—1-- A. Juozapavicius

Duomeny baziy projektavimas

Duomeny baziy projektavimas yra didesnio uzdavinio - informacinés sistemos
projektavimo - dalis. Informacingje sistemoje yra ne tik renkami, saugomi ir klasifikuojami
duomenys, jie taip pat transformuojami i informacija. Reikalavimy informacinei sistemai
nustatymas ir jos riby apibrézimas yra sistemy analizés esme. Informacinés sistemos kirimo
procesas vadinamas taip pat sistemy vystymo (system development) vardu.

Duomeny transformavimas | informacija

Duomenys yra zaliava, saugoma duomeny bazése. Transformuojant juos i informacija,
lemia efektyvus duomeny baziy projektavimas. Kadangi tinkamas duomeny rinkimas, saugojimas
ir atranka yra bet kokios organizacijos esmin¢ veikla, jos iSkreipti negalima. Asmeniui priimant
sprendimus reikalinga informacija, kuri yra ne kas kita kaip prasmingai iSdéstyti duomenys — tai
ir yra duomeny transformavimo prasme.

Duomenys > : e > .. > .
du y » Taikomoji Y Informacija "|Sprendimai
uomeny programa
bazéje

Informacinés sistemos naSumas priklauso nuo faktoriy trijulés:
* duomeny bazés projekto ir jdiegimo,
* taikomyjy programy projekto ir idiegimo
e administraciniy procediiry.

Sistemy analizé ir vystymas reikalauja gana daug planavimo tam, kad uztikrinti saveika
tarp visy veiklos komponenty, tam kad jie papildyty vienas kita ir kad uzsibaigty laiku.

Pladigja prasme terminas duomeny bazés vystymas yra naudojamas duomeny bazés
projektavimo ir jdiegimo procesy apraSymui. Pagrindinis duomeny bazés projektavimo tikslas yra
sukurti pilnus, normalizuotus, (kiek imanoma) neperteklinius bei koncptualiai, logiSkai ir fiziSkai
pilnai nepriestaringus duomeny baziy modelius. Diegimo fazé apima duomeny bazés saugojimo
struktiiros sukiirima, reikamuy vartotoju duomeny suraSyma, ir duomeny valdymo priemoniy

sudaryma.

Sistemy Vystymo Gyvavimo Ciklas (SVGC)
The Systems Development Life Cycle (SDLC)

Sistemuy Vystymo Gyvavimo Ciklas (SVGC) dokumentuoja informacinés sistemos
istorija (gyvavimo cikla). Duomeny baziy projektavimas vyksta informacinés sistemos aplinkoje
ir yra sunku atskirti duomenuy baziy projektavima nuo SVGC (ir atvirkS¢iai).

SVGC yra daugiau iteratyvus nei nuoseklus procesas. Pavyzdziui, jvykdymo galimybiy
analiz¢ padeda nustatyti pradini ivertinima, o informacija, gauta nagrin¢jant SVGC vartotojo
reikalavimus ar juy dalj padeda nustatyti jvykdymo galimybes. PanaSiai kaip informacinés
sistemos, duomeny bazes, kurios yra ju dalys, yra subjektai, kuriuos veikia gyvavimo ciklas.

-2 - A. Juozapavicius

l

Planavimas . Pradinis jvertinimas
. Ivykdymo galimybés

Analizé . Vartotojy reikalavimai
. Esamos sistemos nagrinéjimas

. Loginis sistemos projektavimas
Detalus sistemos . Detali sistemos specifikacija
projektavimas
Diegimas . Programavimas, testavimas, klaidy
taisymas

. Instaliacija, derinimas

Palaikymas . [vertinimas
. Palaikymas
| . Plétimas

Sistemy Vystymo Gyvavimo Ciklas (SVGC)
Planavimas

SVGC planavimo fazé¢ sudaro bendra kompanijos ir jos tiksly apzvalga. Cia padaromas
pradinis informacijos srauty ir ty srauty jtakos riby ivertinimas, kuris turi duoti atsakymus i
klausimus:

* Ar toliau naudotis egzistuojancia informacine sistema? Ar informacijos generatorius gerai
atlieka savo darba? Ar reikia ji modifikuoti arba pakeisti?

* Ar reikalinga nedidelé, ar didel¢ modifikacija? Kai modifikavimas bus atlickamas, reikia
jausti ir vertinti skirtuma tarp nory ir poreikiy.

* Ar reikia pakeisti esama sistema? Turint omeny pastangas, reikalingas sukurti nauja sistema,
reikia labai kruops¢iai atskirti norus ir poreikius.

SVGC pradinio jvertinimo dalyviai turi iSnagrinéti ir jvertinti alternatyvius sprendimus.

Igyvendinimo galimybiy nagrinéjimas turi apimti:

e aparatings ir programinés jrangos techninius aspektus (aparatiiros tipas, reikalavimai
programinei irangai, duomeny bazes tipas ir jos programiné jranga, programavimo kalbos,
naudojamos taikomiesiems tikslams ir t.t.;

* sistemos sanaudas.

Analizé

Problemos, nustatytos planavimo faz¢je, detaliau nagrinéjamos analizés fazé¢je. Atliekama
tick mikroanalizé, remiantis individualiais poreikiais, tiek ir makroanalizé, reminantis visos
organizacijos poreikiais:

* Kokie yra tikslus galutiniy vartotojy reikalavimai esamai sistemai ?
* Ar Sie reikalavimai tinka prie visuotiniy informaciniy reikalavimy ?
SVGC analizes fazé faktiskai yra kruopstus vartotojy reikalavimy auditas.

-3- A. Juozapavidius
Analizés fazéje taipogi nagrin€jamos esamos aparatinés ir programinés sistemos. Analizés
rezultatas turi biiti kur kas i§samesnis sistemos funkciniy sriciy, potencialiy problemy ir galimybiy
pazinimas.

Kartu su vartotoju reikalavimuy ir esamy sistemu nagrin¢jimu, analizés fazéje kuriamas
loginis sistemos projektas. Kuriant logini projekta projektuotojas gali naudoti jrankius:
* Duomeny Tékmés Diagramas (DTD),
* Hierarchines Ivedimo Apdorojimo ir ISvedimo (HIAI) diagramas,
* Esybiy - Rysiuy (E-R) diagramas.

Sis duomeny baziy proektavimo procesas dar vadinamas duomeny modeliavimu (data-
modeling), ir jo tikslas yra rasti ir apraSyti visas esybes, ju atributus ir santykius tarp esybiy
duomeny bazéje.

Kiekvienam procesui duomenuy bazés aplinkoje, loginis sistemos apraSymas sudaro
sistemos komponenty (moduliy) funkcinius aprasus (FA). Visos duomeny transformacijos
(procesai) yra aprasomos ir dokumentuojamos naudojant tokius sistemuy analizés jrankius, kaip
DTD (Duomeny Tékmeés Diagramos). Ju pagalba yra patikrinamas koncepcinis duomeny modelis.

Detalus sistemos projektavimas

Detalaus sistemos projektavimo fazéje, projektuotojas uzbaigia sistemos procesy
projektavima. Tai apjungia visas reikalingas technines specifikacijas formoms, meniu sistemoms,
ataskaitoms ir kitiems dalykams, kuriy tikslas - padaryti sistema efektyvesne informacijos
generavimo prasme. ISdéstomi peréjimo 1§ senos sistemos i nauja zingsniai. Suplanuojami ir
pateikiami valdybos pritarimui vartotojuy apmokymo principai ir metodai.

Idiegimas

Diegimo fazé¢je yra instaliuojama aparatiira ir pridétinés programos, be to idiegiamas
duomeny bazés projektas. Pradinése diegimo fazés dalyse sistema jeina | programavimo,
testavimo ir taisymo cikla, kol netaps paruosta naudojimui. Pacios duomeny bazés sistema yra
suderinama kuriant lenteles, duomeny vaizdus, po to autorizuojami vartotojai ir t.t.

Duomeny bazés turinys gali buti suvestas interaktyviai arba paketiniame rezime, naudojant
ivairius metodus ar irenginius:
1. tam pritaikytas vartotojo programas
2. duomeny bazés interfeiso programas
3. konvertavimo programas, kurios importuoja duomenis i§ vienos faily sistemos i Kkita,
naudojant automatizavimo programas, duomeny bazés pagalbines programas, irpan.

Sistema reikia intensyviai testuoti, kol ji netaps tinkama vartojimui. TradiciSkai {diegimas
ir testavimas uzima nuo 50 iki 60 proc. viso vystymo laiko, tac¢iau galingy programy kiirimo bei
testavimo jrankiy pasirodymas vis mazina programavimo ir testavimo laika. Baigus testavima,
perziirima ir atspausdinama galutiné dokumentacija bei apmokomi vartotojai. Sios fazés

v —

Palaikymas

Beveik 18§ karto, kai tik sistema pradeda veikti, vartotojai pradeda reikalauti pakeitimy. Tie
pakeitimai ir sudaro sistemos palaikymo veikla, kurig galima i$skaidyti { tris tipus:
1. Taisymo palaikymas, reaguojant i sistemos klaidas;
2. Derinimo palaikymas dél pasikeitimy veiklos aplinkoje;

-4 - A. Juozapavidius
3. Tobulinimo palaikymas sistemos plétimui.

Kadangi kiekvienas struktirinis pakeitimas reikalauja pakartotinio SVGC zingsniy
pragjimo, ta prasme sistema pastoviai yra SVGC cikle.

Faktoriai, kurie trumpina sistemos darbo cikla:
» greita technologijos pazanga;
» sistemos palaikymo kaina.

Jei palaikymo kaina didelé - sistemos naudojimas kelia jtarima. Kompiuterinés sistemy
inzinerijos (CASE) technologija jgalina kurti geresnes sistemas per priimting laiko tarpa ir
priimtina kaina. Be to, CASE pagalba sukurty taikomuju programy rafinuotumas leidzia pratesti
sistemos gyvavimo trukmg.

Duomenuy Bazés Gyvavimo Ciklas (DBGC)

Stambesnéje informacingje sistemoje duomeny bazés irgi turi gyvavimo cikla. Duomeny
Bazés Gyvybes Ciklas yra sudarytas i$ SeSiy faziy:

. e Kompanijos situacijos analizé
__[pirminis DB . Pr’l(ibllemq 1rv apribojimy apraSymas
nagrinéjimas © T S qv aprasymas .
e Akiracio ir riby aprasymas
. |DB * Koncepcinio projekto kiirimas
projektavimas * Loginio projekto kiirimas
* Fizinio projekto kiirimas
| |Diegimas ir * DBVS instaliavimas
ivedimas * Duomeny bazés(iy) kiirimas
¢ Duomeny jvedimas ar konvertavimas
| |Testavimas ir ¢ Duomeny bazés testavimas
[vertinimas ¢ Duomeny bazés derinimas
e DB ir jos taikomyjy programy
[vertinimas
| [Veikimas * Reikalaujamo
informacijos srauto
apdorojimas
Palaikymas ir * Atliekami pakeitimai
evoliucija e I§plétimas

Duomeny bazés pirminis nagrinéjimas
Tyrinédamas esamos sistemos veikima kompanijoje, projektuotojas turi nustatyti ko ir
kodél esama sistema nesugeba. Nors duomeny bazes projektavimas yra grynai technine veikla, bet
Jji gan socialiai orientuota. Duomeny baziy projektuotojams reikia daug komunikabilumo.
Pastaba: priklausomai nuo duomeny bazés aplinkos prognozuojamo sudétingumo ir
akiracio , projektuotojas gali biiti vienas asmuo arba gali buti visa sistemy vystymo komanda,
sudaryta i§ projekto vadovo ir sistemy analitiky.

-5- A. Juozapavidius
Bendras pradinio duomenuy bazés nagrin¢jimo tikslas yra:
* Atlikti kompanijos analize
e ApraSyti problemas ir apribojimus
e Aprasyti tikslus
* ApraSyti akiratj ir ribas (scope and boundaries)
Duomeny bazés pradinis nagrinéjimas veda prie duomeny bazés sistemos tiksly vystymo.

Kompanijos situacijos analize

! v +

Kompanijos Kompanijos Kompanijos
tikslai veikla struktiira

+

Problemuy ir apribojimy apraSymas

Duomeny bazes sistemos specifikacija

Tikslai Akiratis Ribos

Duomeny bazés pradinio nagrinéjimo veiklos santrauka

Kompanijos situacijos analizé:
» Kokia yra organizacijos pagrindinés veiklos aplinka ir kokie yra jos tikslai Sioje aplinkoje?
Projektas turi patenkinti veiklos poreikius sukurtus pagal organizacijos tikslus;
« Kokia yra organizacin¢ struktiira? Zinojimas kas ka valdo ir kas kam atsiskaitingja yra
naudingas nustatant reikiamus informacijos srautus, ataskaitas, uzklausy formatus ir kt.
Problemy ir apribojimy apraSymas (apimant formalius ir neformalius informacijos
Saltinius):
» Kaip veikia esama sistema?
* Kokiy jvedamy duomeny reikia sistemai?
» Kokius dokumentus sistema generuoja?
* Kaip naudojami sistemos iSvedami duomenys?
* Kas naudoja?
Popieriniy keliy nagrin¢jimas btna labai informatyvus. NuoSaliai nuo oficialios
informacijos egzistuoja neformali reali informacija. Projektuotojas turi buiti pakankamai jzvalgus,
kad pastebeti kuom jie skiriasi.

-6-- A. Juozapavidius
Tiksly aprasSymas.

Sitloma duomeny baziy sistema turi padéti spresti bent didziausias problemas
identifikuotas problemu apraSymo fazéje. Kai atskleidziamas problemy sarasas, tai greiCiausiai
bus surasti bendri Saltiniai. Pavyzdziui marketingo ir gamybos vadybininkai yra nepatenkinti
inventorizacijos neefektyvumu. Jei projektuotojas sukuria duomeny baze, kuri jgalina efektyvesni
inventoriaus valdyma, tai abu skyriai iSloSia. Taigi pradinis tikslas turi buti efektyvesnés
inventoriaus apskaitos ir valdymo sistemos sukiirimas.

» Koks yra sitilomos sistemos pradinis tikslas ?
* Ar sistema galés dirbti su kitomis esamomis ar biisimomis kompanijos sistemomis?
* Ar sistema dalinsis duomenimis su kitomis sistemomis ar vartotojais?

AKiratis ir ribos.

Projektuotojas turi kreipti démesi i dvieju tipy apribojimus, kurias turi sistemos: akiratj ir
ribas. Sistemos akiratis apima projekto panaudojamuma, kaip ji apibréZia operaciniai reikalavimai
(ar projektas apima visa organizacija, viena ar kelis organizacijos skyrius, ar viena ar kelias
vienintelio skyriaus funkcijas).

Sistema taip pat apribota eile iSoriniu faktoriy: biudzeto, egzistuojancios aparatinés ir
programinés {rangos

Akiratis ir ribos tampa faktoriais, kurie pakreipia projekta sava linkme. Projektuotojo
darbas yra sukurti geriausia sistema, kuri apimty reikiama akirati ir tilpty i ribas. (Verta pastebéti,
kad problemy apraSymai ir tiksly apraSymai kartais turi biiti pakeisti tam, kad prisiderinti prie Siuy
dviejy apribojimy).

Duomeny bazés projektavimo procesas
Sis etapas yra susietas su duomeny bazés, kuri palaikyty kompanijy operacijas ir objektus,
projektavimu. Duomenuy bazés projektavimo procese reikia koncentruotis | duomeny
charakteristikas, reikalingas DB modelio sudarymui.

Kompanija

Verslo vienetas Verslo vienetas Verslo vienetas
| |

Bendra (shared) informacija

\

Kompanijos duomeny bazé

Verslo pozitris:

* Kas yra problemos?

* Kas yra sprendimai?

* Kokios informacijos reikia sprendimy jgyvendinimui?

* Kokiy duomeny reikia tam, kad kurti naudinga informacja?
Projektuotojo pozitiris:

» Kaip duomenys turi biiti strukturizuoti?

* Kaip duomenys turi biiti prieinami?

* Kaip duomenys turi biiti transformuojami | informacija?

i A. Juozapavicius

Koncepcinis projektavimas
Apibrézti vartotojo perzitiros,
tvedimo ir tranzakcijy
apdorojimo reikalavimus

Analizé ir reikalavimai

Apibrézti esybes, atributus ir
Esybiy rysiy modeliavimas ir normalizacija reliacinius rysius. Brézti E-R
diagramas. Normalizuoti
lenteles.

Apibrézti pagrindinius
procesus, sukiirimo, pakeitimo
ir naikinimo taisykles.
Patvirtinti praneSimus,
uzklausas, perzitiras,
vientisuma ir sauguma.

Apibrézti lenteliy vietas,
pri¢jimo reikalavimus ir
fragmentacijos strategijas.

Modelio patikrinimas

DB projektavimas

Programy jrangos rinkimas

Abstrak¢iy modeliy
transformavimo | lenteles,
interfeisa ir t.t. apibrézimus.

Loginis projek-
tavimas

Apibrézti duomeny saugojimo
struktiiras, pri¢jimo kelius
optimaliam operavimui.

Fizinis projekta-
vimas

Nagrinéjant procediras, reikalingas DBGC projektavimo etapui, reikia:

* DB projektavimo procesas yra priklausomas nuo didesnés apimancios sistemos nagrinéjimo ir
projektavimo. Duomeny komponenté yra tik vienas i§ informacinés sistemos elementy.

» Sistemos analitikai arba sistemos programuotojai kartu projektuoja ir kitas sistemos
komponentes; jie kuria procediras, kurios padeda transformuoti DB duomenis i naudinga
informacija.

* DB projektavimas nesudaro nuoseklaus proceso; prieSingai, tai yra pasikartojantis procesas,
kuris turi nuolatinj griztamaji rysi, suprojektuota tam, kad sekti ir ankstesnius veiksmus.

Koncepcinis (scheminis) projektavimas
Scheminiame projektavime duomeny modeliavimas yra naudojamas, kad sukurti
abstrakc¢ios DB struktiira, kuri atvaizduoja realaus pasaulio objektus. Scheminis modelis turi turéti
savyje verslo ir jo sfery supratima. Sitame abstrakcijos lygyje kompiuterinés aparatiiros ir/arba
DB modelis gali buti nenustatytas ir jis turi buti nepriklausomas nuo kompiuterinés aparatiiros ir
nuo programings irangos, kad sistema galéty dirbti bet kokioje, véliau parinktoje, platformoje.
Minimaliy duomeny taisyklé:

-8 -- A. Juozapavicius

Visa, ko reikia - yra, ir visa, kas vra - reikalinga.

Visi duomeny elementai, reikalingi DB tranzakcijoms, turi bati apibrézti modelyje, ir visi
duomeny elementai, apibrézti modelyje, turi buti panaudoti bent vienoje i$ tranzakciju. Taciau
reikia apibrézti ne tik duomenis, reikalingus dabar versle, bet ir duomenis, kuriy reikés véliau
(ateityje), paliekant vietos blisimoms modifikacijoms ir papildymams ir uztikrinant tgstinuma.

Duomeny analizé ir reikalavimy parinkimas

Sekantis scheminio projektavimo Zingsnis yra apibrézti duomeny-komponenciy detales.
Duomeny-komponenciy dalys yra tai, kas gali buti transformuota i atitinkama informacija.
Projektuotojo pastangos turi buti susikoncentruotos i:

» Informacijos reikalingumq. Kokios riiSies informacijos reikia? Kokj iSvedima (atsakyma) turi
sugeneruoti sistema?

* Informacijos Saltinius. Kur informacija turi buti randama? Kaip informacija turi buti paimta,
kai ji jau surasta?

» Informacijos vartotojus. Kas naudosis $ia informacija? Kaip informacija turi biiti naudojama?
Kokie yra jvairiy vartotojy poziiiriai { duomenis?

* Informacijos striktiirq. Kokiy duomeny reikia tam,kad sudaryti informacija? Kokie yra
duomeny atributai? Kokie rysiai egzistuija tarp duomeny? Kokia yra duomeny apimtis? Kaip
daznai duomenys yra vartojami? Kokios duomenuy transformacijos turi buti panaudotos tam,
kad sukurti reikiama informacija?

Projektuotojui rekia atkreipti démesi 1 tokius aspektus:

* vartotojy poziiriy | duomenis formavimas ir surinkimas.

* esamos sistemos tiesiogniai stebéjimai. egzistuojantis ir reikalaujami isvedimai.

* pastovus kontaktas su sistemos projektavimo grupe (DB projektavimas yra SVGC dalis.
Taciau kartais sistemos analitikas, kuris projektuoja nauja sistema, plecia schematisSka DB
model] (tai dazniausiai atsitinka mikrokompiuteriy aplinkoje). Kitais atvejais, DB
projektavimas laikomas kaip DB administratoriaus darbas, administratorius projektuoja DB
pagal specifikacijas, sukurtas sistemos analitiky).

Tam, kad sudaryti tiksly duomeny modelj, projektuotojas turi turéti pilnus ir pilnai
suprantamus kompanijos duomenis. Bet vien tik duomenys neduoda pilno verslo supratimo.
Duomeny rinkinys yra tik objektas, kurj veikia verslo taisyklés. Sitos tasyklés - tai iSdéstytas
specifikuotos verslo aplinkos apraSymas, jos sudaro ir vykdo veiksmus verslo aplinkoje. Verslo
taisyklés apraso pagrindinias kompanijos duomeny charakteristikas.

Sistemy projektavime verslo taisyklés yra naudingos:

* padeda standartizuoti kompanijos poziiiri { duomenis;

* sudaro bendravimo tarp vartotojy ir projektuotojy priemong;

* duoda projektuotojui galimybes nustatyti duomenuy tipus, vaidmenis, galimybes;

* duoda projektuotojams galimybes suprasti verslo procesa;

* duoda projektuotojui galimybes apibrézti atitinkamas rySiy taisykles ir iSorinius raktus
(nustatyti, ar duotas rySys yra biitinas ar ne, dazniausiai yra verslo taisykliy funkcija).

Esybiy rySiy modeliavimas ir normalizacija

Prie§ sukuriant esybiy-rysiy (E-R) modelj, projektuotojas turi nustatyti atitinkamus projektavimo
dokumentacijos standartus. Standartuose aprasomi diagramy ir simboliy naudojimai,
dokumentacijos raSymo stiliai, maketai ir kitos savybés. Taciau nesékmeés dokumentacijos
standartuose daznai reiSkia nesékmes vélesnése komunikacijose, o tada ir bloga projekto darba.

Verslo taisykliy apibrézimo ir suprantamo modelio sudarymo procesas, naudojantis E-R
diagramas, gali biiti apraSytas taip:
1. iSnagrinétos ir apibréztos galimos verslo taisyklés;
2. turéti pagrindiniy vartotojy patikrintas ir apjungtas verslo diagramas;
3. nustatyti pagrindiniai faktai, kurie yra reikalingi kompanijai, jie taps sistemos pagrindinémis

esybémis;

-9 _- A. Juozapavicius

4. apibrézti rySiai tarp esybiu.
5. kiekvienai esybei apibrézti raktai ir atributai;
6. normalizuotas modelis, garantuojantis duomeny vientisuma.

Visi objektai (esybés, atributai, rySiai ir t.t.) turi biiti uzrasyti ar apibrézti duomeny Zodyne.

Pastarasis naudojamas normalizacijos procese, kad padéty paSalinti duomeny anomalijas ir
ivairias problemas. Per §i procesa projektuotojas turi:

apibrézti esybes, atributus, rysius ir iSoriniy rakty taisykles;
susitarti dél elgesio su daugiareik§miais atributais;

susitarti dél iSoriniy rakty 1:1 santykiuose;

iSvengti nebitiny triguby rysiy;

nubrézti atitinkamas E-R diagramas;

normalizuoti duomeny modelj;

itraukti visus duomeny elementy apibrézimus | duomeny Zodyna

SVGC
E-R modelis
Patikrinimas Atributai
L; Normalizacija J
E-R modeliavimas kaip iteratyvus procesas
Priemonés, reikalingos Informacijos
projektuotojams Saltiniai projektuotojams
Esybiu rysiy diagramos Verslo taisyklés ir apribojimai
Scheminis duomenims
Normalizacija])] Duomeny iSdéstymo
modelis diagramos

Duomeny Zodynai Apibrézimas ir Funkcionaliis procesy

_ tikrinimai L apraSymai

Koncepcinio modeliavimo priemonés ir informacijos Saltiniai

Duomeny modelio tikrinimas
E-R modelis turi buti patikrintas prie§ patvirtinant visus sistemos procesus. Tam reikia

atlikti visa serija testy, vertinamuy:

galutinio vartotojo pozituriu | duomenis ir jiems taikomas transakcijas (SELECT, INSERT,
UPDATE, DELETE operacijas, kitas uzklausas);

pri¢jimo keliais, duomeny saugumo ir operacijy iSlygiagretinimo kontrolés poZiiiriu
(iSlygiagretinimo kontrol¢ yra savybé, kuri leidzia prieiti prie DB vienu metu keliems
vartotojams, i§saugant duomeny vientisuma);

Verslo duomeny iskelty reikalavimy ir apribojimuy poziiiriu.

--10 -- A. Juozapavi&ius
E-R modelio patikrinimo procesas turi biiti atlickamas tokia veiksmuy seka (pastaba:

Zzemiau minimas modulis yra informacinés sistemos komponente, kuri atliecka specifines
funkcijas):

E-R modelio tikrinimo procesas
identifikuoti modelio pagrindines esybes;
identifikuoti kiekviena modulj ir jo komponentes;
identifikuoti kiekvieno modulio procesus;
patikrinti visus modelio procesus;
padaryti visus biitinus pakeitimus, nurodytus 4-ame zingsnyje;
pakartoti 2-a - 5-a zingsnius visiems moduliams.

A

—

Procesy identifikavimas ¢

>
Tikrinimo rezultatai pakeitimai Transakcijy zingsniy apibrézimai
A

keisti E-R modelj
h 4

E-R modelis

Tikrinimo procesas pradedamas isrenkant centring esybeg. Tokia esybé apibréziama,
atsizvelgiant ar ji dalyvauja daugumoje sisteminiy moduliy, ir ar ji yra svarbi daugumoje
sisteminiy moduliu. PraktiSkai apibréziant centring esybe, projektuotojas iSrenka esybes, turincias
daugiausia rysiy.

Sekantis zingsnis yra modulio arba posistemés, kuriai priklauso centriné esybe,
identifikavimas ir moduliy apribojimy ir akiracio nustatymas. Kai kiekvienas toks modulis yra
apibréztas, centriné esybé yra nagrin€¢jama jo struktiros poziiiriu, kad koncentruotis { modulio
detales.

Centrinés esybés/modulio struktiiros poziiiriu turi buti padaryta:

Uztikrinta modulio rySiy tvirtumas (cohesivity). Sis terminas apibréZia ry$iy tarp modulio
esybiy tvirtuma. Modulis turi turéti stiprius rySius, t.y. esybés turi buti stipriai susietos ir
modulis turi biti iSbaigtas ir pakankamas;

* Analizuota kiekvieno modulio rysiai su kitais moduliais (kad patikrinti moduliy sujungimus).
Terminas ‘moduliy sujungimas’ rodo moduliy tarpusavio nepriklausomybés laipsni.
Moduliai tarpusavyje turi turéti silpnus sujungimo laipsnius, juos galima interpretuoti kaip
nepriklausomus vienus nuo kity. Silpnas sujungimo laipsnis mazina nebiitinas tarpmodulines
priklausomybes ir leidzia kurti tikslias modulines sistemas, vengti nebiitiny rySiy tarp esybiy.

Procesai gali biti klasifikuojami atsizvelgiant | ju:

* vykdymo daznuma (kasdien, savaitémis, ménesiais, metais ir t.t.)

» operacijos tipa (INSERT ar ADD, UPDATE ar CHANGE, DELETE, uzklausos ir ataskaitos,
paketinis apdorojimas, prieziiira, rezervinés ir t.t.)

Uzbaigus tokius tikrinimus, scheminis (koncepcinis) modelis yra pilnai apibréztas, tuo lygiu, kas

jis yra nepriklausomas nuo aparatiiros (hardware) ir programinés irangos (software) parinkimo.

DBYVS programinés jrangos iSrinkimas
Tai yra sudétinga operacija, todél programings sistemos pranasumai ir nuostoliai turi biiti
kruopsciai iSnagrinéti. Kad i§vengti nemalonumy, galutinis vartotojas turi zinoti apie DB ir DBVS
apribojimus. Nors programings irangos iSrinkimo faktoriai, kuriais vadovaujamasi, priklauso nuo
kiekvienos kompanijos atskirai, galima iSskirti kelis pagrindinius faktorius:
* kainos (pirkimo, palaikymo, instaliavimo , licenzijy ir t.t.)

- 11 -- A. Juozapavi&ius

 DBVS savybiy (kai kuriy DBVS programiné jranga turi daug priemoniy, kurios lengvina
darbo uzduoti, kaip ekrano navigacija, pranesimai, duomeny Zodynai, kitos padeda sukurti
daug patogesng darbo aplinka; administravimo patogumas, uzklausy vartojimo lengvumas,
saugumas, iSlygiagretinimo kontrolé, tranzakciju valdymas irgi apsisprendzia DBVS
programingés jrangos parinkima);

* naudojamas duomeny baziy modelis: herarchinis, tinklinis, reliacinis, dar koks nors;

* portabilumas(platforma, operaciné sistema, programavimo kalba);

* DBVS keliami reikalavimai kompiuterinei jrangai.

Loginis projektavimas

Loginis projektavimas yra jau po DB modelio (hierarchinio, tinklinio, reliacinio)
nustatymo, jis taikomas iSrinktam modeliui ir yra priklausomas nuo programinés irangos. Loginis
projektavimas reiSkia sheminio projekto pervedima i vidini model;. | logini reliacinés DB modeli
ieina lenteliy, indeksy, virtualiy lenteliy, tranzakcijy projektavimas.

Loginio projektavimo etape yra nustatomos teis€s vartotojams ir kitiems asmenims
naudotis DB. Kas galés naudotis lentelémis ir kokios ju dalys bus prieinamos kokiems
vartotojams? Atsakymas i tokius klausymus reikalauja aatitinkamu pri¢jimo teisiy apibrézimuy.

Trumpai sakant, loginis projektavimas perveda nuo programinés jrangos nepriklausoma
schemina model] { priklausoma model;, nustatant atitinkamy sri¢iy apibrézimus, reikiamas
lenteles ir sri¢iy apribojimus, kompiuterinés jrangos platforma, fizinius reikalavimus, kurie leis
sistemai funkcionuoti su iSrinktaja kompiuterine aplinka.

Fizinis projektavimas

Fizinis projektavimas — tai duomeny saugojimo ir duomeny pri¢jimo charakteristiky
apibrézimo procesas, kuris veikia duomeny saugojimo vieta irenginyje ir sistemos nasuma. Fizini
projektavima geriau aprasyti kaip technini darba. Jis yra labai svarbus hierarchiniame ir
tinkliniame modeliuose. Reliaciné DB yra daugiau izoliuota nuo fizinio detaliy iSdéstymo. Taciau
dél skirtingy kompiuteriy fiziniy charakteristiky skirtumo, reliaciniy DB nasumas gali skirtis.
Sistemos vykdymas gali biiti paveiktas tokiomis charakteristikomis kaip iSrinkimo biidas ir laikas,
sektoriaus ir bloko dydziai, ir t.t. Papildomai, indekso sukiirimas ar panaSus veiksmai gali biiti
reikSmingi reliacinés DB duomeny priejimo greiciui ir efektyvumui.

Reikalavimai duomeny tipams turi buti kruopsc¢iai iSnagrinéti, kad apibrézti optimaly
pri¢jimo metoda, nustatyti reikalingus duomeny dydzius. Kai kurios DB automatiSkai iSskiria
atminties erdve, kuri yra skirta DB pastoviems apibréZimams ir duomenims saugoti.Tai uztikrina,
kad duomenys bus uZzraSyti nuoseklia tvarka, kuri sumaZina pri¢jimo prie duomenuy laika ir
padidina sistemos efektyvuma.

Implementavimas ir Pakrovimas
Reliacinése DBVS, pvz. DB2, duomenuy baziy implementavimas reikalauja saugojimo
grupes, lenteliy erdvés ir lenteliy suktirimo. Lenteliy erdvé gali tureti daugiau nei viena lentelg.
Loginio projektavimo realizavimui reikia:
* Sukurti duomeny bazés saugojimo grupe;
* Saugojimo grupéje sukurti DB;
* Suteikti teises duomeny bazés administratoriui;
* Duomeny bazé¢je sukurti lenteliy erdve arba erdves;
* Lenteliy erdveje (erdvese) sukurti lentele (Ienteles);
» Priskirti vartotojams pri€jimo teises prie lenteliy erdviy ir lenteliy konkreciose erdvése.

Kai DB jau sukurta, i jos lenteles turi buti ivesti duomenys. Jei duomeys saugomi kitame
formate, nei to reikalauja nauja DBVS, tai prie§ pakrovima jie turi biiti konvertuojami.

- 12 -- A. Juozapavi&ius

Jei naudojama herarchiné DB, tai jos realizavimas turi turéti duomeny apibrézimo kalbos

(DDL) komponente kiekvenai DB. Be to, hierarchiné DB reikalauja programos specifikacijos
bloky (PSB) sukiirimo, kuris leis programoms pasiekti DB.

Tinklinio modelio naudojimas reikalauja duomeny bazés DDL sukiirimo, kuris turi

aprasyti visy iraSuy tipus, vietos atmintyje nustatymo biidus, iterpimo biidus, aibes, tvarka, ir t.t.
Tinklinéms DB reikia techninés irangos valdymo kalbos (DMCL) ir visy biitiny poschemiy

(subschemas), kad programos leisty pasiekti DB.
Lygiagretiis veiksmai, kurie vyksta SVGC ir DBGC:

DBLC SDLC
Database Analysis
Initial Study
Sysstem Design ¢ ¢
Database Conceptual Detailed * Screens
Design Logical design * Reports
¢ Physical ¢ * Procedures
System Implemen- Coding
Implemintatio tation
Creation
Loading “Debuging”
Testing and Fine - tunin Testing and
evalution evalution
Operation
Database Application
maintenance program

Kiti realizavimo ir pakrovimo etapai
NaSumas: DB naSumas yra vienas i§ svarbiausiy faktoriy kai kuriy DB darbe ir

realizavime.Taciau ne visos DBVS turi vykdymo valdymo ir tikslaus pritaikymo (fine-tuning)
priemones savo programingje irangoje, todél kartais sunku vertinti ju nasSuma.

Apsauga. Duomenys, saugomi kompanijos DB, turi biiti apsaugoti nuo neteiséty vartotoju

naudojimo. Tam naudojami:

Fiziné apsauga leidzia fiziSkai pasiekti zonas, atviras tiktai personalui su priéjimo teise.
Priklausomai nuo duomenuy bazés ijgyvendinimo tipo, jrangos fizin€s apsaugos sistemos ne
visada yra praktisSkos;

Slaptazodziai;

Priéjimo teisés sukuriamos naudojant DB programing jranga, ju priskyrimas gali apriboti
operacijas (CREATE, UPDATE, DELETE ir t.t.) su tokiais objektais kaip DB, lentelés,
vaizdai, uzklausos ir ataskaitos;

Audito seansai skirti patikrinti DBVS nuo nesankcionuoto isiverzimo. Nors tokie seansai
veikia po veiksmo {vykdymo, ju egzistavimas daZznai yra tinkama priemoné neutralizuoti
neteiséty jsiverzimy rezultatus;

Duomeny kodavimas;

- 13 -- A. Juozapavi&ius

= Bediskés darbo stotys leidzia galutiniams vartotojams pasiekti DB, be galimybés pakrauti
duomenis i$ serveriu.
Kiti svarbus faktoriai:
= Backup and Recovery
= Integrity
= Company standarts
= Concurrency control
* Testing and Evaluation
= QOperation
* Maintenance and Evolution

Speciali pastaba apie DB projektavimo strategijas
Du klasikiniai DB projektavimo budai.

1. Nuo virSaus | apacia: projektavimas pradedamas identifikuojant duomeny rinkinius, po to
apibréziant duomeny elementus kiekvenam i$ rinkiniy. Véliau §is procesas apima esybiy
nustatyma, ju skirtingus tipus, ir kiekvienos esybés atributy apibrézima.

2. Nuo apacios 1 virSy: projektavimas pradedamas pirmiausia nustatant duomeny elementus, po
to juos apjungiant i duomeny rinkinius. Kitaip tariant, pirmiausia apibréziami atributai, o po to
apjungiami | grupes, kad suformuoti esybes.

Pirmo ar antro buido pasirinkimas projektavimo procese daznai priklauso nuo uzduoties
apimamy temuy, specifikos, arba ir nuo asmeninio pasirinkimo. Nors $ie biidai yra daugiau vienas
kita papildantys, o ne priestaraujantys, antro biido pasirinkimas yra labiau produktyvus mazoms
duomeny bazéms su mazu esybiuy, atributy, santykiy ir tranzakciju skai¢iumi. Situacijoms, kuriose
esybiu, santykiy, ir tranzakciju skaiCius yra didelis, juy ivairumas ir sudétingumas pasireiskia daug
labiau, pirmas budas yra efektyvesnis. Daugelis kompanijy turi susikiir¢ vidinius standartus
informaciniy sistemy projektavimui, vystymui ir duomeny baziy kiirimui.

A B

T Conceptual model o
0 t
p t
0

OD Entity Entity m

w [l] [l] U
ny Attribute Attribute Attribute Attribute p

Object-Oriented Databases

In the late 1980s and early 1990s database experts increasingly faced complex data
requirements that were difficult to handle with standard relational technology. The size of the
databases and their changing composition-the database now might include graphics, video, and
sound, as well as numbers and text-invited a reorganization of existing information systems. This
reorganization effort led to emerging database technologies based on object-oriented concepts.

Object-oriented (OO) systems are usually associated with applications that draw their
strength from intuitive graphical user interfaces, powerful modeling techniques, and advanced
data-management capabilities. Since OO technology is an important contributor to the evolution
of database systems, there are of interest such questions as:

» What basic OO concepts govern OO systems?
= What effect are OO concepts likely to have on data modeling?

-- 14 -- A. Juozapavi&ius
= How are OO features related to the more traditional relational and E-R models?
* What are the basic features of an OO database management system (OODBMS)?
= How are database implementation features affected by OO concepts?
= What effect will OO concepts have on database design?
= What are the pros and cons of OO systems?

Object Orientation And Its Benefits

Object orientation means different things to different people. The definition of OO:

Object Orientation

A set of design and development principles based on the idea of conceptually autonomous
structures. Each autonomous structure represents a real-world entity with the ability to interact
with itself and with other objects.

Although object orientation has become the subject of intensive research efforts, consistent
OO concept definitions appear to be elusive. There seem to be three main reasons for the failure to
agree on basic definitions:
= OO concepts are still relatively foreign to the majority of computer users;
= The broad applicability of OO concepts has stretched their reach far beyond the initial
programming-languages target;
= OO concepts were developed by many people in different places at different times. The
relational model's standard-bearer was Dr. Codd; object-oriented concepts lack an equivalent

guru.

Modularity is one of the primary goals of structured programming and good design. The
conceptually autonomous structure, makes the much sought-after modularity almost inevitable.
Therefore, object orientation is likely to be the key to many complex programming and design
solutions. The table below illustrates just some of the benefits of object orientation in a variety of
computer-related areas and suggests a broad applicability of object-oriented (OO) concepts.

Unfortunately, the lack of OO standards creates uncertainties that make businesses wary
of it. Yet, in spite of the absence of precise and generally accepted standards, it’s useful to
develop acceptable definitions of fundamental OO concepts. And these concepts will pave the
way to a reasonably precise terminology to build a useful framework for understanding.

The Evolution Of Object-Oriented Concepts

Object-oriented concepts stem from object-oriented programming (OOP), which was
developed as an alternative to traditional programming methods. Before OOP, data and
procedures were isolated from each other. Programmers were trained to identify data sources, to
group data into files or tables, to establish relations and constraints, and to write the procedures
required to produce a given output. Such a programming environment causes the data to be the
passive component, while the procedures that manipulate the data become the active
component.

The rigid distinction between data and procedure was encouraged by the use of
procedural languages. The programmer invokes an application, which then uses data to produce
information. In stark contrast, in an OOP environment the programmer asks objects to perform
operations on themselves.

OO concepts first appeared in programming languages such as Ada, Algol, LISP, and
SIMULA. Each of these programming languages set the stage for the introduction of more refined

-- 15 -- A. Juozapavi&ius
OO concepts, which were subsequently expanded by successors. As of the time of this writing,
Smalltalk and C++ are the two dominant object-oriented programming languages (OOPL).
Actually, Smalltalk and C++ differ substantially in terms of the level of OO inclusion; Smalltalk
represents a purer OOP environment, while C++ is essentially a variant of the C language that
supports OO extensions.

Table: Object Orientation's Benefits

COMPUTER-REIATED AREA 0O BENEFITS
Programming language Reduces the number of lines of code
Decreases development time
Enhances code reuseability

Makes code maintenance easier
Enhances programmer productivity
Graphical user interfaces (G.U.I.) Enhances ability to create easy-to-use interfaces
Improves system user-ftiendliness
Makes it easier to define standards
Databases Supports abstract data types
Supports complex objects

Supports multimedia databases

Design Captures more of the data model's semantics
Represents the real world better
Operating systems Enhances system portability, thus improving

systems interoperability

OOPLs were developed to provide a more natural environment for software
programmers. The main objectives of OOPLs were:
= To provide an easy-to-use software-development environment;

* To provide a powerful software modeling tool used for applications prototyping;
= To decrease development time by reducing the amount of code and by making that code
reuseable, thereby improving programmer productivity.

The adoption of OOP changes not only the way in which programs are written but also
how those programs behave. Keep in mind that the object-oriented view of the world endows
data with manipulative ability. Consequently, the OO environment has several important
attributes:

* The data set is no longer passive;
= Data and procedures are bound together, creating an OBJECT;
= The object has an innate ability to act on itself.
In effect, an object appears to have a life of its own and can interact with other objects to
create a system:
= Because such lifelike objects carry their own data and code, it becomes easier and more
natural to produce reuseable modular systems.

= It is precisely this lifelike characteristic that makes OO systems natural to those with little
programming experience but confusing to many whose traditional programming expertise
causes them to split data and procedures.

= Given the lifelike nature of object orientation, it is not surprising that OO notions became
much more viable with the advent of personal computers.

= [t is also not surprising that OO concepts' impact on programming has an effect on a host of
other computer-based activities, including those based on databases.

-- 16 -- A. Juozapavi&ius

Object-Oriented Concepts

As it was noted earlier, OO concepts have their roots in OOPLS, which are often
regarded as languages created mainly for programmers by programmers, who tended to program
in their own way in their own world. Perhaps this is yet another of the reasons why OOPLs have
not yet conformed to universally accepted standards.

Objects: Components and Characteristics

In OO systems everything is dealed with is an object, whether it be a student, an invoice,
an airplane, an employee, a service, a menu panel, a report, and so forth. Some objects are
tangible and some are not. Formally, we may define an object within the OO environment this
way:

Object
An object is an abstract representation of a real-world entity that has a unique identity,
embedded properties, and the ability to interact with other objects and itself.

The difference between object and the entity concept is a lack of manipulative ability for
entity. Other differences later.

Object Identity

The most revealing part of an object is its identity. The object's identity is represented by
an Object ID (OID), which is unique to that object; no two objects can share the same OID. The
OID is assigned by the system at the moment of the object's creation and cannot be changed under
any circumstance.

Do not confuse the relational model's primary key with an OID. In contrast to the OID, a
primary key is based on user-given values of selected attributes and can be changed at any time.
The OID is assigned by the system, does not depend on the object's attribute values, and cannot be
changed. The OID can be deleted only if the object is deleted, and the same OID can never be
reused. Moreover, the unique OID is not tied to a physical address in permanent memory (disk),
as were the records of past hierarchical and network database systems. This characteristic allows
an OO system to maintain physical data independence.

Attributes (Instance Variables)

Objects are described by their attributes, referred to as instance variables in an OO
environment. Each attribute has a unique name and a data type associated with it. Traditional data
types, also known as base data types, are used in most programming languages and include real,
integer, string, and so on.

Object attributes may reference one or more other objects. For example, the attribute
MAJOR refers to a Department object, the attribute COURSES-TAKEN refers to a list (or
collection) of Course objects, and the attribute ADVISOR refers to a Professor object.

At the implementation level, the OID of the referenced object is used to link both objects,
thus allowing the implementation of relationships between two or more objects. The attribute
also can contain the OID of an object that contains a list of objects; such an object is known as
a collection object.

Note: The difference between the relational and OO models is also at this point. In the
relational model a table's attribute may contain only a value that may be used to join rows in
different tables. The OO model does not need such JOINs to relate objects to one another.

- 17 -- A. Juozapavi&ius

Object State

The object state is the set of values that the object's attributes have at a given time.
Although the object's state can vary, its OID remains the same. If we want to change the object's
state, we must change the values of the object attributes. To change the object's attribute values,
we must send a message to the object. This message will invoke a method.

Messages and Methods

Messages and methods are organized as if the object is to be a nutshell. The nutshell's
nucleus (the nut) represents the object's data structure, and the shell represents its methods.

Method 1 | Method 2

Data
Method 3 | Method 4

Object X

Every operation to be performed on an object must be implemented by a method.
Methods are used to change the object's attribute values or to return the value of selected object
attributes. Methods represent real-world actions. In effect, methods are the equivalent of
procedures in traditional programming languages. In OO terms, methods represent the object's
behavior.

Every method is identified by a name and has a body. The body is composed of
computer instructions written in some programming language, to represent a real-world action.

Methods can access the instance variables (attributes) of the object for which the method
1s defined.

To invoke a method it is necessary to send a message to the object. A message is sent by
specifying a receiver object, the name of the method, and any required parameters. The internal
structure of the object cannot be accessed directly by the message sender, which is another
object. Denial of access to the structure ensures the integrity of the object's state and hides the
object's internal details. The ability to hide the object's internal details (attributes and methods) is
known as encapsulation.

An object may also send messages to change or interrogate (apklausti) another object's
state. Interrogation implies asking for the interrogated object's instance variable value(s). To
perform such object-change and interrogation tasks, the method's body can contain references to
other object's methods (send messages to other objects).

Classes

OO systems classify objects according to their similarities and differences. Objects that
share common characteristics are grouped into classes. In other words, a class is a collection of
similar objects with shared structure (attributes) and behavior (methods).

A class contains the description of the data structure and the method-implementation
details for the objects in that class. Therefore, all objects in a class share the same structure and
respond to the same messages. In addition, a class acts as a 'storage bin' for similar objects. Each
object in a class is known as a class instance or object instance.

-- 18 -- A. Juozapavi&ius
Protocol

The class's collection of messages, each identified by a message name, constitutes the
object or class protocol. The protocol represents an object's public aspect, that is, it is known by
other objects as well as end users. In contrast, the implementation of the object's structure and
methods constitutes the object's private aspect.

Protocol Public interface
Message Method 1 | Method 2
Message 2
Message 3 Data
Method 3 | Method 4
Message 4 i

Private implementation
Usually, a message is sent to an object instance. However, it is also possible to send a

message to the class rather than to the object. When the receiver object is a class, the message
will invoke a class method. One example of a class method is Smalltalk's method new. Using
Smalltalk, the new class method is triggered by the message Nnew to create a new object instance
(with a unique OID) in the receiver class. Because the object does not exist yet, the message new
is sent to the class and not to the object.

What is the difference? Actually, none: in an OO system a class is also an object!

OO Summary: Objects characteristics

Private Aspect Public Aspect
Class defines Protocol

I
| | collection of

Instance \ 4
variables | | Methods 4—— are the names Messages
of the
deznes a belongs implemented that trigers a
set of toa by a set of
values
for its
Object
[
a
State OID Behavior |4

(unique)

Superclasses, Subclasses, and Inheritance

Classes are organized into a class hierarchy if each class has only one parent class. The
class hierarchy is known as a class lattice if its classes can have multiple parent classes.
Generalization is used to classify objects into classes of objects that share common characteristics
(the generalization automobile includes large luxury sedans as well as compact cars, and the
generalization government includes federal, state, and local governments).

The class hierarchy concept introduces a powerful OO concept known as inheritance.
Inheritance is the innate ability of an object within the hierarchy to inherit the data structure and
behavior (methods) of the classes above it.

--19 -- A. Juozapavi&ius

In pure OO systems like Smalltalk, all objects are derived from the superclass Object.
Therefore, all classes share the characteristics and methods of the superclass Object. The
inheritance of data and methods goes from top to bottom in the class hierarchy. Two variants of
inheritance exist: single and multiple inheritance.

Single Inheritance. Single inheritance exists when a class has only one immediate
(parent) superclass above it. Most of the current OO systems support single inheritance.

When the system sends a message to an object instance, the entire hierarchy is searched
for the matching method, using the following sequence:
1. Scan the class to which the object belongs.
2. If the method is not found, scan the superclass.

The scanning process is repeated until
1. The method is found, or
2. The top of the class hierarchy is reached without finding the message. The system will then
generate a message to indicate that the method was not found.

Multiple Inheritance. A class may be derived from several parent superclasses located
one level above that class.

The assignment of instance variable or method names must be treated with some caution
in a multiple-inheritance class hierarchy. For example, if using the same name for an instance
variable or method in each of the superclasses, the OO system must be given some way to decide
which method or attribute to use. The OO system, however, cannot make such value judgements
and may:

1. Produce an error message in a pop-up window explaining the problem.
2. Ask the end user to supply the correct value or to define the appropriate action.
3. Yield an inconsistent or unpredictable result.

To solve the multiple-inheritance conflicts, some OO systems implement the support for
multiple inheritance through the use of user-defined inheritance rules for the subclasses in the
class lattice. These inheritance rules govern a subclass's inheritance of methods and instance
variables.

Method Overriding and Polymorphism

It’s possible to override a superclass's method definition by redefining the method at the
subclass level.

Polymorphism allows different objects to respond to the same message in different
ways. Polymorphism is a very important feature of OO systems because its existence allows
objects to behave according to their specific characteristics.

In OO terms, polymorphism means that
* The same name may be used for a method defined in different classes in the class hierarchy.
= The user may send the same message to different objects that belong to different classes and

yet always generate the correct response.

Polymorphism thus augments method override to enhance the code reuseability so prized
in modular programming and design.

Abstract Data Types
Classes provide the means for another important OO property: the ability to use abstract
data types (ADT). A data type describes a set of objects with similar characteristics.

-- 20 -- A. Juozapavi&ius

All conventional programming languages make use of a set of predefined data types,
known as conventional data types or base data types. Base data types include real, integer, and
string or character. Base data types are subject to a predefined set of operations. For example,
the integer base data type allows operations such as addition, subtraction, multiplication, and
division.

Conventional programming languages also include type constructors, the most common
of which is the record type constructor. For example, a programmer can define a CUSTOMER
record type by describing its data fields. The CUSTOMER record represents a new data type that
will store CUSTOMER data, and the programmer may directly access such data structure by
referencing the record's field names. A record data type allows operations such as WRITE, READ
or DELETE. However, new operations cannot be defined for base data types.

Like conventional data types, abstract data types also describe a set of similar objects.
However, an abstract data type (ADT) differs from a conventional data type because:
= The ADT's operations are user-defined.
» The ADT does not allow direct access to its internal data representation or method
implementation. In other words, the ADT encapsulates its definition, thereby hiding its
characteristics.

Pure OO systems such as Smalltalk implement base data types as ADTs. To define an
ADT or class one has to define:
1. Its name.
2. The data representation or instance variables of the objects belonging to the class or ADT.
Each instance variable has a data type that may be a base data type or another ADT.
3. The ADT or class operations and constraints, both of which are implemented through
methods.

It is to note that the terms abstract data type and class are used as synonyms. Some OO
systems differentiate between class and type, using type to refer to the class data structure and
methods and class to refer to the collection of object instances. A type is a more static concept,
while a class is a more run-time concept. In other words, when defining a new class, actually a
new type is defined. The type definition is used as a pattern or template to create new objects
belonging to a class at run-time.

Abstract data types together with inheritance provide support for complex objects. A
complex object is formed by combining other objects in a set of complex relations. An example of
such a complex object might be found in a security system that uses different data types, such as:
= Conventional (tabular) employee data such as name, phone, date of birth, and so on.
= Bitmapped data to store the employee's picture.
= Voice data to store the employee's voice pattern.

The ability to deal relatively easily with such a complex data environment is what gives
OO credibility in today's database marketplace.

As for the basic OO concepts it’s easy to create a class hierarchy by using Smalltalk/V,
from Digitalk Inc., Los Angeles, CA. Smalltalk provides an OOP environment that does not
provide for persistent storage of objects, so it is not an OO database management system.
However, Smalltalk is especially suited to OO modeling work because it provides a class library,
through which a programmer may build new ADTs or classes easily.

--21 -- A. Juozapavi&ius

The Evolution Of Data Models
The evolution of database management systems has always been driven by the search for
new ways of modeling increasingly complex real-world data. This search has yielded many
proposed data models, yet few have been implemented, and even fewer have achieved
commercial success.

Each new data model capitalized on the shortcomings of previous models. The network
(CODASYL) model replaced the hierarchical model because the former made it much easier to
represent complex (many-to-many) relationships. In turn, the relational model offered several
advantages over the hierarchical and CODASYL models through its simpler data representation,
superior data independence, and relatively easy-to-use query language. Although the debate about
the relative merits of the older hierarchical and CODASYL models and the newer relational
model lasted several years, the relational model emerged as the dominant database model for
business applications.

The Entity Relationship model, appearing after the relational model, introduced an easy-
to-use graphical data representation, thus becoming the database design standard. However, no
commercial DBMS based on the E-R model has appeared.

Semantics in . Comments
Data Model Physical level dependency
least Hierarchical Difficult to represent M: N relationships
A ' No ad hoc queries
CODASYL Access path predefined (navigational access)
[—
Relational Provide ad hoc queries

Set-oriented access
Weak semantic contents

Entity Relationship| [Easy to understand
Incorporates more semantics

Semantic More semantics in data model
| Support for complex objects
' Inheritance
v Object-oriented J
Extended Relational
most

The Development of Data Models

As more intricate real-world problems were modeled, the need for a different data model
that even more closely represented the real world became evident. The Semantic Data Model
(SDM), developed by M. Hammer and D. McLeod, was able to capture more meaning from the
real-world objects; that is, it incorporated more semantics into the data model and introduced
such concepts as class, inheritance, and so forth, which helped to model real-world objects more
effectively.

In response to the increasing complexity of applications, two new data models have
emerged: the Object-Oriented Data Model (OODM) and the Extended Relational Data Model
(ERDM). The OODM is based on concepts derived from OOPLs and has gained strength during
the past several years. The ERDM, championed by relational-database researchers, constitutes the
relational model's response to the OODM challenge.

--22 -- A. Juozapavi&ius

The current OODM-ERDM battle for dominance in the future database marketplace
seems remarkably similar to the one waged by the hierarchical and CODASYL models against
the relational model more than a decade ago. The OODM and ERDM are similar in the sense that
each attempts to address the demand for more semantic information to be incorporated into the
model. However, the OODM and the ERDM differ substantially both in terms of underlying
philosophy and the nature of the problem to be addressed. The ERDM is based on the relational
data model's concepts, while the OODM is based on the OO and Semantic Data Model concepts.
The ERDM is primarily geared to business applications, while the OODM focuses on very
specialized engineering and scientific applications.

It is of interest to examine the evolution of data models and to determine some common
characteristics that data models must have in order to be widely accepted:

1. A data model must show some degree of conceptual simplicity without compromising the
semantic completeness of the database. It does not make sense to have a data model that is
more difficult to conceptualize than the real world.

2. A data model must represent the real world as closely as possible. This goal is more easily
realized by adding more semantics to the model's data representation. (Semantics concern the
dynamic data behavior, while the data representation constitutes the static aspect of the real
world scenario).

3. The representation of the real-world transformations (behavior) must be in compliance with
the consistency and integrity characteristics of any data model.

Characteristics Of An Object-Oriented Data Model

The main problem in defining the OO data model is that there is no standard OO data
model. Therefore, most researchers find it easier to describe some minimum set of characteristics
that a data model must have before it can be considered an OO data model. At the very least, an
0O data model:

1. Must support the representation of complex objects.

2. Must be extensible. That is, it must be capable of defining new data types as well as the
operations to be performed on them.

3. Must support encapsulation; that is, the data representation and the method's implementation
must be hidden from external entities.

4. Must exhibit inheritance. An object must be able to inherit the properties (data and methods)
of other objects.

5. Must support the notion of object identity (OID) described earlier in this chapter.

A quick summary will help in reading the subsequent material more easily:

The OODM models real-world entities as objects.

Each object is composed of attributes and a set of methods.

Each attribute can reference another object or a set of objects.

Encapsulation means that the attributes and the methods implementation are hidden

from other objects.

5. Each object is identified by a unique object ID (OID), which is independent of the value
of its attributes.

6. Similar objects are described and grouped in a class that contains the description of the
data (attributes or instance variables) and the implementation of the methods.

7. Classes are organized in a class hierarchy.

Each object of a class inherits all properties -of its superclasses in the class hierarchy.

9. The class describes a type of object.

D=

*

--23 -- A. Juozapavi&ius

Armed with this summary OO-component description, note the comparison between the
0O and E-R model components:

Comparing the OO and E-R Model Components

OO DATA MODEL E-R MODEL
T'ype Entity definition
Object Entity
Class Entity set
Instance Variable Attribute
N/A Primary key
OID N/A
Method N/A
Class hierarchy E-R diagram (database schema)

The Graphical Representation of Objects: Object Diagrams

The currently published research projects contain several proposed graphical object
representations. It is elected to base the following presentation on the work published by Dr.
Setrag Khoshafian (1986, 1990, 1996) and that of Drs. Hammer and McLeod (1981).

A graphical representation of an object resembles a box, with the instance-variable names
inside the box. Generally speaking, the object representation is shared by all objects in the class.
Therefore, the terms object and class are often used interchangeably in the illustrations.

PERSON Object instances
[Name s John D. Smith ge
Instance Address s 123 Main Street
variables DOB S 23-Nov-1962
M
lsfx > 37 .
- ge 1
[
[

s — string data type, I— integer data type, * - derived attribute
Shared Representation for All Objects of the Class Person

Next, to examine the state of a Person object instance, the note is, that the AGE instance
variable can also be viewed as a derived attribute. Derived attributes may be implemented
through methods. For instance, a method named Age for the Person class could be created. This
method will return the difference in years between the current date and the date of birth (DOB) for
a given object instance. Quite aside from the fact that methods may generate derived attribute
values, methods have the added advantages of encapsulation and inheritance.

Person OID X20 «——System generated
Name John D. Smith R

Address 123 Main Street, FL 37457 [_

DOB 11-23-1962 | Instance-variable values
Sex M —

Age 37 <+

State of a Person Object Instance

—-24 -- A. Juozapavi¢ius

It is necessary tp keep in mind that the OO environment allows to create abstract data
types from base data types. For example, the NAME, ADDRESS, and DOB are composite
attributes that can be implemented through classes or ADTS.

Name Address DOB
First name S Street num S Day I
Middle Init s Street S Month I
Last name S Apartment] Year 1
City S
State s
Zip i

Defining Three Abstract Data Types

Note that the Person class will now contain attributes that point to objects of other
classes or abstract data types. The new data types for each instance variable of the class Person
are shown in next figure.

PERSON Data Type

Name Name <+
Instance Address Address 4—— Abstract data type
variables DOB DOB +—

Sex string

Age integer ::I Base data type

Object Representation for Instances of the Class Person with ADTs

The object space or object schema is the equivalent of a database schema at a given
time. The object space is used to represent the composition of the state of an object at a given

time. Name OID: X201

» First name John
Middle Init D.

Last name Smith
PERSON OID: X20
Name [X201] Address OID: X202
Address [X202] >
DOB [X203] Street num 123
Sex M Street Main Street
Age 37 Apartment
City Miami
State FL
Zip 37457

DOB OID: X203

> Day 23
Month 11
Year 1962

-- 25 -- A. Juozapavi&ius

The object's state for an instance of class Person is illustrated in figure below. While
examining the picture note the use of OlDs to reference other objects. For example, the attributes
NAME, ADDRESS, and DOB now contain an OID of an instance of their respective class or
ADT instead of the base value. The use of OIDs for object references avoids the data-consistency
problem that would appear in a relational system if the primary key value is changed by the end
user when changing the object's state. This is because the OID is independent of the object's state.

Object's State for an Instance of the Class Person Using ADT's

To illustrate this point further, it is to demonstrate that two persons who live at the same
address are likely to reference the same Address object instance, rather than referencing two
different Address object instances with equal object states. This condition is sometimes labeled as
referential object sharing: a change in the Address object's state will be reflected in both Person
instances.

Name OID: X201 Name OID: 1029
First name John First name Mary
Middle Init D. Middle Init S.
Last name Smith Last name Smith
PERSON OID: X20 Address OID: X202 «—] PERSON OID: X26
Street num 123
Name [X201] Street Main Street Name [1029]
Address [X202] Lt Apariment Address [X202]
DOB [X203] City Miami DOB [D23]
Sex M State FL Sex F
Age 37 Zin 37457 Age 34
DOB OID: X203 DOB OID: D23
Day 23 Day 20
—» Month 11 Month 11
Year 1962 Year 1965

Referential Sharing of Objects

Figure above illustrates the state of two different object instances of the class Person;
both object instances reference the same Address object instance. Note that this figure depicts four
different classes or ADTs: Person (two instances), Name (two instances), Address, and DOB
(two instances).

Person «— Superclass
[

Employee Student < Subclasses

Class Hierarchy
Class-Subclass Relationships

Classes inherit the properties of their superclasses in the class hierarchy. This property
leads to the use of the label is a to describe the relationship between the classes within the

-- 26 -- A. Juozapavi&ius
hierarchy. That is, an employee is a person, and a student is a person. This basic idea is
sufficiently important to warrant a more detailed illustration based on the class hierarchy depicted
in the figure below.

EMPLOYEE
Ss#
Name
Address Attributes Inherited From
Dob Person Superclass
Sex
Age
Salary

Employee Object Representation

Within this hierarchy, the Employee object is described by two attributes: the social
security number (SS#), recorded as a string base type, and the SALARY, recorded as an integer
base type. The name, address, DOB, and age are all inherited from the Person superclass.

This example is based on the fact that the OODM supports the class-subclass
relationship, for which it enforces the necessary integrity constraints. Note that the relationship
between a subclass and a superclass is 1:1; that is, each subclass instance is related to only one
superclass instance, if single inheritance is assumed.

Interclass Relationships: Attribute-Class Links

In addition to supporting the class-subclass relationship, the OODM supports interclass
relationships. An interclass relationship is created when an attribute's data type is described with
reference to another abstract data type. By defining the attribute data type the attribute is linked
to a class or ADT.

The interclass relationships are different from the class-subclass relationships explored
before. To illustrate this difference, it is to examine the class hierarchy for the EDLP (Every Day
Low Prices) Retail Corporation, shown in figure below.

Note that all classes are based on the Root Object superclass. The class hierarchy
contains the classes Manufacturer, Item, Person, and Facility. The Facility class contains the
subclasses Warehouse and Store. The Person class contains the subclass Employee, which in turn
contains the subclasses Manager, Clerk, Secretary, Cashier, and Stocker. In the following
discussion this simple class hierarchy will be used to illustrate basic 1:M and M:N relationships
and to demonstrate the implementation of M:N relationships.

Root Object
Manufacturer Item Person Facility
[
Employee Warehouse Store

Manager Clerk Secretary Cashier Stocker

--27 -- A. Juozapavi&ius

Class Hierarchy for the EDLP Retail Corporation

Representing [:M Relationships. Based on the figure’s hierarchy above, a one-to-many
relationship exists between Employee and Facility: Each Employee works in only one Facility,
and each Facility has several Employees. Figure below shows how this relationship may be
represented.

Employee Facility
Ss# Code
Name Name
Address Address
Dob Budget
Sex Employee | |M
Age
Salary
Facility 1

| | = mandatory participation 1,M = connectivity

Representing a 1:M Relationship

Examining the relationship between Employee and Facility portrayed above, note that the
Facility object is included within the Employee object and vice versa; that is, the Employee object
is also included within the Facility object. To examine the employee-facility relationship in
greater detail, the following techniques may be used:
1. Related classes are enclosed in boxes to make relationships more noticeable.
2. The double line on the box's right side indicates that the relationship is mandatory.
3. Connectivity is indicated by labeling each box. In this case, a 1 is put next to Facility in the
Employee object to indicate that each employee works in only one facility. The M beside
Employee in the Facility object indicates that each facility has many employees.

Note that the E-R notation is used to represent a mandatory entity and to indicate the
connectivity of a relationship (1:M). The purpose of this notation is to maintain consistency with
earlier diagrams, to avoid confusion.

Rather than just including the object box within the class, it is better to use a name that is
descriptive of the class characteristic that we are trying to model. Such a procedure is especially
useful when two classes are involved in more than one relationship; in such cases it is suggested
that the attribute's name has to be written above the class box and that the class box be indented to
indicate that the attribute will reference that class.

While examining the figure, note that the 1:M relationship is represented in both
participating classes. This condition allows us to invert the relationship, if necessary. For
example, we could add another Facility object within the Employee object to represent the
'Manager-of' relationship. In such a case, the Facility object would be optional and would have a
connectivity of 1.

Another type of I:M relationship may be illustrated by examining the relationship
between employees and their dependents. To establish this relationship it is first to create a

-- 28 -- A. Juozapavi&ius
Dependent subclass using Person as its superclass. Note that we cannot create a Dependent
subclass by using Employee as its superclass because the class hierarchy represents an 'is a'
relationship. In other words, each Manager is an Employee, each Employee is a Person, each
Dependent is a Person, and each Person is an Object in our object space; but each Dependent is
not an Employee!

Then it is to note that Dependent is optional to Employee and that Dependent has a 1:M
relationship with Employee. However, Employee is mandatory to Dependent. The weak-entity
concept disappears in the OODM because each object instance is identified by a unique
OID.

Representing M:N Relationships. Using the same EDLP Retail Corp. class hierarchy, a
many-to-many (M:N) relationship may be illustrated by exploring the relationship between
Manufacturer and Item represented in figure to follow. It depicts a condition in which each Item
may be manufactured by many Manufacturers, and each Manufacturer may manufacture many
Items. Figure below thus represents a conceptual view of the M:N relationship between Item and
Manufacturer.

Manufacturer Item
Code Code
Name Description
Address Country
Contact: Init. price
Manufacturers
Person
1 Manufacturer M

Items:

Item M

Representing an M:N Relationship

Also, note that the CONTACT attribute in Manufacturer class references only one
instance of the Person class. A slight complication arises at this point: It is likely that each contact
(person) has a phone number, yet a phone-number attribute was not included in the Person class.
In this case, the designer may structure the attribute so that it will be available to all Person
subclasses.

Representing M:N Relationships with an Intersection Class. Suppose that a condition
to the just-explored M:N relationship is added to allow to keep track of additional data for each
pair of object instances. For example, let's expand the relationship between Item and Facility so
that each Facility may contain several Items and each Item may be located at several Facilities. In
addition, we want to keep track of the quantity and location (aisle and row) of each Item at each
Facility. Therefore, each Item instance may contain several occurrences of Facility, each
accompanied by related values for appropriate attributes. The inverse case is true for each instance
of Facility.

To translate the preceding discussion to a more relational view of such an M:N scenario,
it is necessary to define an intersection (bridge) class to connect both Facility and Item and store
the associated attributes. In this case, a Stocked-Item class might be created to contain the Facility
and Item object instances and the values for each of the corresponding attributes. Such a class is
equivalent to the Interclass-Connection construct of the Semantic Data Model. It is possible to
show how the Item, Facility, and Stocked-Item object instances may be represented.

--29 -- A. Juozapavi&ius

Late and Early Binding: Use and Importance

A very desirable OODM characteristic is its ability to let any object's attribute contain
objects that define different data types (or classes) at different times. With this feature an object
can contain a numeric value for a given instance variable, and the next object (of the same class)
can contain a character value for the same instance variable. This characteristic is achieved
through late binding. Through late binding the data type of an attribute is not known until
execution time or run-time. Therefore, two different object instances of the same class can contain
values of different data types for the same attribute.

In contrast to the OODM's ability to use late binding, a conventional DBMS requires that
a base data type be defined for each attribute at the time of its creation. For example, suppose it is
necessary to define an INVENTORY to contain the following attributes: ITEM-TYPE,
DESCRIPTION, VENDOR, WEIGHT, and PRICE. In a conventional DBMS a table named
INVENTORY is created and a base data type to each attribute is assigned.

When working with conventional database systems, the designer must define the data
type for each attribute when the table structure is defined. This approach to data-type definition
is called early binding. Early binding allows the database to check the data type for each of the
attribute's values at compilation or definition time. For instance, the ITEM-TYPE attribute is
limited to numeric values. Similarly, the VENDOR attribute may contain only numeric values to
match the primary key of some row in a VENDOR table with the same numeric value restriction.

Now let's take a look to see how an OODM would handle this early-binding problem. As
was true in the conventional database environment, the OODM allows the data types to be defined
at creation time. However, quite unlike the conventional database, the OODM allows the data
types to be user-defined ADTS. In this example of early binding, the abstract data types Inv-type,
String-of-characters, Vendor, Weight, and Money are associated with the instance variables at
definition time. Therefore, the designer may define the required operations for each data type. For
example, the Weight data type can have methods to show the weight of the item in pounds,
kilograms, and so on. Similarly, the Money data type may have methods to return the price as
numbers or letters and denominated in U.S. dollars, German marks, or British pounds. (Remember
that abstract data types are implemented through classes.)

In a late-binding environment, the object's attribute data type is not known prior to its
use. Therefore, an attribute can have any type of value assigned to it. Using the same basic data
set described earlier, the attributes (instance variables) INV-TYPE, DESCRIPTION, VENDOR,
WEIGHT, and PRICE without a prior data-type definition.

Since no data types are predefined for the class instance variables, two different objects
of the Inventory class may have different value types for the same attribute. For example, INV-
TYPE can be assigned a character value in one object instance and a numeric value in the next
one. Late binding also plays an important role in polymorphism, to allow the object to decide
which method's implementation to use at run-time.

Support for Versioning

Support for versioning is another characteristic of an OODM. This feature allows to
keep track of the history of changes of the state of an object. Versioning is thus a very powerful
modeling feature, especially in computer-aided design (CAD) environments. For example, an
engineer using CAD may load a machine-component design in his/her workstation, make some
changes, and see how those changes affect the component's operation. If the changes do not live

--30 -- A. Juozapavi&ius
up to expectations, (s)he can undo those changes and restore the component to its original state.
Versioning is one of the reasons why the OODBMS is such a strong player in the CAD and
computer-aided manufacturing (CAM) arenas.

OODM concepts are derived from intensive research done in several areas and by many
different people. It would be difficult to mention all the academicians and commercial researchers
who have made contributions in the development of OO concepts. However, it is necessary to
give particular credit to the work of M. Hammer and D. McLeod in the Semantic Data Model
(New York: ACM, 1981), which formally introduced such key concepts as classes, subclasses,
and attribute inheritance. Other important work has been done by J. Banerjee, H. Chou, J. Garza,
W. Kim, D. Woelk, N. Ballou, and H. Kim in the development of the ORION OODBMS (New
York: ACM, 1987).

OODM And Previous Data Models: Similarities And Differences

Although the OODM has much in common with relational or E-R data models, OODM
introduces some fundamental differences. The following summary is designed to make some
detailed comparisons in order to clarify the OODM characteristics introduced in this chapter.

Object, Entity, and Tuple

The OODM concept of object moves well beyond the concept of entity or tuple in
other data models. Although an OODM object resembles the entity and the tuple in the E-R and
relational models, an OODM object has additional characteristics such as behavior, inheritance,
and encapsulation. Such OODM characteristics make OO modeling much more natural than E-R
and relational modeling. In fact, the E-R and relational models often force the designer to create
new artificial entities in order to represent real-world entities. For example, in the E-R model an
invoice is usually represented by two separate entities; the second entity is usually weak because
its existence depends on the first entity.

Note that the E-R approach requires the use of two different entities to model a
single real-world INVOICE entity. Such an artificial construct is imposed by the relational
model's inherent limitations. The E-R model's artificial representation introduces additional
overhead in the underlying system. In contrast, the OODM's Invoice object is directly modeled as
an object into the object space or object schema.

OO0 Data Model E-R Model
Invoice
Invoice ‘ Customer
Date M 1
Number 1
Customer| | 1 has
. M
Invline M
Invline “4— Dependent entity

An Invoice Representation
Class, Entity Set, and Table

The concept of class can be associated with the E-R and relational models'concept of
entity set and table, respectively. However, class is a more powerful concept, which allows not

-- 31 -- A. Juozapavi&ius
only the description of the data structure but also the description of the behavior of the class
objects. A class also allows both the concept and the implementation of abstract data types in the
OODM. The ADT is a very powerful modeling tool because it allows the end user to create new
data types and use them as any other base data type that accompanies a database. The ADT thus
yields an increase in the semantic content of the objects being modeled.

Encapsulation and Inheritance

ADT brings two other OO features that are not supported in previous models:
encapsulation and inheritance. Classes are organized in class hierarchies. An object belonging to a
class inherits all the properties of its superclasses. Encapsulation means that the data
representation and the method's implementation are hidden from other objects and the end user. In
an OODM only the methods can access the instance variables. In contrast, the conventional
system's data components or fields are directly accessible from the external environment.

Conventional models do not incorporate the methods found in the OODM. The closest
thing to methods is the use of triggers in a few SQL databases, but triggers do not yield the same
functionality as methods.

Object ID

Object ID is not supported in either the E-R or the relational model. The hierarchical and
the CODASYL models support some form of ID that may be considered similar to the OID, thus
leading to the argument presented by some researchers who insist that the OO evolution is a step
back on the road to the old pointer systems.

Relationships

The main property of any data model is found in its representation of relationships
among the data components. The relationships in an OODM can be of two types:
* interclass references
= or class hierarchy inheritance.

The E-R and the relational models use a value-based relationship approach. Using a
value-based approach means that a relationship among entities is established through a common
value in one or several of the entity attributes. In contrast, the OODM uses the object ID, which is
indentity-based, to establish relationships among objects, and such relationships are
independent of the state of the object.

Access

A data model must provide efficient data access. The E-R and relational data models
depend on the use of SQL to retrieve data from the database. SQL is an ad hoc, set-oriented query
language that uses associative access to retrieve related information from a database, based on the
value of some of its attributes.

As a consequence of having more semantics in the data model, the OODM produces a
schema in which relations form part of the structure of the database. Accessing the structured
object space resembles the record-at-a-time access of the old structured hierarchical and network
models, especially if you use a 3GL or even the OOPL supported by the OODBMS. This is also
true in relational database applications, in which programmers may revert to the use of cursors to
compensate for the lack of 3GL support for set operations or because the data processing is
essentially record-at-a-time, which is typical of traditional business transactions. Hopefully, the

--32 -- A. Juozapavi&ius

mismatch between the programming language and the database language will be reduced in a
future DBMS environment.

The OODM is suited to support both navigational and set-oriented access. The
navigational access is provided and implemented directly by the OODM through the OlDs. The
OODM uses the OIDs to navigate through the object space structure developed by the designer.

Associative set access in the OODM must be provided through explicitly defined
methods. Therefore, the designer must implement operations to manipulate the object instances in
the object schema. The implementation of such operations will have an effect on the performance
and the database's ability to manage data.

Object-Oriented Database Management Systems

During the past few years the data-management and application environment has become
far more complex than the one envisioned by the creators of the hierarchical, network, or
relational DBMSes. For example, just think about some common current applications with
complex data-management requirements such as:
= Computer-aided design (CAD) and computer-aided manufacturing (CAM). Such applications
make use of complex data relations as well as multiple data types.

= Computer-assisted software engineering (CASE) applications, which are designed to handle
very large amounts of interrelated data.

= Multimedia applications that use video, sound, and high-quality graphics that require
specialized data-management features. An example of such an application is Geographic
Information Systems (GIS).

Such complex application environments are often best served by an objectoriented
database management system (OODBMS). The current generation of OODBMS combines object-
oriented concepts with the traditional DBMS

Many OODBMSes use a subset of the OO concepts and the OO data-model features
explained earlier. The reason for the implementation of subsets is simple:At this writing there is
no standard set of OODBMS features to be implemented. Instead, there is a large and growing
collection of OO features from which to choose. Therefore, those who create the OODBMS tend
to select the OO features that best serve the OODBMS's purpose, such as support for early or late
binding of the data types and methods, and support for single or multiple inheritance. Whatever
the choices, the critical factor for a successful OODBMS implementation appears to be finding
the best mix of OO and conventional DBMS features that will not sacrifice the benefits of either
one. Several OODBMS implementations currently exist in the research and commercial arenas,
and each one has a different set of features. Examples of such OODBMSes include:
= “The O2 System,” O.Deux et al., Communications of the ACM 34(10), October, 1991, pp. 35-

48.

= “Object Store,” C.Lamb et al., Communications of the ACM 34(10), October, 1991, pp. 51-63.

= “GemStone,” P.Butterworth, A.Otis, and J.Stein, Communications of the ACM 34(10),
October, 1991, pp. 65-77.

Common OO characteristics found in such OODBMS implementations are:

» The use of graphical user interfaces (GUIS) to manage the DBMS. OODBMSes come
equipped with a GUI such as a class hierarchy browser to let the end user explore the classes
contained in the design;

= The use of some kind of OOPL. The DDL, DCL, and DML commands are embedded in such
a language;

—-33 -

A. Juozapavicius

= The language supported by the OODBMS is considered to be compurationally complete; that
is, entire applications can be written in this language, and the end user does not need to learn
two different languages to develop the application.

OODBMS

Object-oriented

features

Conventional
DBMS features

OO concepts
0O data model
OOPL

| GUI (graphical user interfaces)

Data accessibility
Persistence

Backup and recovery
Transaction
Concurrency
Security and integrity

Administration

Object-Oriented Database Management Systems

Features of an Object-Oriented DBMS

The Thirteen OODBMS Commandments

Rules that make it an OO system:

Rule 1. The system must support complex objects.
Rule 2. Object identity must be supported.
Rule 3. Objects must be encapsulated.
Rule 4. The system must support types or classes.
Rule 5. The system must support inheritance.
Rule 6. The system must avoid premature binding.
Rule 7. The system must be computationally complete.
Rule 8. The system must be extensible.

Rules that make it a DBMS:

Rule 9. It must be able to remember data locations.

Rule 10. It must be able to manage very large databases.

Rule I 1. It must accept concurrent users.

Rule 12. It must be able to recover from hardware and software failures.

Rule 13. Data query must be simple.

There is no current OO standard to define a list of features that must be supported by a
database before it can be considered an object-oriented database. Nevertheless, many attempts

--34 -- A. Juozapavi&ius
have been made to procure a standard. The best-known and most thorough one is “The Object
Oriented Database System Manifesto,” written in 1989 by Malcolm Atkinson, Francois
Bancilhon, David DeWitt, Klaus Kittrick, David Maier, and Stanley Zdonik for the First
International Conference in Deductive and Object Oriented Databases, in Kyoto, Japan. This
represents the first comprehensive attempt to define a list of required OODBMS features.

The “Manifesto” illustrates thirteen mandatory features and other optional characteristics
of OODBMS. The thirteen “commandments” are divided into two sets of rules: The first eight
characterize an OO system, and the last five characterize a DBMS. The thirteen rules or
commandments are listed in a table.

Rule 1. The system must support complex objects. It must be possible to construct
complex objects from existing objects. Examples of such object constructors are sets, lists, and
tuples, which allow the user to define aggregations of objects as attributes.

Rule 2. Object identity must be supported. The OID must be independent of the
object's state. This feature allows the system to compare objects at two different levels: comparing
the OID (identical objects) and comparing the object's state (equal or shallow equal objects).

Rule 3. Objects must be encapsulated. Objects have a public interface, but private
implementation of data and methods. The encapsulation feature ensures that only the public aspect
of the object is seen, while the implementation details are hidden.

Rule 4. The system must support types or classes. This rule leaves up to the designer to
choose whether the system will support types or classes. Types are used mainly at compile time to
check type errors in attribute value assignments. Classes are used to store and manipulate similar
objects at execution time. In other words, class is a more dynamic concept, and type is a more
static one.

Rule 5. The system must support inheritance. An object must inherit the properties of
its superclasses in the class hierarchy. This property ensures code reuseability.

Rule 6. The system must avoid premature binding. This feature allows us to use the
same method's name in different classes. The OO system decides which implementation to access
at run-time, based on the class to which the object belongs. This feature is also known as late
binding or dynamic binding.

Rule 7. The system must be computationally complete. The basic notions of
programming languages are augmented by features common to the database data manipulation
language (DML), thereby allowing to express any type of operations in the language.

Rule 8. The system must be extensible. The final OO feature concerns its ability to
define new types. There is no management distinction between user-defined types and system-
defined types.

Rule 9. The system must be able to remember data locations. The conventional
DBMS stores its data permanently on disk; that is, the DBMS displays data persistence. OO
systems usually keep the entire object space in memory; once the system is shut down, the entire
object space is lost. Much of the OODBMS research has been focused on finding the way to
permanently store and retrieve objects from secondary storage (disk).

Rule 10. The system must be able to manage very large databases. Typical OO
systems limit the object space to the amount of primary memory available. For example,

-- 35 -- A. Juozapavi&ius

Smalltalk cannot handle objects larger than 64K. Therefore, a critical OODBMS feature is to
optimize the management of secondary-storage devices by using buffers, indexes, data clustering,
and access-path selection techniques.

Rule 11. The system must support concurrent users. Conventional DBMSes are
especially capable in this area. The OODBMS must support the same level of concurrency as
conventional systems.

Rule 12. The system must be able to recover from hardware and software failures.
The OODBMS must offer the same level of protection from hardware and software failures that
traditional DBMSes provide; that is, the OODBMS must provide support for automated backup
and recovery tools.

Rule 13. Data query must be simple. Efficient querying is one of the most important
features of any DBMS. Relational DBMSes have provided a standard database query method
through SQL, and the OODBMS must provide some similar capability.

There is neither a current nor a foreseeable standard-query-language norm for OODBMS.
In fact, there are many OO pundits who dismiss the viability of such a query language for
OODBMS because any query language is likely to violate the encapsulation rule, which states
that the internal data representation can be accessed only through the object's methods.

The “Manifesto” addresses several additional, but optional, OODBMS features,
including:

* Support for multiple inheritance. Multiple inheritance introduces greater complexity by
requiring the system to manage potentially conflicting properties between classes and
subclasses. The ORION OODBMS supports multiple inheritance by allowing the user to
design inheritance rules for the object instances of the class hierarchy.

* Support for distributed OODBMSes. The trend toward systems-applications integration
constitutes a powerful argument in favor of distributed databases. If the OODBMS is to be
integrated seamlessly with other systems through networks, the database must support some
degree of distribution. ONTOS DB from Ontologic is an example of an OO database that
supports both data and process distribution in a client-server environment on different
platforms, such as SUN, DEC, HP, and OS/2.

= Support for versioning. Versioning is a new characteristic of OODBMS that is especially
useful in such applications as CAD or CAM. Versioning allows us to maintain a history
that lets us keep track of all object transformations. Therefore, we can browse through all the
different object states, in effect letting us walk back and forth in time.

Contrasting Traditional and Object-Oriented DBMSes

The most obvious difference between traditional and OO databases is derived from the
object's ability to interact with other objects and with itself The OODBMS objects are an active
database component. Conventional database systems assigned a passive role to the object's
equivalent.

Another major difference concerns the support for object identity. OODBMSes are
identity-based systems. In contrast, relational databases do not provide OID support; primary
keys lack the permanence of the OID.

Support for abstract data types and encapsulation makes OODBMS more appealing for
applications with complex data or multimedia extensions, such as CAD, engineering, or desktop
publishing systems. ADTs allow support for complex objects - that is, objects created from other,
lower-level objects. Although most relational databases do not provide support for complex

-- 36 -- A. Juozapavi&ius
objects, some now include a few data-type extensions, such as binary large object (BLOB),
LONG VARCHAR, IMAGE, or PICTURE data types to store and share images within the
database.

Another distinguishing OODBMS feature is inheritance. Relational database systems do
not provide inheritance of attributes and/or methods, as the OODBMS would provide. Inheritance
increases code and data sharing within the system, thereby fostering reuseability.

It is not to leave the impression that the OODBMS has made other DBMSes obsolete. In
fact, there are some database features in which traditional DBMSes have excelled in recent years.
Such features include transaction and concurrency control, security, persistence, and query
capabilities.

Relational database systems are very well established in business-transaction processing
and concurrency control. The numerous and short sequential transactions that tend to exist in the
business environment are handled well by conventional database systems, especially by relational
DBMSes. OODBMSes are more appropriate in a transaction environment in which the number of
transactions is low and the duration of transactions is large. In other words, OODBMSes are
especially desirable in CAD, CASE, and engineering applications.

The relational DBMS and its immediate predecessors have also held their own in security
and database administration. To date, most OODBMSes have been designed to support the type of
applications that do not share the tight security and centralized control requirements that are
typical of the business areas in which relational databases tend to operate.

Persistence is one of the most critical features of any database system. Database
performance is, to an important extent, dependent on the efficiency with which the database
handles persistent secondary storage. The OODBMS is not particularly adept at secondary-storage
management, and for this reason most of the present OODBMS research efforts are focused on
this area.

Finally, the OODBMS's weakest aspect appears to be its relative lack of support for ad
hoc associative access. Relational databases have capitalized in this area: SQL makes it possible
to query any relational database without having to learn an entirely new language for each one.
OODBMSes are far from adopting any standard query language, and there exists some resistance
to ad hoc querying because such activity violates the encapsulation concept. Partly in response to
this limitation, some OODBMSes have adopted a different query approach: They modify SQL to
support object extensions, thereby allowing ad hoc queries on class hierarchies that will yield the
selection of object instances.

How Object Orientation Affects Database Design

A conventional relational-database design process involves the application of E-R
modeling and normalization techniques to devel6p and implement a design. During such a design
process, the emphasis is placed on modeling real-world objects through simple tabular relations,
usually presented in 3NF. Unfortunately, we have already seen that the relational and E-R models
sometimes cannot adequately represent some objects. Consequently, we were forced to introduce
artificial constructs, such as bridge entities, that widen the semantic gap between the real-world
objects and their corresponding representations.

You may have noticed that, generally, our database design process focused on the
identification of the data elements, rather than including the data operations as part of the
process. In fact, the definition of data constraints and data transformations is usually considered

--37 -- A. Juozapavi&ius

late in the database design process. Such definitions are implemented within external-application
program code. In short, operations are not a part of the database schema.

The object-oriented database design approach provides an answer to the often lamented
data-procedures dichotomy by providing both the data identification and the procedures or data
manipulations to be performed. However, if we do not make use of object-oriented languages in
the implementation phase, even the inclusion of object-oriented procedures does not necessarily
merit the label .object-oriented design' within an object-oriented system.

Why does the conventional model tolerate and even require the existence of the data-
procedures dichotomy? After all, the idea of object-oriented design had been contemplated even
in the classical environment. The reason is simple: Database designers simply had no access to
tools that honded data and procedures.

Object-oriented database design is the result of applying object-oriented concepts to the
database design process. Object-oriented database design forces us to think of data and procedures
as a self-contained entity, thereby producing a database that explicitly describes objects as a unit.
Specifically, the OO design requires the database description to include the objects and their data
representation, constraints, and operations. Such design features clearly produce a much more
complete and meaningful description of the database schema than was possible in the
conventional database design.

OO design is iterative and incremental in nature. The database designer identifies each
real-world object, defines its internal data representation, semantic constraints, and operations.
Next, the designer groups similar objects in classes and implements the constraints and operations
through methods. At this point the designer faces two major challenges:

1. Build the class hierarchy or the class lattice (if multiple inheritance is allowed) using base data
types and existing classes. This task will define the superclass-subclass relationships.
2. Define the interclass relationships (attribute-class links) using both base data types and ADTS.

The importance of this task can hardly be overestimated because the better the use of the
class hierarchy and the treatment of the interclass relationships, the more flexible and closer to the
real world the final model will be.

Code reuseability does not come easy. One of the hardest tasks in OODB design is the
creation of the class hierarchy, using existing basic classes to construct new ones. Future DBAs
will have to develop specialized skills to properly perform this task and to incorporate code to
represent data behavior. Thus DBAs are likely to become surrogate database programmers who
must define data-intrinsic behavior. The DBA’s role is likely to change when (s)he takes over
some of the programming burden of defining and implementing operations that affect the data.
Such a shift in procedures means that the programmer's work load is likely to decrease while the
DBA’s work load increases.

Both DBAs and designers face additional problems: In contrast to the relational or E-R
design processes, there are no computerized OODB design tools available to help design and
document a database. An OODB design can be implemented in any database model. However, if
the design is to be implemented in any of the conventional DBMSes, it must be translated
carefully because conventional databases do not support abstract data types, non-normalized data,
inheritance, encapsulation, and other OO features.

As is true in any of the object-oriented technologies, the lack of standards also affects
OO database design. There is neither a widely accepted standard methodology to guide the design

-- 38 -- A. Juozapavi&ius

process, nor a set of rules (like the normalization rules in the relational model) to evaluate the
design.

OODBMS: PROS AND CONS

OODBMSes yield several benefits over conventional systems. Most of these benefits are

based on the previously explored OO concepts. However, we think it appropriate to provide the
following summary.

Pros

‘OODBMSes allow the inclusion of more semantic information in the database, thus providing
a more natural and realistic representation of real-world objects.

‘OODBMSes provide an edge in the support for complex objects, which makes them
especially desirable in specialized application areas. Conventional databases simply lack the
ability to provide efficient applications in CAD, CAM, and multimedia environments.
-‘OODBMSes permit the extensibility of base data types, thereby increasing both the database
functionality and its modeling capabilities.

OODBMSes make full use of technological improvements in computers, especially cheaper
and faster CPUs and memory capabilities. If the platform allows efficient caching,
OODBMSes provide dramatic performance improvements compared to relational database
systems.

Versioning is a useful feature for specialized applications such as CAD, CAM, engineering,
text management, and desktop publishing.

‘The reuseability of classes allows for faster development and easier maintenance of the
database and its applications.

Faster application development time is obtained through inheritance and reuseability. This
benefit is obtained only after mastering the use of the OO development features such as

The proper use of the class hierarchy-for example, how to use existing classes to create new
classes.

OO design methodology.

Strong market penetration in specialized engineering areas make OODBMS a technology-
driven product that leads the development toward the nextgeneration DBMS.

The OODBMS provides a possible solution to the problem of integrating existing and future
DBMSes into a single environment. This solution is based on its strong data-abstraction
capabilities and its promise of portability. We may speculate that future systems will manage
objects with embedded data and methods, rather than records, tuples, or files. Although the
portability details are not clear yet, they will have a major and lasting impact on how we
design and use databases. As is true in any technological breakthrough environment, we still
have a long way to go; but the train is moving out of the station.

Cons

OODBMSes are based on a new technology that is still in its early growing phase and,
therefore, lacks the maturity that defines a stable end-user environment. Business hates
instability. As is true for any new market entrant, OODBMSes face strong opposition from the
already-established players such as relational, hierarchical, and network database systems.

The technology's novelty produces a lack of standards. In fact, the lack of standards may be
the single most damaging factor when business management evaluates database technology.
Not surprisingly, much OO effort is directed at standard development, and some standards are
in fact starting to appear.

The relational DBMS users emphasize the lack of a theoretical foundation for the object-
oriented model.

-- 39 -- A. Juozapavi&ius

* In some sense, OODBMSes are considered a throwback to the old pointer systems used by
hierarchical and network models. This criticism is not quite on the mark when it associates the
pointer system with the navigational datamanipulation style and fixed access paths that led to
the relational system's dominance.

= OODBMSes do not provide a standard ad hoc query language as relational systems do. Some
OODBMS implementations are beginning to provide extensions to the relational SQL to make
the integration of OODBMS and RDBMS possible.

» Lack of standards, ad hoc queries, and development tools create hidden complexities in
OODBMS development and make the penetration of OODBMS into the business market more
difficult. Such limitations are especially cumbersome in the design of OO databases. The
relational DBMS provided a comprehensive solution to the business database design-and-
management needs, supplying both a data model and a set of fairly straightforward
normalization rules to design and evaluate relational databases. OODBMSes do not yet
provide a similar set of tools.

= The initial learning curve for OODBMS is steep. Learning to design and manage an OO
database takes a considerable amount of time. If you consider the direct training costs and the
time it takes to fully master the uses and advantages of object orientation, you will appreciate
why OODBMSes seldom are rated as the first option when solutions are sought for
noncomplex business-oriented problems. (Programmers are especially likely to resist change!)

* The OODBMS novelty, combined with its steep learning curve, means that there are few
people who are qualified to make use of the presumed power of OO technology. Most of the
technology is currently focused on engineering application areas of software development.
Therefore, only companies with the right mix of resources (money, time, and qualified
personnel) can afford to invest in OO technology.

How Oo Concepts Have Influenced The Relational Model

Most relational databases are designed to serve general business applications that require
ad hoc queries and easy interaction. The data types encountered in such applications are well
defined and are easily represented in common tabular formats with equally common short and
well-defined transactions. However, RDBMSes are not quite as well suited as OODBMS to the
complex application requirements found in CAD, CAM, engineering design, simulation modeling,
architectural design, or pure scientific modeling. Also, the RDBMS is beginning to reach its limits
in a business data environment that is changing with the advent of mixed-media data storage and
retrieval.

The fast-changing data environment has forced relational-model advocates to respond to
the OO challenge by extending the relational model's conceptual reach. The result of their efforts
is found in the Extended Relational Model, examples of which are:

» 'The POSTGRES Next-Generation Database Management System," M. Stonebraker and G.
Kemnitz, Communications of the ACM 34(10), October, 1991, pp. 78-92.

» STARBURST by IBM researchers at the IBM Research Almaden Center, San Jose, CA
(Lohman et al. 1991).

= Dr. E. F. Codd's work at the IBM Research Laboratory, which gave the Extended Relational
Model its theoretical underpinning (Codd 1979).

Our discussion will be based primarily on these three pieces of research, which add
several significant new features to the relational model. Most of these features provide support for
= Extensibility of new user-defined (abstract) data types.
= Complex objects.
= Inheritance.
= Procedure calls (rules or triggers).

» System-generated identifiers (OID surrogates).

- 40 -- A. Juozapavi¢ius

We do not mean to imply that we have just provided you an exhaustive list of all the
extensions added to the relational model. Nor do we imply that all extended relational models
incorporate all of the listed additions. However, most researchers appear to agree that the list
contains the most crucial and desirable extended relational features.

The philosophy that guides the relational model's enhancements is based on the following
concepts:

* Semantic and object-oriented concepts are necessary to support the new generation of
applications.

= These concepts can be and must be added to the relational model.

= The benefits of the relational model must be preserved to protect the investment in relational
technology and to provide downward compatibility.

Most current extended relational DBMSes conform to the stated philosophy; they also
provide additional and very useful features:

= The POSTGRES RDBMS adds support for object and knowledge management. Object
management provides support for complex objects such as multimedia, video, and bitmaps.
Knowledge management provides support for data semantics, integrity constraints, and
inference capabilities. POSTGRES permits the definition of classes and supports both single
and multiple inheritance as well as user-defined data types and functions.

= The STARBURST RDBMS also permits the definition of user-defined types and functions,
support for complex objects, encapsulation, and inheritance. Both POSTGRES and
STARBURST use some form of system-generated and system-managed IDs or OID
surrogates to relate objects to one another; at the same time, they maintain their ad hoc query
capabilities. Examples of new data types supported by these types of systems include sets,
lists, and arrays of tuples of one or several relations.

The Next Generation Of Database Management Systems

The adaptation of OO concepts in several computer-related areas has changed both
systems design and system behavior. The next generation of DBMS is very likely to incorporate
features borrowed from object-oriented database systems, artificial intelligence systems, expert
systems, and distributed databases.

OODBMSes represent only one step toward the next generation of database systems. The
use of OO concepts will enable future DBMSes to handle more complex problems with both
normalized and non-normalized data. The extensibility of database systems is one of the many
major object-oriented contributions that enable databases to support new data types such as Sets,
lists, arrays, video, bitmap pictures, voice, map, and so on.

We do not believe that OODBMS will soon replace the relational DBMS as the standard
for all, or even most, database applications. Instead, the OODBMS will carve its own niche within
the database market. This niche will be characterized by applications that require very large
amounts of data with several complex relations and with specialized data types. For example, the
OODBMS is very likely to become a standard in CAD, CAM, computer-integrated
manufacturing, multimedia applications, medical applications, architectural applications, and
scientific applications.

--41 -- A. Juozapavi&ius
We believe that the extended relational databases will become dominant in most complex
business applications. This belief is based on the need to maintain compatibility with existing
systems, the universal acceptance of the relational model as a standard, and the sheer weight of its
considerable market share.

Multimedia Databases

Motivation: the study of multimedia databases is influenced by various applications and
their exponential expantion in the real life.

Concepts: What is Multimedia and Hypermedia? A lot of definitions (the definitions
below were given by Marmann and by Steinmetz).

Multimedia (by Marmann):

A multimedia system is a computer controlled integration of medial information objects
of different types (text, images, audio, video,). The integration refers to:
* Data modeling
* Storage
* Presentation
* 'T'ime synchronization

A promise is that the media must be digitally represented, or at least digitally
controllable.

Multimedia (by Steinmetz):

A multimedia system is to be defined as computer controlled, integrated
e generation,
* manipulation
* representation and
e communication
of independent information. This information is coded in at least one continuous (time dependent)
and one discrete (time independent) medium.

Hypertext:
Text, that is not linear, but has a net structure with nodes and links. Link sources and link
targets are called anchors.

Hypermedia:
Nodes can contain any arbitrary media, not only text. This means that the linka from and
to time dependent media are possible.

Link concepts:
Links may be classified by various attributes. These include granularity, direction,
functionality, locality, representation and dynamics of links.

1. Anchor granularity:
Node-to-Node-Links. They only allow complete hypertext nodcs as source and target
nodes.

>

Span-to-Node-Links. They point from a single, free definable area within a node (a span)
to a complete node.

- | g

—-42 - A. Juozapavi¢ius

Span-toSpan-Links. They admit spans within nodes as both, link source and link target.

L >

Node-to-Span-Links. They point from a whole node to a span (used very rarely).

-

2. Direction of links:
onedirectional links: can be followed only from the source to the target

- | I

bidirectional links: can be followed both ways

l I e |

3. Functionality of links:

1:1 - link — only one source and one destination anchor (a clssical form of links)

1 N

1:M - link — starting with one source, several destinations can be reached

- .
\

N:M - link or MSMD-link (Multi-Source-Multi-Destination-Link): it has several sources and

several destinations.
4

4. Locality of links:

inter-document link

intra-document link

--4—|

- 43 -

A. Juozapavicius

5. Representation of links:

* implicit, i.e. the link does not exist as an entity of its own, but is defined implicitely in the
document. (Example: in WWW, the link target is specified directly in the HTML document
within the link source anchor)

* explicit, i.e. the link exists as an entity of its own, and attributes can be accorded to it. These
attributes specify the link, e.g. author or type. In the document there exist only anchor-
definitions. The link entity refers to these anchor-IDs.

6. Dynamic of links:

static (stored link), i.e. the link is persistently stored in the system (implicit or explicit).

dynamic (computer link), i.e. the link (resp. the link target) is computed during runtime. The
system does not contain any speciflcation on the link. Dynamic links are uscd very often in
WWW for database search on cgi-scripts (also compare to links in digital library systems
including full text search; sometimes known in the literature as content based search).

Features of Multimedia Database Systems

* The multimedia database systems are to be used when it is required to administrate a huge
amounts of multimedia data objects of different types of data media (optical storage, video
tapes, audio records, etc.) so that they can be used (that is, efficiently accessed and searched)
for as many applications as needed.

 The Objects of Multimedia Data are: text, images. graphics, sound recordings, video
recordings, signals, etc., that are digitalized and stored.

e Multimedia Data are to be compared in the following way:

Medium Elements Configuration | Typical size | Time dependent Sense
Text Printable Sequence 10 KB no visuall/
characters (5 pages) acoustic
Graphic Vectors, regions | Set 10 KB no visuall
Raster image | Pixels Matrix 1 MB no visuall
Audio Sound/volume Sequence 600 MB yes acoustic
(AudioCD)
Video-Clip Raster image/ Sequence 2 GB yes visuall
graphics (30 min.)

The need and efficiency of MM-DBS are to be defined by following requirements:

Basic service:
to be used for multiple applications
not applicable as a real end-user system (like program interface)

Storage and retrieval of MM-Data:

For the Storage:
input of MM objects
cmnposition (to multimedia objects) (example: authoring systems)
archive of data (in hardware and format independent way)

--44 -- A. Juozapavi&ius
For the Retrieval:
support of complex search
efficiency (indices etc.)
evaluation (aggregation, filtering)
preview
also conversions (needed to gain or lead to hardware and format independence)

For the Update
only replace or also edit? (the complexity depends on).

Multimedia Database Systems have to be capable:

Support of multimedia data types, i.e. data types as data structures, including type of data and
operations

Capability to manage very numerous multimedia objects, store them and search for them

To include a suitable memory management system, to improve performance, high capacity,
cost optimization

Database system features:

* persistency

* transaction concept

* multi-user capability

* recovery

* ad-hoc queries

* integrity constrains (which leads to cocsistency)
» safety

* performance

Information retrieval features:
e attribute-based search
e content-based search

Integrity Constrains for MM-DB Applications

The following features are typical for MMDB:

Unique, Primary-key Constraints
Referential integrity

* via foreign keys (RM)

* via OIDs (0O)
Existential integrity
NOT NULL constraints
Integrity rules (check clauses)
Trigger

Specifically for OO:
Pre- and postconditions for methods
Constraints of the class hierarchy
Partition conditions (Disjointness constraints)

- 45 -- A. Juozapavi¢ius

The Dexter Reference Model

The Dexter Hypertext Reference Model

The goal of reference models is to built a common basis for the architectures of hypertext
systems, so that can interact to and to be compared to each other.

Objectives for the model:
» Standard terminology
* Minimum functionality
» Reference model — a meta-model for the formal description of properties of (existing)
hypermedia systems
* Basis for the development of exchange formats.

The results are also applicable to hypermedia systems.

An Overview on the Dexter Model:
It consists of three layers and two interfaces

contains presentation tools,
Run-time Layer user interaction, dynamic

Presentation Specification

contains the network of

Storage Layer nodes and links
Anchoring
contains data structure and
Within-Component Layer content of nodes
The three layers:

* The Storage Layer describes the network of nodes and links (most important layer). The
storable Hypermedia objects are called components. The three basic components arc:
- Atom
- Link
- Composite Component (for (hierarchical) structuring)

* The Within-Component Layer describes the content and structure of the components (nodes,
links); e.g. the data structure for text, images, animation etc. This layer is system specific, so it
will not be defined in the Dexter Model (e.g. defined in ODA, IGES, etc.)

* The Run-time Layer manages the presentation of the components in the user interface at
runtime. There will be administered one session per user. This layer also handles the
read/write-copies of the components in the cache (because updates are possible).

The two interfaces:
* The Anchoring offers the mechanism for addressing the link sources and targets even inside of
the components (Span-to-Span-Links).

- 46 -- A. Juozapavi¢ius

Thee Presentation Specification offers a possibility to deposit information on the display of
components in the Storage Layer by the Run-Time-Layer (e.g. editable/noneditable)

Teacher’s link:

Text “View in editor” Animation

Student's link:
"Run the animation”

Example for presentation specification even on links.

—1< >
. R L / O
Component
O | — | | O
B o Y —
i | L,Component
EEEEEEEEEEEEEEESR nk/Z \ Text
EEEEEEEEEEESR B document
k Component ~
s \\
V%
\ Text
document
Run-time layer Storage layer Within-Component Layer

The Three Layers in Detail
The Storage Layer

This layer describes the hypertext structure as a finite set of components and a set of two
access functions: resolver- and accessor- function.

Component = Atom
Link

Composit Component

Atom: is cobsidered as a "node", that means as a primitive, it's substructure and content are
specified in the Within-Component Layer.

Link: is specified by two or more anchors (= endpoints). Anchors can be components or parts of
components (Span-to-Span).

Composite Component: it is a hierarchical structuring of'components, particularly: DAG

Identification: Each component has a "global unique identifier" (UID).

—-47 -- A. Juozapavi¢ius

-

The two access functions on components:
accessor-function: UID = component

resolver-function: predicative spezification of the link target = UIDs or ()

Anchors:
Span-to-Span-Links must be able to address substructures of components.
Anchor = (anchor-id, anchor-Value)

locally unique within specifies location inside
a component the component
(fixed length) (variable length)
globally unique link anchor: Tuple (UID, anchor-id)
Note:

According to the definition, links are components. Thus the following are possible: Link
with endpoints that are links, but also: endpoints of a link inside another link. Example: link on
a linkdescription or on the type or direction of another link.

Specifier: of possible link endpoints; a specifier consists of
- component specification (e.g. the UID)
- anchor-id (= AID)
- direction (optional) [0 [FROM, TO, BIDIRECT, NONE]
presentation specification (optional)
Link: sequence of two or more specifiers (1:1-, 1:M-, M:N-links). Mostly: 1:1 links directed links

Atom #12 Link #57 Composite #23
Component_Info Specifier Component_lnfo
Attributes Component_Spec #12 Attrlbutes
Presentati ’gpﬂm/ #1 Presentation_Spec

i Anchor
Anchor | ID#1 Valye | | — 1rect10n. FROM D #5 Value
/ Presentation_Spec mm— Ly »
Content / Specifier / ontent /

Component_Spec #23/
; Anchor_ID ‘
DlreCthn TO —— ——

Presentation Spec

- 48 -- A. Juozapavi¢ius

Component-Info:
In addition, components have the socalled "component informations".

These do not describe the content, but the properties of a component:
 all the anchors
* presentation information for the Run-time Layer
» arbitrary attribute/value tuples (e.g. keywords, type, etc.)

Atom Component: Link Component:
Component Info Component Info
Attributes Attributes
Anchors Presentation Anchors Presentation
Content / Specifier Specifier >
Specifier \

Components Structure in the Storage Layer
Link-Consistency:

The component-specification of each link-specifier must lead to an existing component
(resolve, access).

Links are entities of their own, thus deleting a component requires deletion or update of all
the corresponding links.
The Within-Component Layer:

This layer contains the data structure of the component and their contents. It is system
specific, so it is not defined any closer in the Dexter Model.

The Run-time Layer

Runtime system for presentation. It contains plenty of dynamic functions, like "present
component”, "follow link", "realize", etc.

A new session is started for every user (session management).

Instance of a component = the users representation of the component

More precise: it is the copy of the component in the run time cache (compare to modification
and rewrite), i.e. several instances of a component may exist at the same time.
Each instance has it's own instance identifier (IID).

The instantiation of a component necessitates the instantiation of the anchors
(= link markers).
Session-Entity contains:
- the hypertext
-the mapping I1Ds -> UIDs
-History (at the moment this is defined only for read-only;

- 49 - A. Juozapavi¢ius

writes: compare to the TA-concept in DBS)
-runtime resolver function: (specification -> UlDs)
-instantiator function: (UID + presentation-spec. -> IID + Instance)
-realizer function: (invcrs to instantiator, = write back the cache after a modification)

Follow-Link operation: input: IID of an instance and the Link Marker.

Example for a simple exchange format according to the Dexter Model:

<hypertext>
<component>
<uid> 21 </uid>
<type> text </type>
<anchor>
<id> I </id>
<location> d13 </location>
</anchor>
<data> This is some text ... </data>
</component>
<component>
<uid> 777 </uid>
<type> text </type>
<anchor>
<id> I </id>
<location> 13-19 </location>
</anchor>
<data> This is some other text ... </data>
</component>
<component>
<uid> 881 </uid>
<type> link </type>
<specifier>
<component uid> 21 </component uid>
<anchor id> 1 </anchor_id>
<direction> FROM </direction>
</specifier>
<specifier>
<component_uid> 777 </component_uid>
<anchor id> 1 </anchor id>
<direction> TO </direction>
</specifier>
</component>
</hypertext>

Evaluation and Review

The Dexter Model is a more powerful model then the models that are usually used in Hypemedia
systems:

-1:M links, M:N-Links

-Links to links (hard to implement)

-Complex components

-bidirectional links

-extremely powerfull resolver-function

-- 50 -- A. Juozapavi&ius

Weak Points of the Model:

 strict separation of the layers is weakened by the anchors!

» the direction of a link is not specified until in the Link Specifier; thus inconsistency
problems may occur;

* model extensions will be necessary in respect of time-critical media (synchronisation, etc.)
(see also: Amsterdam Hypermedia Model).

* in editing mode: all relevant components must already exist in the system, before a link can
be defined.

Summary:

The Dexter Model is not a standard in it's true sense of the meaning, (not in the sense: "We
fulfill the Dexter-Model"), but a reference model (instead of: "Our ... corresponds to the Dexter
Model”).

Advantages of Multimedia Database Systems

* integrated administration of huge amounts of multimedia data
* optimized storage

» efficient access

* manyfold complex search possibilities

» referential integrity of links

* transaction protected multiuser mode

* recovery

* etc.

Multimedia-DB applications
Fields of application:

* static/passiv:

Retrieval / Information / Archive

(Libraries, video on demand, information systems, press, hospitals)
Databases, information retrieval

* static/aktiv

Education / Commercials/ Entertainment

(School, university, professional training, games, commercials)
CSE, Teachware, Courseware, CBT,

* dynamic/passiv

Writing / Publications/ Design

(Press, engineering, architecture)
Editors, layout generators, CAD-systems

* dynamic/active
Controlling/Monitoring (Factories, traffic, weatherforecast, military)
Process control systems

