
Multidimensional Access Methods

Search operations in large data sets require special support.

In databases and other sets of structured data the support is usually
organized by indices. To formalize and implement indices the
corresponding data structures are required.

Index or data structure define an access method to data.

Data structures are grouped into classes:

• One-dimensional data structures

• Main memory multidimensional data structures

• Point access methods (PAMs)

• Spatial access methods (SAMs)

• Etc.

One-dimensional data structures

Hashing

Separate chaining

Coalesced Hashing

Extendible hashing

B-trees

Heaps and Priority Queues

A heap is a special kind of binary tree that leaves no gaps in an array
implementation:
• All leaves are on two adjacent levels.
• All leaves on the lowest level occur at the left of the tree.
• All levels above the lowest are completely filled.
• Both children of any node are again heaps.
• The value stored at any node is at least as large as the values in its two

children.

The first three conditions ensure that the array representation of the
heap will have no gaps in it, the last two conditions give a heap a
weak amount of order.

Main Memory Structures

Running example:

K – D – Tree

k-d-tree is a binary search tree that represents the recursive subdivision of the
universe into subspaces by means of (d-1)-dimensional hyperplanes.

Adaptive k-d-tree

Adaptive k-d-tree choose a split such that one finds about the same number
of elements on both sides. While the splitting hyperplanes are still parallel to
the axes, they do not have to contain a data point and their directions do not
have to be strictly alternating anymore. As a result, the split points are not
part of the input data; all data points are stored in the leaves. Interior nodes
contain the dimension (e.g. x or y) and the coordinate of the corresponding
split. Splitting is continued recursively until each subspace contains only a
single point. The adaptive k-d-tree is not a very dynamic structure; it is
obviously difficult to keep the tree balanced in the presence of frequent
insertions and deletions. The structure works best if all the data is known a
priori and if updates are rare.

BSP Tree

Splitting the universe only along iso-oriented hyperplanes is a severe
restriction. Allowing arbitrary orientations gives more flexibility to find a
hyperplane that is well-suited for the split. The binary space partitioning
(BSP) tree are binary trees that represent a recursive subdivision of the
universe into subspaces by means of (d - 1)- dimensional hyperplanes.

Each subspace is subdivided independently of its history and of the other
subspaces. The choice of the partitioning hyperplanes depends on the
distribution of the data points in a given subspace. The decomposition usually
continues until the number of points in each subspace is below a given
threshold.

The resulting partition of the universe can be represented by a BSP tree,
where each hyperplane corresponds to an interior node of the tree and each
subspace corresponds to a leaf. Each leaf stores references to those data
points that are contained in the corresponding subspace. Figure shows a BSP
tree for the running example with no more than two data points per subspace.

The Quadtree

Point quadtree

Region tree

Point Access Methods

Multidimensional Hashing
Grid File

BANG File

Two-Level Grid File

Twin Grid File

Buddy Tree

The buddy tree is a dynamic hashing scheme with a tree-like directory. The
universe is cutted recursively into two parts of equal size with iso-oriented
hyperplanes, and each interior node corresponds to a partition together with
interval. The interval corresponds to MBB, covering points below of given
node. Also:

• Each directory node contains at least two entries;

• Whenever a node is split, the MBB and subnodes are recomputed, to fit

situation;

• Except for the root of the directory, there is exactly one pointer referring to

each directory page.

K-D-B-Tree

The k-d-B-tree combines properties of the adaptive k-d-tree and the B-tree.

hB-tree

The hB-tree (holey brick tree) is similar to k-d-B-tree, except that splitting of
the node is done based on multiple attributes, the result is somewhat fractal
structure, with external enclosing regions and several cavities called
extracted regions.

LSD Tree

Space-filling curves

Z-ordering

Basic properties of spatial data:

1. spatial data has a complex structure (a spatial data object may be

composed of a single point or several thousands of point sets, arbitrarily
distributed across space. It is usually not possible to store collections of
such objects in a single relational table with a fixed tuple size)

2. spatial data is often dynamic (insertions and deletions are

interleaved with updates, and data structures used in this context have to
support this dynamic behavior)

3. spatial databases tend to be large (the seamless integration of

secondary and tertiary memory is therefore essential for efficient
processing)

4. there is no standard algebra defined on spatial data (no

standardized set of base operators. The set of operators heavily depends on
the given application domain)

5. many spatial operators are not closed (the intersection of two

polygons, for example, might return any number of single points, dangling
edges, or disjoint polygons)

6. although the computational costs vary between operators,

spatial database operators are generally more expensive
than standard relational operators

