internal representation really being something like
7.9999999999…

This is related to the fact that it is impossible to exactly express some
fractions in decimal notation with a finite number of digits. For instance,
1/3 in decimal form becomes 0.3333333. . ..

So never trust floating number results to the last digit and never
compare floating point numbers for equality. If you really need higher
precision, you should use the arbitrary precision math functions
instead.

Strings

Strings can be specified using one of two sets of delimiters.

If the string is enclosed in double-quotes ("), variables within the string
will be expanded (subject to some parsing limitations).

The backslash ("\") character can be used in specifying special
characters:

Table 6-1. Escaped characters

sequence Meaning
\n Linefeed (LF or 0x0A in ASCII)
\r Carriage return (CR or 0x0D in ASCII)
\t Horizontal tab (HT or 0x09 in ASCII)
\\ Backslash
\$ Dollar sign
\" Double-quote

\[0-7]{1,3} the sequence of characters matching the regular expression
is a character in octal notation

\x[0-9A-
Fa-f]{1,2}

the sequence of characters matching the regular expression
is a character in hexadecimal notation

You can escape any other character, but a warning will be issued at the
highest warning level.

The second way to delimit a string uses the single-quote (" ' ") character.
When a string is enclosed in single quotes, the only escapes that will be
understood are " \\ " and " \' ". This is for convenience, so that you can
have single-quotes and backslashes in a single-quoted string. Variables
will not be expanded inside a single-quoted string.

Another way to delimit strings is by using here doc syntax ("<<<"). One
should provide an identifier after <<<, then the string, and then the same
identifier to close the quotation. The closing identifier must begin in the
first column of the line.

Here doc text behaves just like a double-quoted string, without the
double-quotes. This means that you do not need to escape quotes in your
here docs, but you can still use the escape codes listed above. Variables
are expanded, but the same care must be taken when expressing complex
variables inside a here doc as with strings.

Example: Here doc string quoting example
<?php
$str = <<<EOD
Example of string
Spanning multiple lines
using heredoc syntax.
EOD;

/* More complex example, with variables. */
class foo {
 var $foo;
 var $bar;

 function foo() {
 $this->foo = 'Foo';
 $this->bar = array('Bar1', 'Bar2',
'Bar3');
 }
}

$foo = new foo();
$name = 'MyName';

echo <<<EOT
My name is "$name". I am printing some $foo-
>foo.
Now, I am printing some {$foo->bar[1]}.
This should print a capital 'A': \x41
EOT;
?>

Note: Here doc support was added in PHP 4.

Strings may be concatenated using the '.' (dot) operator. Note that the '+'
(addition) operator will not work for this.

Characters within strings may be accessed by treating the string as a
numerically-indexed array of characters, using C-like syntax.

Example: Some string examples

<?php
/* Assigning a string. */
$str = "This is a string";

/* Appending to it. */
$str = $str . " with some more text";

/* Another way to append, includes an escaped
newline. */
$str .= " and a newline at the end.\n";

/* This string will end up being '<p>Number:
9</p>' */
$num = 9;
$str = "<p>Number: $num</p>";

/* This one will be '<p>Number: $num</p>' */
$num = 9;
$str = '<p>Number: $num</p>';

/* Get the first character of a string */
$str = 'This is a test.';
$first = $str[0];

/* Get the last character of a string. */
$str = 'This is still a test.';
$last = $str[strlen($str)-1];
?>

String conversion

When a string is evaluated as a numeric value, the resulting value and
type are determined as follows.

The string will evaluate as a double if it contains any of the characters '.',
'e', or 'E'. Otherwise, it will evaluate as an integer.

The value is given by the initial portion of the string. If the string starts
with valid numeric data, this will be the value used. Otherwise, the value
will be 0 (zero). Valid numeric data is an optional sign, followed by one
or more digits (optionally containing a decimal point), followed by an
optional exponent. The exponent is an 'e' or 'E' followed by one or more
digits.

When the first expression is a string, the type of the variable will depend
on the second expression.

$foo = 1 + "10.5"; // $foo is double (11.5)
$foo = 1 + "-1.3e3"; // $foo is double (-1299)
$foo = 1 + "bob-1.3e3"; // $foo is integer (1)
$foo = 1 + "bob3"; // $foo is integer (1)
$foo = 1 + "10 Small Pigs";
// $foo is integer (11)
$foo = 1 + "10 Little Piggies";
// $foo is integer (11)
$foo = "10.0 pigs " + 1; // $foo is integer (11)
$foo = "10.0 pigs " + 1.0;
// $foo is double (11)

If you would like to test any of the examples in this section, you can cut
and paste the examples and insert the following line to see for yourself
what's going on:

echo "\$foo==$foo; type is " . gettype ($foo) .
"
\n";

Arrays

Arrays actually act like both hash tables (associative arrays) and indexed
arrays (vectors).

Single Dimension Arrays

PHP supports both scalar and associative arrays. In fact, there is no
difference between the two. You can create an array using the list() or
array() functions, or you can explicitly set each array element value.

$a[0] = "abc";
$a[1] = "def";
$b["foo"] = 13;

You can also create an array by simply adding values to the array. When
you assign a value to an array variable using empty brackets, the value
will be added onto the end of the array.

$a[] = "hello"; // $a[2] == "hello"
$a[] = "world"; // $a[3] == "world"

Arrays may be sorted using the asort(), arsort(), ksort(), rsort(), sort(),
uasort(), usort(), and uksort() functions depending on the type of sort
you want.

You can count the number of items in an array using the count()
function.

You can traverse an array using next() and prev() functions. Another
common way to traverse an array is to use the each() function.

Multi-Dimensional Arrays

Multi-dimensional arrays are actually pretty simple. For each dimension
of the array, you add another [key] value to the end:

$a[1] = $f; # one dimensional
examples
$a["foo"] = $f;

$a[1][0] = $f; # two dimensional
$a["foo"][2] = $f;
(you can mix numeric and associative indices)

$a[3]["bar"] = $f;
(you can mix numeric and associative indices)

$a["foo"][4]["bar"][0] = $f; # four dimensional!

In PHP3 it is not possible to reference multidimensional arrays directly
within strings. For instance, the following will not have the desired
result:

$a[3]['bar'] = 'Bob';
echo "This won't work: $a[3][bar]";

In PHP3, the above will output This won't work: Array[bar]. The string
concatenation operator, however, can be used to overcome this:

$a[3]['bar'] = 'Bob';
echo "This will work: " . $a[3][bar];

In PHP4, however, the whole problem may be circumvented by
enclosing the array reference (inside the string) in curly braces:

$a[3]['bar'] = 'Bob';
echo "This will work: {$a[3][bar]}";

You can "fill up" multi-dimensional arrays in many ways, but the
trickiest one to understand is how to use the array() command for
associative arrays. These two snippets of code fill up the one-
dimensional array in the same way:

Example 1:

$a["color"] = "red";
$a["taste"] = "sweet";
$a["shape"] = "round";
$a["name"] = "apple";
$a[3] = 4;

Example 2:
$a = array(
 "color" => "red",
 "taste" => "sweet",
 "shape" => "round",
 "name" => "apple",
 3 => 4
);

The array() function can be nested for multi-dimensional arrays:

<?
$a = array("apple" => array("color" => "red",
 "taste" => "sweet", "shape" => "round"),
 "orange" => array("color"=>"orange",
 "taste" => "tart", "shape" => "round"),
 "banana" => array("color" => "yellow",
 "taste" => "paste-y", "shape" => "banana-
shaped");
echo $a["apple"]["taste"]; # will output
"sweet" ?>

Objects

Object Initialization

To initialize an object, you use the new statement to instantiate the
object to a variable.

<?php
class foo {
 function do_foo() {
 echo "Doing foo.";
 }
}

$bar = new foo;
$bar->do_foo();
?>

For details, read the section Classes and Objects on http://www.php.lt.

Type Juggling

PHP does not require (or support) explicit type definition in variable
declaration; a variable's type is determined by the context in which that
variable is used.

That is to say, if you assign a string value to variable var, var becomes a
string. If you then assign an integer value to var, it becomes an integer.

An example of PHP's automatic type conversion is the addition operator
'+'. If any of the operands is a double, then all operands are evaluated as
doubles, and the result will be a double. Otherwise, the operands will be
interpreted as integers, and the result will also be an integer.

Note that this does NOT change the types of the operands themselves;
the only change is in how the operands are evaluated.

$foo = "0"; // $foo is string (ASCII 48)
$foo++; // $foo is the string "1" (ASCII 49)
$foo += 1; // $foo is now an integer (2)
$foo = $foo + 1.3; // $foo is now a double (3.3)
$foo = 5 + "10 Little Piggies"; // $foo is integer (15)
$foo = 5 + "10 Small Pigs"; // $foo is integer (15)

If you would like to test any of the examples in this section, you can cut
and paste the examples and insert the following line to see for yourself
what's going on:

echo "\$foo==$foo; type is " . gettype ($foo) .
"
\n";

Note: The behaviour of an automatic conversion to array is currently
undefined.

$a = 1; // $a is an integer
$a[0] = "f"; // $a becomes an array, with $a[0]
holding "f"

While the above example may seem like it should clearly result in $a
becoming an array, the first element of which is 'f', consider this:

$a = "1"; // $a is a string
$a[0] = "f"; // What about string offsets? What
happens?

Since PHP supports indexing into strings via offsets using the same
syntax as array indexing, the example above leads to a problem:
should $a become an array with its first element being "f", or should
"f" become the first character of the string $a?

For this reason, the result of this automatic conversion is considered
to be undefined. Fixes are, however, being discussed.

Type Casting

Type casting in PHP works much as it does in C: the name of the desired
type is written in parentheses before the variable which is to be cast.

$foo = 10; // $foo is an integer
$bar = (double) $foo; // $bar is a double

The casts allowed are:
• (int), (integer) - cast to integer
• (real), (double), (float) - cast to double
• (string) - cast to string
• (array) - cast to array
• (object) - cast to object

Note that tabs and spaces are allowed inside the parentheses, so the
following are functionally equivalent:

$foo = (int) $bar;
$foo = (int) $bar;

It may not be obvious exactly what will happen when casting between
certain types. For instance, the following should be noted.

When casting from a scalar or a string variable to an array, the variable
will become the first element of the array:

$var = 'ciao';
$arr = (array) $var;
echo $arr[0]; // outputs 'ciao'

When casting from a scalar or a string variable to an object, the variable
will become an attribute of the object; the attribute name will be 'scalar':
$var = 'ciao';
$obj = (object) $var;
echo $obj->scalar; // outputs 'ciao'

Variables

Variables in PHP are represented by a dollar sign followed by the name
of the variable. The variable name is case-sensitive.

Variable names follow the same rules as other labels in PHP. A valid
variable name starts with a letter or underscore, followed by any number
of letters, numbers, or underscores. As a regular expression, it would be
expressed thus: ' [a-zA-Z_\x7f-\xff] [a-zA-Z0-9_\x7f-\xff]* '

$var = "Bob";
$Var = "Joe";
echo "$var, $Var"; // outputs "Bob, Joe"

$4site = 'not yet'; // invalid; starts with
a number
$_4site = 'not yet'; // valid; starts with an
underscore
$täyte = 'mansikka'; // valid; 'ä' is ASCII
228.

In PHP3, variables are always assigned by value. That is to say, when
you assign an expression to a variable, the entire value of the original
expression is copied into the destination variable.

This means, for instance, that after assigning one variable's value to
another, changing one of those variables will have no effect on the other.

PHP4 offers another way to assign values to variables: assign by
reference. This means that the new variable simply references (in other
words, "becomes an alias for" or "points to") the original variable.

Changes to the new variable affect the original, and vice versa. This also
means that no copying is performed; thus, the assignment happens more
quickly. However, any speedup will likely be noticed only in tight loops
or when assigning large arrays or objects.

To assign by reference, simply prepend an ampersand (&) to the
beginning of the variable which is being assigned (the source variable).

For instance, the following code snippet outputs 'My name is Bob' twice:

<?php
$foo = 'Bob'; // Assign the value 'Bob' to $foo
$bar = &$foo; // Reference $foo via $bar.
$bar = "My name is $bar"; // Alter $bar...
echo $foo; // $foo is altered too.
echo $bar;
?>

One important thing to note is that only named variables may be
assigned by reference.

<?php
$foo = 25;
$bar = &$foo; // This is a valid assignment.
$bar = &(24 * 7); // Invalid; references an
unnamed expression.

function test() {
 return 25;
}

$bar = &test(); // Invalid.
?>

Predefined variables

PHP provides a large number of predefined variables to any script which
it runs. Many of these variables, however, cannot be fully documented
as they are dependent upon which server is running, the version and
setup of the server, and other factors. Some of these variables will not be
available when PHP is run on the command-line.

For a list of all predefined variables (and lots of other useful
information), see (and use) phpinfo().

Apache variables

These variables are created by the Apache webserver. If you are running
another webserver, there is no guarantee that it will provide the same
variables; it may omit some, or provide others not listed here. That said,
a large number of these variables are accounted for in the CGI 1.1
specification, so you should be able to expect those.

Environment variables

These variables are imported into PHP's global namespace from the
environment under which the PHP parser is running. Many are provided
by the shell under which PHP is running and different systems are likely
running different kinds of shells, a definitive list is impossible. Please
see your shell's documentation for a list of defined environment
variables.
Other environment variables include the CGI variables, placed there
regardless of whether PHP is running as a server module or CGI
processor.

PHP variables

These variables are created by PHP itself.
argv

Array of arguments passed to the script. When the script is run on the
command line, this gives C-style access to the command line
parameters. When called via the GET method, this will contain the
query string.

argc
Contains the number of command line parameters passed to the script
(if run on the command line).

PHP_SELF
The filename of the currently executing script, relative to the
document root. If PHP is running as a command-line processor, this
variable is not available.

HTTP_COOKIE_VARS
An associative array of variables passed to the current script via
HTTP cookies. Only available if variable tracking has been turned on
via either the track_vars configuration directive or the
<?php_track_vars?> directive.

HTTP_GET_VARS
An associative array of variables passed to the current script via the
HTTP GET method. Only available if variable tracking has been
turned on via either the track_vars configuration directive or the
<?php_track_vars?> directive.

HTTP_POST_VARS
An associative array of variables passed to the current script via the
HTTP POST method. Only available if variable tracking has been
turned on via either the track_vars configuration directive or the
<?php_track_vars?> directive.

Variable scope

The scope of a variable is the context within which it is defined. For the
most part all PHP variables only have a single scope. This single scope
spans included and required files as well. For example:

$a = 1;
include "b.inc";

Here the $a variable will be available within the included b.inc script.
However, within user-defined functions a local function scope is
introduced. Any variable used inside a function is by default limited to
the local function scope. For example:

$a = 1; /* global scope */
Function Test () {
 echo $a; /* reference to local scope
variable */
}

Test ();

This script will not produce any output because the echo statement refers
to a local version of the $a variable, and it has not been assigned a value
within this scope. You may notice that this is a little bit different from
the C language in that global variables in C are automatically available
to functions unless specifically overridden by a local definition. This can
cause some problems in that people may inadvertently change a global
variable. In PHP global variables must be declared global inside a
function if they are going to be used in that function. An example:

$a = 1;
$b = 2;

Function Sum () {
 global $a, $b;

 $b = $a + $b;
}

Sum ();
echo $b;

The above script will output "3". By declaring $a and $b global within
the function, all references to either variable will refer to the global
version. There is no limit to the number of global variables that can be
manipulated by a function.

A second way to access variables from the global scope is to use the
special PHP-defined $GLOBALS array. The previous example can be
rewritten as:

$a = 1;
$b = 2;

Function Sum () {
 $GLOBALS["b"] = $GLOBALS["a"] +
$GLOBALS["b"];
}

Sum ();
echo $b;

The $GLOBALS array is an associative array with the name of the
global variable being the key and the contents of that variable being the
value of the array element.

Another important feature of variable scoping is the static variable. A
static variable exists only in a local function scope, but it does not lose
its value when program execution leaves this scope. Consider the
following example:

Function Test () {
 $a = 0;
 echo $a;
 $a++;
}

This function is quite useless since every time it is called it sets $a to 0
and prints "0". The $a++ which increments the variable serves no
purpose since as soon as the function exits the $a variable disappears. To
make a useful counting function which will not lose track of the current
count, the $a variable is declared static:

Function Test () {
 static $a = 0;
 echo $a;
 $a++;
}

Now, every time the Test() function is called it will print the value of $a
and increment it.

Static variables also provide one way to deal with recursive functions. A
recursive function is one which calls itself. Care must be taken when
writing a recursive function because it is possible to make it recurse
indefinitely. You must make sure you have an adequate way of
terminating the recursion. The following simple function recursively
counts to 10, using the static variable $count to know when to stop:

Function Test () {
 static $count = 0;

 $count++;
 echo $count;
 if ($count < 10) {
 Test ();
 }
 $count--;
}

Variable variables

Sometimes it is convenient to be able to have variable variable names.
That is, a variable name which can be set and used dynamically. A
normal variable is set with a statement such as:

$a = "hello";

A variable variable takes the value of a variable and treats that as the
name of a variable. In the above example, hello, can be used as the name
of a variable by using two dollar signs. i.e.

$$a = "world";

At this point two variables have been defined and stored in the PHP
symbol tree: $a with contents "hello" and $hello with contents "world".
Therefore, this statement:

echo "$a ${$a}";

produces the exact same output as:

echo "$a $hello";

i.e. they both produce: hello world.

In order to use variable variables with arrays, you have to resolve an
ambiguity problem. That is, if you write $$a[1] then the parser needs to
know if you meant to use $a[1] as a variable, or if you wanted $$a as the
variable and then the [1] index from that variable. The syntax for
resolving this ambiguity is: ${$a[1]} for the first case and ${$a}[1] for
the second.

Variables from outside PHP

HTML Forms (GET and POST)

When a form is submitted to a PHP script, any variables from that form
will be automatically made available to the script by PHP. For instance,
consider the following form:

Example: Simple form variable
<form action="foo.php3" method="post">
 Name: <input type="text" name="name">

 <input type="submit">
</form>

When submitted, PHP will create the variable $name, which will will
contain whatever what entered into the Name: field on the form.

PHP also understands arrays in the context of form variables, but only in
one dimension. You may, for example, group related variables together,
or use this feature to retrieve values from a multiple select input:

Example: More complex form variables
<form action="array.php" method="post">
 Name: <input type="text"
name="personal[name]">

 Email: <input type="text"
name="personal[email]">

 Beer:

 <select multiple name="beer[]">
 <option value="warthog">Warthog
 <option value="guinness">Guinness
 <option value="stuttgarter">Stuttgarter
Schwabenbräu
 </select>
 <input type="submit">
</form>

IMAGE SUBMIT variable names

When submitting a form, it is possible to use an image instead of the
standard submit button with a tag like:

<input type=image src="image.gif" name="sub">

When the user clicks somewhere on the image, the accompanying form
will be transmitted to the server with two additional variables, sub_x and
sub_y. These contain the coordinates of the user click within the image.
The experienced may note that the actual variable names sent by the
browser contains a period rather than an underscore, but PHP converts
the period to an underscore automatically.

HTTP Cookies

PHP transparently supports HTTP cookies as defined by Netscape's
Spec. Cookies are a mechanism for storing data in the remote browser
and thus tracking or identifying return users.

You can set cookies using the SetCookie() function. Cookies are part of
the HTTP header, so the SetCookie function must be called before any
output is sent to the browser. This is the same restriction as for the
Header() function. Any cookies sent to you from the client will
automatically be turned into a PHP variable just like GET and POST
method data.

If you wish to assign multiple values to a single cookie, just add [] to the
cookie name. For example:

SetCookie ("MyCookie[]", "Testing",
time()+3600);

Note that a cookie will replace a previous cookie by the same name in
your browser unless the path or domain is different. So, for a shopping
cart application you may want to keep a counter and pass this along. i.e.

Example: SetCookie Example
$Count++;
SetCookie ("Count", $Count, time()+3600);
SetCookie ("Cart[$Count]", $item, time()+3600);

Environment variables

PHP automatically makes environment variables available as normal
PHP variables.

echo $HOME; /* Shows the HOME environment
variable, if set. */

Since information coming in via GET, POST and Cookie mechanisms
also automatically create PHP variables, it is sometimes best to
explicitly read a variable from the environment in order to make sure
that you are getting the right version. The getenv() function can be used
for this. You can also set an environment variable with the putenv()
function.

Dots in incoming variable names

Typically, PHP does not alter the names of variables when they are
passed into a script. However, it should be noted that the dot (period, full
stop) is not a valid character in a PHP variable name. For the reason,
look at it:

$varname.ext; /* invalid variable name */

Now, what the parser sees is a variable named $varname, followed by
the string concatenation operator, followed by the barestring (i.e.
unquoted string which doesn't match any known key or reserved words)
'ext'. Obviously, this doesn't have the intended result.

For this reason, it is important to note that PHP will automatically
replace any dots in incoming variable names with underscores.

Determining variable types

Because PHP determines the types of variables and converts them
(generally) as needed, it is not always obvious what type a given
variable is at any one time. PHP includes several functions which find
out what type a variable is. They are gettype(), is_long(), is_double(),
is_string(), is_array(), and is_object().

