
Expressions and Operators

JavaScript expressions are formed by combining literal values and variables with
JavaScript operators. Parentheses can be used in an expression to group
subexpressions and alter the default order of evaluation of the expression. For
example:

l+2
total /n
sum(o.x, a[3]) + +
(1+2)*3

JavaScript defines a complete set of operators, most of which should be familiar
to all C, C++, and Java programmers. In the following table, the P column
specifies operator precedence and the A column specifies operator associativity:

L means left-to-right associativity, and R means right-to-left associativity.

P A operator operation performed

15 L . access an object property

L [] access an array element

L () invoke a function

14 R ++ unary pre- or post-increment

R - - unary pre- or post-decrement

R - unary minus (negation)

R ~ numeric bitwise complement

R ! unary boolean complement

R delete undefine a property

R new create a new object

R typeof return type of operand

R void return undefined value

13 L *, /, % multiplication, division, modulo

12 L +, - addition, subtraction

L + string concatenation

11 L << integer shift left

L >> shift right, sign extension

L >>> shift right, zero extension

10 L <, <= less than, less than or equal

L >, >= greater than, greater than or equal

9 L ==, != test for equality or inequality

L ===, !== test for identity or non-identity

8 L & integer bitwise AND

7 L ^ integer bitwise XOR

6 L | integer bitwise OR

5 L && logical AND, evaluate 2nd operand only if 1st is true

4 L | | logical OR, evaluate 2nd operand only if 1st is false

3 L ?: conditional: if ? then : else

2 R = assignment

R *=, +=, -

=, etc.

assignment with operation

1 L , multiple evaluation

Statements

A JavaScript program is a sequence of JavaScript statements. Most JavaScript
statements have the same syntax as the corresponding C, C++, and Java
statements:

Expression statements
Every JavaScript expression can stand alone as a statement. Assignments,
method calls, increments, and decrements are expression statements. For
example:

s = "hello world";
x = Math.sqrt(4);

X++

Compound statements
When a sequence of JavaScript statements is enclosed within curly braces, it
counts as a single compound statement. For example, the body of a while loop
consists of a single statement. If you want the loop to execute more than one
statement, use a compound statement. This is a common technique with if, for,
end other statements described later.

Empty statements
The empty statement is simply a semicolon by itself. It does nothing, and is
occasionally useful for coding empty loop bodies.

Labeled statements
In JavaScript 1.2, any statement can be labeled with a name. Labeled loops can
then be used with the labeled versions of the break and continue statements:

label : statement

break
The break statement terminates execution of the innermost enclosing loop, or,
in JavaScript 1. 2, the named loop:

break ;
break label ; // JavaScript 1.2

case
Case is not a true statement. Instead it is a keyword used to label statements
within a JavaScript 1.2 switch statement:

case constant-expression:
statements
[break ;]

Because of the nature of the switch statement, a group of statements labeled by
case should usually end with a break statement.

continue
The continue statement restarts the innermost enclosing loop, or, in JavaScript
1.2, restarts the named loop:

continue ;

continue label ; //JavaScript 1.2

default
like case , default is not a true statement, but instead a label that may appear
within a JavaScript 1. 2 s w i t c h statement:

defau1t :
statements
[break ;]

do/while
The do/whi1e loop repeatedly executes a statement while an expression is true .
It is like the whi1e loop, except that the loop condition appears (and is tested)
at the bottom of the loop. This means that the body of the loop will be executed
at least once:

do
statement
while (expression) ;

This statement is new in JavaScript 1.2. In Navigator 4, the continue statement
does not work correctly within do / while loops.

export
The e x p o r t statement was introduced in Navigator 4. It intakes the specified
functions and properties accessible to other windows or execution contexts:

export expression L, expression [, expression …] ;

for
The f o r statement is an easy-to-use loop that combines the initialization and
increment expressions with the loop condition expression:

for (initialize ; test ; increment)
statement

The for loop repeatedly executes a statement as long is its test expression is t r
u e . It evaluates the initialization expression once before starting the loop and
evaluates the increment expression at the end of each iteration.

for/in
The f o r/ i n statement loops through the properties of a specified object:

for (variable in object)
statement
The f o r/ i n loop executes a statement once for each property of an object.
Each nine through the loop, it assigns the name of the current property to the
specified variable. Some properties of pre-defined JavaScript objects are not
enumerated by the f o r / i n loop. Userdefined properties are always
enumerated.

function
The f u n c t i o n statement defines a function in a JavaScript program:

function funcname(args) { statements }

This statement defines a function named funcname, with a body that consists
of the specified statement, and arguments as specified by args. args is a
comma-separated list of zero or more argument names. These arguments can
be used in the body of the function to refer to the parameter values passed to
the function.

if /else
The i f statement executes a statement if an expression is t r u e:

if (expression)
statement

When an e l se clause is added, the statement executes a different statement if
the expression is f a 1 s e:

if (expression)
statement

e l se
statements2

Any e l se clause may be combined with a nested i f / e l s e statement to
produce an e l s e / i f statement:

if (expression)
statement

else if (expressions2)
statements2

e l se
statements3

import
The i m p o r t statement was introduced in Navigator 4 along with export. It
makes the named functions and variables available in the current window or
execution context, or, in the second form of the statement, makes all properties
and methods of the specified object available within the current context:

import expression [, expression] ;
 import expression.* ;

return
The r e t u r n statement causes the currently executing function to stop
executing and return to its caller. If followed by an expression, the value of that
expression is used as the function return value.

return ;
return expression ;

switch
The s w i t c h statement is a multi-way branch. it evaluates an expression and
then jumps to a statement that is labeled with a case clause that matches the
value of the expression. If no matching case label is found, the s w i t c h
statement jumps to the statement, if any, labeled with d e f a u l t:

switch (expression) {
case constant-expression: statements

 [case constant-expression: statements]
[…]

default: statements

var
The v a r statement declares and optionally initializes one or more variables.
Variable declaration is optional in toplevel code, but is required to declare local
variables within function bodies:

var name [=value] [, name2 [value2] ...] ;

while

The w h i I e statement is a basic loop. it repeatedly executes a statement while
an expression is true:
while (expression)

statement ;
with

The w i t h statement adds an object to the scope chain, so that a statement is
interpreted in the context of the object:

with (object)
statement ;

The use of w i t h statements is discouraged.

Regular Expressions

JavaScript 1.2 supports regular expressions, using the same syntax is Perl 4. A
regular expression is specified literally as a sequence of characters within forward
slashes (/), or as a JavaScript string passed to the RegExp() constructor. The
optional g (global search) and i (case-insensitive search) modifiers may follow the
second / character, or may be passed to RegExp(). The following table
summarizes regular expression syntax:

Character Meaning

\n,\r,\t Match literal newline, carriage return, tab

\\, \ /, \ *,

\+, \ ?, etc.

Match a special character literally, ignoring

or escaping its special meaning

[…] Match any one character between brackets

[^…] Match any one character not between brackets

. Match any character other than newline

\w, \W Match any word/non-word character

\s, \S Match any whitespace/non-whitespace

\d, \D Match any digit/non-digit

^, $ Require match at beginning/end of a string, or in multi-lane mode,

beginning/ end of a line

\b,\B Require match at a word boundary non- boundary

? Optional term; Match zero or one time

+ Match previous term one or more times

* Match term zero or more times

{n} Match previous term exactly n times

{n, } Match previous term n or more times

{n,m} Match at least n but no more than m times

a I b Match either a or b

(sub) Group sub-expression sub into a single term, and remember the text

that it matched

\n Match exactly the same characters that were matched by sub-

expression number n

$n In replacement strings, substitute the text that matched the nth sub-

expression

JavaScript in HTML

Client-side JavaScript code may be embedded in HTML files in several ways:

<SCRIPT> tag
Most JavaScript code appears in HTML files between a <SCRIPT> tag and a
</SCRIPT> tag. The <SCRIPT> tag can also be used to include an external
file of JavaScript code into an HTML document. The <SCRIPT> tag supports
a number of attributes, including these three important ones:

LANGUAGE
Specifies the scripting language in which the script is written. In most
browsers, this attribute defaults to "JavaScript". You must set it if you are
mixing scripting languages, such as IavaScript and VBScript.

Set this attribute to "JavaScript1.l" to specify that the code uses
JavaScript 1.1 features, and that it should not be interpreted by JavaScript 1.0
browsers. Set this attribute to "JavaScript l.2" to specify that only Java Script
1.2 browsers should interpret the code. (Note, however, that Navigator 4 has
some non-standard behaviors when "JavaScript 1.2" is specified.)

SRC
Specifies the URL, of an external script to be loaclecl and executed. Files of
JavaScript code typically have a .js extension. Note that the </SCRIPT> tag
is still required when this attribute is used. Supported in Iavascript 1.1 and
later.

ARCHIVE
Specifies the URL of a JAR file that contains the script specified by the SRC
attribute. Supported in JavaScript 1.2 and later. Archives are required to use
Navigator 4 signed scripts.

Event handlers
JavaScript code may also appear as the Value of event handler attributes of
HTML tags. Event handler attributes alwavs begin with "on". The code
specified by one of these attributes is executed when the named event occurs.
For example, the following HTML specifies a button that displays a clialog box
when clicked:

<INPUT TYPE=button VALUE="Press Me"
onClick="alert('hello world!');">

JavaScript URLs
JavaScript code may appear in a URL that uses the special javascript: pseudo-
protocol. The JavaScript code is evaluated, and the resulting value (converted
to a string, if necessary) is used as the contents of the URL. Use the void
operator if you want a javascript URL, that executes JavaScript statements
without overwriting the Current document:

<FORM ACTION="JavaScript:void validates">

JavaScript entities
In JavaScript 1.1, HTML attribute values may contain a javascript code in the
form of javascript entities. An HTML entity is a string like & l t ; that represents
some other character or string. A JavaScript entity is javascript code contained
within &{ and } ;. Its value is the value of the JavaScript expression within:

<BODY BGCOLOR="& { getFavoriteColor() };">

Forms

One of the powerful features of JavaScript is its ability to manipulate HTML
forms. HTML defines the following form elements:

Button (<INPUT TYPE=button>)
A graphical Push button; o n C 1 i c k events

Checkbox (<INPUT TYPE=checkbox>)
A toggle button without mutually-exclusive behavior;
o n C l i c k events

FileUpload (<INPUT TYPE=file>)
A file entry field and file browser; onchange events

Hidden (<INPUT TYPE=hidden>)
A non-visual datafield; no event handlers

Option (<OPTION>)
An item within a Select list; event handlers are on the Select object, not Option
objects

Password (<INPUT TYPE=Password>)
An input field for sensitive data; onChange events

Radio (<INPUT TYPE=radio>)
A toggle button with mutually-exclusive "radio" behavior;
o n C l i c k events

Reset (<INPUT TYPF=reset>)
A button that resets a form; o n C 1 i c k events

Select (< SELECT [MULTIPLE] > . . . </SELECT>)
A list or drop-down menu from which one or more Option items may be
selected; onChange events

Submit (<INPUT TYPE=submit>)
A button that submits a form; o n C 1 i c k events

Text (<INPUT TYPE=text>)
A single-line text entry field; o n C h a n g e events

TextArea (<TEXTAREA> . . . </TEXTAREA>)
A multi-line text entry fields; onChange events

A web page containing each type of form element:

Events

Client-side JavaScript supports a number of event types. The following table lists
the event handlers and the client-side objects that support the handlers. Note that
some events, such as onDblClick, are not reliably generated on all platforms.

Event Handler Supported By

onAbort Image (JavaScript 1.1)
onBlur,
onFocus

Text elements; Window and all other form elements (1.1)

onChange Select, text input elements
onClick Button elements, Link. Return false to cancel default action.
onDblClick Document, Link, Image, Button elements (1.2)
onError Image, Window (1.1)

onKeyDown,
onKeyPress,
onKeyUp

Document, Image, Link, text elements (1. 2). Return fa1se to
cancel.

onLoad,
onUnload

Window; Image in 1.1

OnMouseDow
n, onMouseUp

Document, Link, Image, Button elements (I. 2). Return fa1se to
cancel.

onMouseOver,
onMouseOut

Link; Image and Layer (1. 2). Return true to prevent URL display.

onReset,
onSubmit

Form (1. 1). Return f a I se to prevent reset or submission.

JavaScript Security Restrictions

For security reasons, there are restrictions on the tasks that untrusted JavaScript
code can perform. In Navigator 4, signed scripts can circumvent these restrictions
by requesting certain privileges:

Same origin policy
Scripts can only read properties of windows and documents that were loaded
from the same web server unless they have Universa1BrowserRead.

User's browsing history
Scripts cannot read the array of URI,s from the History object without
Universa1BrowserRead.

File upLoads
Scripts cannot set the value property of the FileUpload form element without
UniversalBrowserRead.

Sending email and posting news
Scripts cannot submit forms to a mailto: or news: URL without user
confirmation or UniversalSendMai1.

Closing windows
A script can only close browser windows that it created, unless it gets user
confirmation or has UniversalBrowserWrite.

Snooping in the cache

A script cannot load any about: URls, such as about: cache, without
UniversalBrowserRead.

Hidden windows and window decorations
A script cannot create small or offscreen windows or windows without i
titlebar, and cannot show or hide window decorations without
UniversalBrowserWrite.

Intercepting or spoofing events
A script cannot capture events from windows or documents from a different
server and cannot set the fields of an Event object without
UniversalBrowserWrite.

Reading and setting preferences
A script cannot read or write user preferences using Navigator.preferences
without
UniversalPreferencesRead or UniversalPreferencesWrite.

Global Properties

Core JavaScript defines two global constants:

Infinity
A numeric constant that represents infinity. Internet Explorer 4; ECMA-262; not
supported by Navigator 4.

NaN
The not-a-number constant. Internet Explorer 4, ECMA-262; not supported by
Navigator 4.

In addition to these core global properties, the Window object defines a number
of client-side global properties.

Global Functions

Core JavaScript defines a handful of global functions:

escape(s)
Encode a string for transmission. JavaScript 1.0; ECMA-262; Unicode support
in Internet Explorer 4.

eval(code)
Execute JavaScript code from a string.

getClass(javaobj)
Return the JavaClass of a Java0biect. Navigator 3.

isFinite (n)
Determine whether a number is finite. JavaScript 1.2; ECMA-262.

isNaN (x)
Check for not-a-number. JavaScript 1. 1 ECMA-262.

parsefloat(s)
Convert a string to a number. JavaScript 1.0; enhanced in JavaScript 1.1;
ECMA-262.

parseInt(s, radix)
Convert a string to an integer. JavaScript 1.0; enhanced in JavaScript 1.1;
ECMA-262.

unescape(s)
Decode an escaped string. JavaScript 1.0; ECMA-262; Unicode support in
Internet Explorer 4.

In addition to these core global functions the Window object defines a number of
client-side global methods.

