
Fractals: a way to represent natural objects

In spatial information systems there are two kinds of entity to model:

§ natural earth features like terrain and coastlines;
§ human-made objects like buildings and roads.

Start with a piece of blank paper with an (x, y)-coordinate system marked and pick an
arbitrary point on the paper; then find its coordinates. Randomly select one of the four
affine transformations listed below:

Then apply the transformation to this point, and the coordinates of a new point are
obtained. Notice the new point. Plot it in black on the paper.

Again select randomly one of the above four transformations and apply it to this
point to obtain the next new point. Notice the new point. Plot it in black on the paper.

Again pick randomly one of the above four transformations and apply it to the
point to obtain the next new point. Notice the new point. Plot it in black on the paper
(you can repeat this process indefinitely). If you are patient and persistent enough, a
spleentvort fern (figure, a), will appear on the paper like magic:

How does this magic happen?



The process above shows that with the right mathematical model a perfect
picture can be described with infinitely fine and marvelously rich textures in only 24
numbers:

85, 4, 0, -4, 85, 40;
20, -26, 0, 23, 22, 40;
-15, 28, 0, 26, 24, 11;
0, 0, 0, 0, 16, 0;

Each 2-D affine transform will be characterized by 6 numbers. The dragon takes
only 2 transforms, i.e. 12 numbers:

45,  -50,  0,  40,  55,  0;
45,  -50,  100,  40,  55,  0

The Sierpinsky triangle is created using 18 numbers:

50,  0,  0,  0,  50,  0;
50,  0,  50,  0,  50,  0;
50,  0,  0,  0,  50,  50

The 3-D affine transform will be characterized by 12 coefficients. Then the 3-D
Sierpinsky gasket takes the following four affine transforms:

50, 0, 0, 0, 0, 50, 0, 0, 0, 0, 50, 0;
50, 0, 0, 50, 0, 50, 0, 0, 0, 0, 50, 0;
50, 0, 0, 25, 0, 50, 0, 50, 0, 0, 50, 0;
50, o, o, 25, 0, 50, 0, 25, 0, 0, 50, 50



The maple leaf:
49, 1, 25, 0, 62, -2;
27, 52, 0, -40, 36, 56;
18, -73, 88, 50, 26, 8;
4, -1, 52, 50, 0, 32

More details about the maple leaf, there are four affine transforms:



and visually their effects may be expressed:

in deterministic way:

or in random iteration way:



Def.: A fractal is an image or picture that obey self-similarity and can be
completely described by a mathematical algorithm in its infinitely fine texture and detail.
In essence, a fractal is a mathematical model of the self-similar nature of the real world.

In the most interesting cases those textures and details cannot be predicted using
classical geometry. Fractals bave fractional dimensions. Fractals can be generated by an
algorithm, because of the self-similarity on every scale.

Some mathematical fractals:

Weierstrass functions (introduced in 1875)



and for ë = 2 and s = 0.5

This is a fractal, because of for the function

there are operators:

and then the limit   f,   W(f),   W(W(f)),   W(W(W(f))), …. gives the fractal.

THE HILBERT CURVE

This function gives a bijection of a unit segment [0, 1] to [0, 1] x [0, 1], defined as
follows:



A geometric proof of this was given in 1890, by Peano. Later, Hilbert introduced
an easier, iterative construction. Hilbert filled up the unit square with a segment, now is
called the Hilbert space filling curve. The following four transformations are chosen:

The transformations
• w0 maps the whole square to the bottom left corner with a 900 rotation;
• w1 maps the whole square to the top left corner with a vertical flip;
• w2 shrinks the whole square to the top right corner;
• w3 maps the whole square to the bottom right corner with a diagonal flip.

Julia sets and Mandelbrot set

In mathematics, conformal transformations play an essential role in the theory and
applications of functions of complex variables. The conformal transforms

f(z) = z2 + C

for complex number C and complex variable z, expressed geometrically, correspond to
Julia sets:



The Mandelbrot set is defined on complex plane as a set of complex numbers C,
for which the corresponding Julia set is connected:



More Julia sets and Weierstrass functions?

A fractal image analysis system for fabric inspection:
The main difficulty is solving the problem of quantifying visual impressions in

complex situation like those met in fabric manufacture. Defects which need to be found
by the inspections are numerous and complex:



              

Stochastic fractals

To create more "natural looking" shapes (involving variety in the sense that the
leaves of tree may generally have the same form, but are individually different), we use
randomization. The fractional Brownian model, a family of one-dimensional Gaussian
stochastic processes of value in analyzing time series for natural phenomena,
incorporates a curve which is selfsimilar.

To simulate fractional movement, an approximate solution may be given by the
formula:
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where u stands for a random number, ó0 is the parameter for a Gaussian (normal curve)
distribution, l is the level of recursivity, and h is a fractal parameter specifying the
roughness of an object.

For example, for coastlines or terrain generation, this is often near 0.8. This
formula means that instead of having the pure middle line segment one-half of the
addition of the two y values, we add a small error term which has a Gaussian
distribution, and fading with the level of recursivity.



A slight variety of this process displaces the point along the segment mediator (b),
the line perpendicular to the line joining the two points at the ends of the starting line
segment. Some authors prefer to move the middle along the perpendicular bisector, and
some prefer movement along a line parallel to an axis.

The process can also be used for two-dimensional contexts, to produce
simulations of terrain:

Starting from points A, B, C and D we generate midpoints on each side of the
original rectangle (or square), and then get I from the midpoints E, F, G and H. Gaussian
displacement values are again generated, producing an effect as shown (figure b).
Continuing this process to small line segment lengths will produce a terrain simulation
from the non-systematic irregularities in the height values:



Space-Filling Curves And Dimensionality

Data processing and storage may be more economical if less information can be
used to meet the same requirements. Thus area units may be represented by a centroid, a
zero-dimensional object or by parametric curves. A data reduction can also occur if
objects could be positioned in only one dimension rather than two or three.

Paths through space

The matter of dimensionality is encountered in spatial information systems in
different ways. In an earlier chapter we discussed the identification of material entities
as having zero, one, two or three dimensions.  It also arises in terms of addressing
systems.

There are different orderings, that is one-dimensional paths, through the two-
dimensional tiled space. Paths could zigzag, could go along a row in one direction and in
a reverse direction in the next row, like a bidirectional computer printer (b), or could
follow a path that reduces the total distance of travel through going to as many
immediate neighbours as possible, and having a small number of longer connections, or
could have diagonal or spiral forms (c and d):

A good sequential ordering should have certain properties that provide some
conveniences in single dimension addressing for two- or three-dimensional sets of
regularly shaped tiles. The path should pass only once to each tile in the two- or N-
dimensional space, and neighbours in space should be adjacent on the path. The path
should be useable even if there is a mixture of different sized spatial units, and should
work equally well in two or three dimensions, and for connecting to adjacent blocks of
space. In reality there is no ideal path; there are just orderings with some of these
properties.



A comparison of different paths (for a given resolution) can use several measures:

1. Total length of the path.
2. Variability in unit lengths, where unit length is the distance from one point on the

path to the next in sequence.
3. The average distance on the path from tiles to their four neighbours in space.

Comparative averages for the central block of four squares are shown in the table
below along with other properties of a sixteen-tile mosaic.

Path type Length (approximate) Variability Average
distance

Row 22 2 10
Row-prime 15 1 10
Diagonal 18 2 18

Spiral 15 1 13
N 20 3 12

Space-filling curves

Often we talk about space-filling curves rather than paths through space. These
curves are special fractal curves which have characteristics of completely covering an
area or volume. While they have a topological dimension of two, their fractal dimension
is two when filling an area, or three when completely occupying a volume space.

Consequently, thinking of paths in space now as space-filling curves, lines that
pass to all possible points in space, they should have the following properties:



1. The curve must pass only once to every point in the multi-dimensional space.
2. Two points that are neighbours in space must be neighbours on the curve.
3. Two points that are neighbours on the curve must be neighbours in space.
4. It should be easy to retrieve the neighbours of any point.
5. The curve corresponds to a bijective mapping from a multi- to a onedimensional

space.
6. The curve should be able to be used for variable spatial resolution, that is, a mixture

of different-sized "points".
7. The curve should be stable, even when the space becomes very large or infinite.

In reality, we do not possess such ideal curves, but there are some with valuable
properties for our purposes. The original space-filling curve was exhibited in 1890 by
the Italian mathematician Giuseppe Peano (Peano, 1890). A later variety, now known as
the Peano or N ordering (a), facilitates retrieving neighbours, and although
neighbouring points in space are not always neighbours on the curve, they generally are.
It is also possible to deal with different resolutions as shown, and the curve is stable:

The Hilbert curve meets most of the conditions noted above, but does not provide
an easy way to retrieve neighbours and is not stable.  For the Peano curve the keys are
easily obtained, the binary digits for the x and y values are interleaved:



Generally, the ordered paths have similar shapes at different scale levels, they are
self-similar. However, the particular place of a point or tile in the sequence for a
particular curve type may not be consistent across scales. While the N curve does have
such stability, as revealed by the coded numbers, this is not so for the Hilbert curve.
That is, for the Peano case, if the space is extended by doubling each side for the block
of four quadrants, we see that the order of squares is not perturbed.

    

Space-filling curves have two principal, practical uses in the domain of spatial
information systems:

§ firstly, they provide some efficiencies in scanning operations, either hardware
devices or searches through datafiles;

§ secondly, they are used as spatial indexes, simplifying two dimensional addressing
as single dimension addressing.


