
Variable Spatial Resolution: Quadtrees

The concept of variable spatial resolution implies varying sized units at a given
resolution level. The choise of the shape is a special matter. The square is particular
handy if the process of creating the blocks of varying size is one of the decomposing
space from a general level to more detail. For example, a polygon can be successively
approximated by sets of blocks at different levels:

If the process involves systematic splitting of space in 2-dimensional space by a
rule of four, then the structure is known as a quadtree, a type of hierarchical data
model. A 3-dimensional equivalent is known as an octtree because it involves an
eightfold splitting:



The quadtree data organization, as presented above, leads to complete table of
data for the entire area, involving quadtree blocks and identifiers based on location
codes, hierarchical organization, table of attributes for the urbal polygon, complete
data.

Different kinds of data can be treated in this hierarchical subdivision fashion.
Ideally we would like to be able to:

1. treat point, line, and area data in the same way;
2. capture metrical details for entities;
3. facilitate various kinds of operations;
4. deal with different ways of measuring attributes;
5. have consistent locational referencing.

The simplest form of quadtree recognizes the presence or absence of an
attribute in space, whether point, line, or area. Computer scientists usually refer to the
binary incidence representation as colour coding, using black and white to indicate
presence and absence.

A cell could contain a scalar value, or a pointer to sets of attributes under the
condition that the cell is a lowest geographic unit. Thus cells may be used to represent
point data, such as cities, where each cell contains one city; or linear features, say
water pipes, where each cell contains a segment of a pipe or a junction of several
water lines. So we may define an attribute presence quadrant, an absence quadrant, an
edge quadrant, a vertex quadrant and a point quadrant:

In the standard form, the geometry of edges and points is not retained, only
incidence. However, as for fixed resolution regular tessellations, additional
information can be encoded for cells (b). In the case of edges representing polygon
boundaries or graphs, this could consist of the x and y Cartesian or the polar
coordinates to establish where the edges cross the boundary of a cell, or for vertices or
points, the exact coordinates for a point within a cell.



If, for linear features, the incidence is only a vertex with one or more graph
edges or a piece of an edge, then a quadtree representation will look like that in:

This figure represents a quadtree for line data, giving map and quadrants for
line objects, tree and encoding rules, data item records. Various possibilities for
encoding exist; rules must be established before the quadtree database is created from
the original data.

Unconnected points may be handled in different ways. A regular figure
decomposition process could produce squares from the orthogonal coordinate space
by subdividing using both x and y, with varieties depending on whether or not all four
squares at a given level of decomposition were recognized (the MX quadtree) or not
(the PR quadtree), The second type requires coordinate information to establish
position within the block; the former does not, representing the point at a corner of
the cell.



Various locational reference schemes are possible, and are indeed used for
meeting different requirements.

One simple scheme is to consistently order the four blocks at each level in a
NW, NE, SW, SE sequence, using data in the record for a tree node to point to the
four nodes at a lower level if such exist (a). Numerical coding representing the NW,
NE, SW and SE by integers could be used (b); some coordinate values could be used,
or a space path could be employed to simplify movement through the entire set of
cells, without using actual coordinate values.

Referring to figure above, coding using row and column identifiers would
require more data to be stored than for a locational coding scheme, using the NW, NE,
SW, SE orientations, while a Peano N path has single dimension addressing and has
stable numbering across different levels of resolution. Thus the larger blocks in the
quadtree would be represented by fewer positional pieces of data than the number of
blocks (c), and the final table would contain items for the Peano key and quadrant
size, often the number of smallest size pixels on the side of the square block.

The general properties and principles for quadtrees are applicable to the three-
dimensional variant, the octtree, used to some extent for geologic modelling and
representing three-dimensional solids:



Hierarchical decompositions may be undertaken on the basis of the empirical
information to be encoded and stored in contrast to the regular subdivisions so far
discussed. The latter are data independent; the former are data dependent. For
example, a distribution of point features, such as cities, may be subdivided into
rectangular, rather than square blocks, on the basis of alternating x and y axes. A
similar process can produce two or four branches at each step. Thus, the empirical
information, the exact position of the points, governs the data structuring, not a fixed-
grid scheme. The binary subdivision, which is one of a group of K-dimensional (KD)
trees, is generally regarded as superior to the point data quadtree for operations done
in sequence.

The quadtree and related structures, clearly based on a tessellated discretization
of space, provide semantic value by their recognition of varying density of incidence
of phenomena in space, and can deal with both vector and raster data. The hierarchical
structuring cleverly addresses spatial variations at different scales, it offers the
valuable adaptability property to empirical conditions and with good locational
referencing provides a basis for efficient spatial access and indexing. As discussed
later, Boolean operations such as union, intersection and difference are easy to
perform, whereas translation, rotation and scaling are not.

In general, the hierarchical tessellations are regarded as offering benefits in the
reduction in the amount of space needed to store data for phenomena. We contrast the
more extensive grid cell encoding with the quadtree, and another device, the run-
length encoding. The first of these records data for each cell, demonstrated here for
two different resolutions. The quadtree will use a smaller number of spatial units as
produced by the hierarchical subdivision; the run-length encoding reduces data
storage by recording runs of like conditions for rows (or columns) as shown. The



degree to which the space-saving methods reduce storage depends primarily on
the amount of homogeneity in the mapped data. The extremes are a perfectly
uniform landscape, for which the quadtree block is best, or a checkered pattern in
which each cell is different from all its neighbours. In this case, there is no particular
advantage in using the two space-saving techniques. Alternative data storage schemes
like linked lists are preferable for sparse matrices.

The hierarchical structures may be differentiated on the basis of types of data,
the principles guiding or governing the decomposition process, and the type of spatial
resolution. However, because they are based on regular spatial units, they also have
advantages and limitations associated with the use of grid squares. Particularly, there
are limitations in dealing precisely with point and linear features, and in not explicitly
addressing topological spatial properties.

Hierarchical Tessellations for a Sphere

A particularly interesting and challenging need is a hierarchical structure of
cells for covering the entire world. As discussed, a global database can be structured
as a set of triangles. While there are many ways to subdivide the surface of a ball, at
one level, some of the geometrical properties of particular figures may have practical
shortcomings for a single or multiple scale representation scheme for the earth.

A globe can be divided into a single tessellation of only triangles that at one
level have five corner neighbours, that is the icosahedron threedimensional model.
However, it is not possible to anchor the graticule to all important global features, the
pole, equator and meridians. The dodecahedron, a set of pentagons, while having a
nice property of only touching at edges of cells, is even worse for not having
hemispherical symmetry, being flat at the top (or bottom) and pointed at the
diametrically opposite pole. Out of the five convex regular polyhedra are shown
below, and known as the Platonic solids. The icosahedron is the most nearly
spherical because it has the largest number of vertices, edges and facets.

The tetrahedron, or pair of these that make the octahedron, is better for fitting to
the requirements of polar symmetry and for mapping vertices along the equatorial
plane. Six anchor points, each with four triangles meeting, correspond to the north and
south poles, and the 00, 900, 1800, and 2700 subdivisions around the globe. The eight
initial triangular facets are then subdivided into a set of regular triangles (a), providing



global referencing for areas closely similar in shape and size, and facilitating
hierarchical referencing to detailed positions on the earth. Within each principal
triangle, four equal subdivisions are referred to by 0, 1, 2 and 3; at greater resolution
levels there will be extra digits, using this same scheme of four numbers (b). The
numbering scheme used for the tetrahedron can also be regarded as providing
indexing keys for access to each cell.

Irregular Tessellations Based on Triangles

Two types of irregular tessellation have valuable properties for spatial
information systems: triangles and proximal polygons. They both represent variable
spatial resolution at a given scale and can be dealt with hierarchically although, at the
moment, there are few practical applications of this variety. A real need that
demonstrates the value of a set of triangles is the representation of earth surface
terrain conditions. It is generally thought that, at least visually, it is preferable to break
up a surface into triangular facets rather than squares or other polygons. In order to
create areal units from only point data, a technique of creating proximal polygons is
often used.

Proximal regions

For the second of these needs, consider a distribution of administrative offices
in space. We can argue for locating them so that their territories are demarcated such
that the people in every household living within them travel to their nearest centre:



As such, the polygons are sometimes called proximal regions, or are often
called Thiessen or Voronoi polygons. If any people in a household within the
designated proximal zone then choose to travel to a different centre, they bear an
additional cost by increasing their travel distance above an optimum minimum based
on the nearest centre.

The polygons are created by subdividing lines joining nearest neighbour points,
drawing perpendicular bisectors (sometimes called mediators) through those points,
and then assembling the several polygon edge pieces out of those lines, as shown (a).
The concept of the proximal area, sometimes used as a standard for evaluating equity
issues for travel to administrative centres or public service facilities, is known in
mathematics as the Dirichlet domain. This space encompasses a set of points closer
to a given point than to any other points in the set. With reference to (b), note that the
domain takes on different forms for varying point patterns, regular or otherwise.

Triangulation

The irregular triangulation for surface modelling is a somewhat more involved
concept than creating proximal areas because it is oriented to line features as well as
points. As figure below suggests, using triangles to represent terrain, a more realistic
representation will be achieved if the spatial data units recognize natural surface
changes in slope, at peaks, pits, passes, ridge lines, saddle points and course lines or
discontinuities, rather than just be fitted arbitrarily. A set of triangular facets can be
created to meet these conditions by having triangle edges fall along approximations of
ridges and river channels, and having their corners located at control points with exact
known coordinates from earth surveys, or at river confluences, or at peaks or
depressions of terrain.



Modelling terrain: concept of a triangulation closely following the major terrain
features.

Ideally we would like to have:

1. the triangle corners match important turning points in the terrain surface;
2. the important linear features be represented by triangle edges.

The process of triangulation has three stages:

1. choosing the data points;
2. connecting points to create triangles;
3. storage of necessary and additional desirable information.

Assuming for the moment that the z variable is terrain elevation, but noting
that, in principle, other phenomena can be treated in the same manner, then original
data for height may come from several sources of different spatial structure. Data may
be lattices of heights in the form of digital elevation models (themselves often created
from digitized contours), irregularly distributed spot heights, contours or a mixture. It
is important to know the spatial distribution and whether data are point or linear. It is
also most important, especially for terrains, to recognize natural breaks of slope, and
key landscape features like coastlines, course lines, ridges and peaks.

Whatever the original form of data, the triangulation method uses x, y, z
coordinate triads, fitting a set of irregular triangles to all data points, and then
interpolating intermediate values of z from the known values at the corners of the
triangles. This triangulated irregular network (TIN) therefore is a tessellation
model applied to known positions, or, at least a subset of them. Because estimates of
height will be more reliable the closer they are to the original data points, it is better to
use triangles as close to equilateral as possible. It is especially important to avoid long
narrow triangles, such as might occur when using data from widely spaced contours
with many points on each contour line.



TIN for high density of data points. The black areas indicate triangles with
virtually no slope. The hull of outer points is not necessary convex. Thus the
triangular tessellation consists of:
1. a set of points carrying elevation data;
2. a set of lines consisting of pairs of points, joined by straight lines;
3. a set of triangles, having triplets of x, y, z coordinates;
4. adjacency relations for the edges of the triangles;
5. a list of triangles in which particular edges are included;
6. the triangles in which particular nodes are contained.

As such the triangular tessellation combines topological and geometric
information. Various derived data are computable as needed or computed and stored
for the following topological elements:



1. the gradient and aspect of edges of triangles;
2. the planar and surface area of the triangular sets;
3. the slope and aspect across the facet.

Naturally many sets of triangles could be fitted to a set of points (a). A
triangulation that produces Delaunay triangles is generally the preferred relatively
straightforward method, producing triangles with a low variance in edge length. This
type of triangle, based on a proximal distance criterion, is defined by the condition
that the circumscribing circle of any triangle does not contain any point of the data set
inside it (b). The Delaunay triangles are duals to the Thiessen polygons, and the
polygon centre is the centre of the circumscribing circle.

Triangulated tessellations have a number of useful features for spatial
information systems. The triangles can be treated as irregular polygons; the
tessellation exhausts all space; there is planar enforcement; they are appealling spatial
units that appear to provide acceptable models of certain kinds of terrain surface. At
the same time, their creation is computationally demanding; there are many possible
triangulations for any set of points; and they can miss important aspects of surface
morphology unless the edges are constrained to fit major breaks of slope.

They are not the only data models conceptually possible or actually used in
estimating surface height values from a set of spatially distributed points. If contour
data exist, elevations can be interpolated for points lying within the isolines. A
uniform distribution of points, a lattice form or intersections of grids, facilitates
estimation of heights of points along the grid square sides, but generally the regular
distribution of point values is itself estimated from an irregularly spatially distributed
set of data by a process known usually as gridding. In simple form, this consists of
using one or more original data points found in a neighbourhood of the grid
intersection.



Absent much empirical evaluation of different surface representation
techniques, it appears from logical grounds and some experimental studies that
irregular tessellations can recognize important surface conditions, provide data for
topological properties, produce reliable interpolated values by passing the surface
through known data points, and allow for different scale representations. Gridding
procedures producing regular tessellations do not usually recognize data points, do not
provide explicit topological information, and are not adjusted to known conditions
like breaklines.

Nevertheless, choices must be made on the basis of purpose and type of terrain
being modelled. Some hydrological simulation models work reasonably well with
gridded data; subsurface depth estimations from limited information can be done
better by grid data for there is usually no information as to natural break conditions.
Simple, regular, nearly plane surfaces are better handled by grids, but dissected fluvial
landscapes are apparently successfully modelled by triangulated irregular networks.
Glaciated landscapes may indeed be best represented by neither technique, but instead
by fractal geometry.


