
Image Enhancement in Real Space

The goal of this lecture is to show how modifications to the image may be made,
for the purpose of enhancement through transformations applied to the individual
gray levels of the image: a process sometimes referred to as “gray level
transformation”.

HISTOGRAM PROCESSING

A histogram of the frequency, or number of times, that a pixel with a particular
gray-level occurs within an image provides us with a useful statistical
representation of the image.

As an example, consider the image below which represents a dark object (a square
on light background. The object is represented by gray levels greater than 4, and
the background by levels between 0-2.

0 0 1 0 1 0 2 0
1 0 0 1 0 2 0 1
0 1 7 5 6 6 0 1
0 0 6 5 5 7 2 0
1 1 7 7 7 6 0 0
0 2 6 6 6 5 2 1
1 1 2 1 1 0 0 0
1 0 2 2 1 0 1 2
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The above histogram is referred to as being 'bimodal' as it consists of two peaks:
one in the region spanning gray levels 0-2 and the other spanning gray levels 5-7.



Histograms only showing one significant peak are called unimodal.

In the case of complex images eg satellite or medical images which may consist of
up to 256 gray levels and 3000*3000 pixels, the resulting histograms will consist of
many peaks and the distribution of those peaks together with the magnitude, can
reveal significant information about the information content of the image.

Ideally, we would like an image whose histograms shows a uniform distribution
over the range of gray levels covered, since this enables us to comprehend the
contribution made by all the gray levels to the image.

In practice, however, the resulting histogram is often nonuniform, with a few levels
dominating over others to the extent that full image interpretation by the eye
cannot be achieved.

We therefore look for methods which transform the available intensities over a
broader range. Figure (a) for example shows an image and its corresponding
histogram is shown in figure (b). The horizontal axis in (b) represents a gray scale
range from 0-255 and the vertical axis represents the frequency of occurrence of



each gray level in the range. Note the “bunching” of gray level values in the lower
part of the range which corresponds to the rather dark appearance of the image.

Figure (d) shows the gray level distribution after the application of a
transformation, which effectively enhances the scale of values relative to the
original scale. The validity of this approach to enhance the scale is based upon
statistical theory and is explained in more detail later.

Figure (c) shows the new image resulting from the gray level redistribution
process. This process has increase the dynamic range (the ratio between the
minimum and maximum of intensities) of intensities to include more gray scale,
with the result that the overall contrast is enhanced relative to the original image.
This transformation process is called “histogram equalisation” and the following
section explains the method of implementation.

HISTOGRAM EQUALISATION

Ideally we would like our image histogram to be distributed across the range of
gray scale values as a uniform  distribution. This means that our contrast will be at
an optimal level for subsequent image interpretation since all levels are
represented. This is not generally the case in practice however and the distribution
may be dominated by a few values spanning only a limited range.

Statistical theory shows that by using a transformation function equal to the
cumulative distribution of the gray level intensities in the image, enables us to
generate another image with a gray level distribution having a uniform density.

The implementation of the above transformation can be summarised as a three
stage process:

1. obtain a histogram of the image;
2. obtain the cumulative distribution of the gray levels;
3. replace the original gray level intensities by those determined in (2).

To illustrate the steps above we refer to the image defined by matrix which
represents a square on a light background.

The gray scale distribution of the individual levels is denoted by gk where k = 0, 1,
…, 7 and is normalised by dividing the range by the maximum level, in this case 7.



The frequency of occurrence of a particular gray level is denoted by fk and Sk

represents the cumulative sum which may be defined as Sk = � f r/n with n
representing the total number of pixels in the image:

gk fk/n Sk

0/7 22/64 22/64

1/7 17/64 39/64

2/7 9/64 48/64

3/7 0/64 48/64

4/7 0/64 48/64

5/7 4/64 52/64

6/7 7/64 59/64

7/7 5/64 64/64

Our Sk array now represents a new set of gray level values to replace the original
values ie 0/7 above is to be replaced with 22/64. Similarly, the value 1/7 is
replaced by the value 39/64 etc.

However, since our range of allowable levels is from 0-7 (this may be the only
range available to the display facilities), we need to equate our new levels to be
compatible within this range. This done by simply rewriting both the gk and Sk

values in decimal form and then select those values from gk closest to those in Sk:

gk Sk

0.00 0.34
0.14 0.61
0.28 0.75
0.43 0.75
0.57 0.75
0.71 0.81
0.86 0.92
1.00 1.00



The closest value to S0 ie 0.34 is g2 ie 0.28 which in turn corresponds to the gray
level value 2/7. Similarly, the closest value to S1 is g4 which corresponds to the
gray level value of 4/7. Continuation of the process yields the corresponding gray
level values for the set Sk as:

Sk = (2/7, 4/7, 5/7, 5/7, 5/7, 6/7, 6/7, 7/7) for k = 0, 1, …, 7

Substituting these values for those in the original image yields a new image as
shown below:

2 2 4 2 4 2 5 2
4 2 2 4 2 5 2 4
2 4 7 6 6 6 2 4
2 2 6 6 6 7 5 2
4 4 7 7 7 6 2 2
2 5 6 6 6 6 5 4
4 4 5 4 4 2 2 2
4 2 5 5 4 2 4 5

It should be emphasised that the above image is the result of applying the method
to a frequency distribution in which the available levels were reasonably distributed
and is only presented for the purposes of illustrating the method.

The effectiveness of the approach is best appreciated by reference to picture
above which represents an image of the type more likely to be found in practice.

HISTOGRAM SPECIFICATION

Although the above method enables the redistribution of gray levels over a uniform
range, circumstances may arise where certain specific levels need to be highlighted
relative to others. For example, even after application of the equalisation process,
certain levels may still dominate the image to the extent that the contribution of the
other levels cannot be interpreted by the eye.

One way to overcome this is to specify a histogram distribution which enhances
selected gray levels relative to others and then reconstitute the original image in
terms of the new distribution.



The implementation of the method can be illustrated in a similar way to that shown
for the case of equalisation and consists of the three basic steps below.

1. apply the process of equalisation to the image;
2. specify a gray level distribution which enhances certain levels relative to others;
3. determine the compatible relationship between the levels determined in (1) with

those determined in (2).

With reference to matrix (figure above) we repeat the results of the equalisation
process showing the gray levels distributions in both fractional and decimal form:

gk fk/n Sk

0.7/ (0.00) 22/64 22/64  (0.34.)
1/7  (0.14) 17/64 39/64  (0.61)
2/7  (0.28) 9/64 48/64  (0.75)
3/7  (0.43) 0/64 48/64  (0.75)
4/7  (0.57) 0/64 48/64  (0.75)
5/7  (0.71) 4/64 52/64  (0.81)
6/7  (0.86) 7/64 59/64  (0.92)
7/7  (1.00) 5/64 64/64  (1.00)

In accordance with step 2 above we now specify a distribution with the
appropriate properties. For example, we may decide to reduce the levels between
0 and 2 ie the background levels and increase the levels between 5 and 7
correspondingly. Suppose we further decide that the amount by which we choose
to both correspondingly reduce and increase the frequency distribution is
arbitrarily set as 7/64.
Then our new distributions may be written as:

g’k f’k/n S’n

0/7 (0.00) 15/64 15/64  (0.23)
1/7 (0.14) 10/64 25/64  (0.39)
2/7 (0.28) 2/64 27/64  (0.42)
3/7 (0.43) 0/64 27/64  (0.42)
4/7 (0.57) 0/64 27/64  (0.42)
5/7 (0.71) 11/64 38/64  (0.59)
6/7 (0.86) 14/64 52/64  (0.81)



7/7 (1.00) 12/64 64/64  (1.00)

In accordance with step (3) above, we now equate the level Sk to those of S'k as
follows. The closest match to S0 ie 0.34 is S'1, ie 0.39 which corresponds to level
1/7. Similarly, the closest match to S1, ie 0.61 is S'5 ie 0.59 which corresponds to
level 5/7. Continuation of the process gives the following set of mappings:

S0 g’1 = 1/7
S1 g’5 = 5/7
S2 g’6 = 6/7
S3 g’6 = 6/7
S4 g’6 = 6/7
S5 g’6 = 6/7
S6 g’7 = 7/7
S7 g’7 = 7/7

Insertion of these levels in place of those comprising the histogram equalised
image give the new image shown below:

1 1 5 1 5 1 6 1

5 1 1 5 1 6 1 5

1 5 7 7 7 7 1 5

1 1 7 7 7 7 6 1

5 5 7 7 7 7 6 1

1 6 7 7 7 7 1 1

5 5 6 5 5 1 1 1

5 1 6 6 5 1 5 6

To illustrate the effectiveness of the technique in a practical situation consider
figure (a) below, which shows a semi dark room viewed from a doorway. Figure
(b) shows the image after histogram equalisation and figure (c) is the result of
interactive histogram specification. Figure (d) shows the histograms:



§ from bottom to top, the original, equalised, specified and resulting
histograms, respectively.

GRAY LEVEL THRESHOLDING

In the beginning we gave the histogram as:
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If we were to set gray levels gk to zero when k <5 our histogram consists only of
the lower peak to which the corresponding image is:



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 7 5 6 6 0 0
0 0 6 5 5 7 0 0
0 0 7 7 7 6 0 0
0 0 6 6 6 5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The net result of this operation is that the gray levels which comprise the square in
the image are enhanced relative to the background. On a graphics display of the
image therefore, the square would generally appear as more distinct than in a
display of the original image, due to the fact that levels constituting the
background have been reduced relative to those constituting the square.

This technique of setting certain gray levels to zero relative to others is commonly
called “thresholding”. The effectiveness of the method generally depends upon
the histogram of the gray level distribution on the original image exhibiting at least
two identifiable peaks, so that at least one or other of the levels contributing to the
peaks can be set to zero. In such cases the contrast in the image is generally
enhanced.

IMAGE SMOOTHING

This approach renders the image more acceptable to the eye by reducing the
contribution made by sharp transitions, or the occurrence of spurious peaks which
may arise from poor sampling or errors occurring in image transmission. The
techniques involved in smoothing may be based on spatial as well as frequency
(Fourier) domains. For our purposes we present only the spatial approach.

Neighbourhood Averaging

Neighbourhood averaging is simply a process by which a pixel gray level may be
replaced by the average of the gray levels of the surrounding pixels over a
specified area.



Consider a subsection of an image represented by the set of gray levels shown
below:

0 1 0 2 2 1 2 0
0 0 2 7 7 7 1 0
1 1 1 2 0 1 2 0

Notice the three gray levels corresponding to the value 7 which represents a sharp
transition in levels in the image subsection by comparison to the other levels.

Defining a neighbourhood or area (sometimes called a window) around a specified
gray level (denoted by 0 below) as the eight surrounding pixels (denoted by X),
then our averaging domain can be represented as:

x x x
x 0 x
x x x

If we position the above window so that the 0 coincides with the first gray level
with value 7 and then determine the average including an gray levels occurring at
position X, the value of 7 would be replaced by the value:

(0 + 2 + 2 + 7 + 0 + 2 + 1 + 2 )/8 = 2

If we now shift our window one pixel to the right and continue the process the
next gray level value is determined as:

(2 + 2 + 1 + 7 + 1 + 0 + 2 + 7)/8 = 3       on digital rounding.

Again with a further shift to the right our final value will be determined under the
same process to be 3, so that on replacement of existing levels by those
determined above our new image subsection becomes:

0 1 0 2 2 1 2 0
0 0 2 2 3 2 1 0
1 1 1 2 0 1 2 0

In other words, the sharp transition has been eliminated.



Mathematically the above process may be expressed as:
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for x, y = 0,1, … N-1

In the above S represents the set of co-ordinates of points in the neighbourhood
of the point (x, y), excluding the point x, y itself and N is the total number of
points in the neighbourhood.

IMAGE SHARPENING

In the previous section we showed that by adding or averaging gray levels we can
achieve a smoothing effect to the image. Here we show, conversely, that by
subtracting neighbouring gray levels we can achieve a sharpening or highlighting
effect at different parts of the image.

This process of subtracting gray level values generates a further set of values
commonly referred to as gradient values. Two approaches using subtraction
methods are defined in relation to a pixel gray level at location x, y as follows:

1. form the absolute difference between the gray level at position x, y and adjacent
levels at locations x + 1, y and x, y + 1 then add the result;

2. form the absolute difference between the gray level at x, y with at x + 1, y + 1
and add the result to the difference between gray levels at x, y + 1 and x + 1, y.

(1) and (2) above are represented diagramatically below:

(x, y) (x + 1, y) (x, Y) (x + 1, Y)
O   O O O

     O(x, y + 1)                                O(x, y + 1) O(x + 1, y + 1)

Mathematically, the operations can be expressed in terms of the gray levels
g(x, y), g(x + 1, y) etc. as:



(1) G[g(x, y)] � |g(x, y) - g(x + 1, y)| + |g(x, y) - g(x, y + 1)|
(2) G[g(x, y)] � |g(x, y) - g(x + 1, y + 1)| + |g(x + 1, y) - g(x, y + 1)|

In the above [G(x, y)] denotes the gradient and the approximation sign has been
used as the values determined above are not strictly equal to the true gradient
which mathematically is:

])/()/[()],([ 22 ygxgyxgG ∂∂+∂∂=

However, for practical purposes the above approximation to the gradient is
computationally faster whilst yielding acceptable results.

Having determined our gradients [G(x,y)] for all positions of x,y we may then
form new images ie replace our original set of gray levels by the gradient values
themselves, so forming two images for the set of g(x,y) where:

g(x, y) = G[g(x, y)]

for the two types of gradient defined above.

In the case of image borders where we have no pixels outside the actual border
with which to specify the window, we simply repeat the gradient values determined
at one pixel within the border.

From what has been described above, it should be fairly obvious that for image
regions, other than background, consisting of similar gray level values, the
difference determined within the region will give gray levels of low magnitude and
probably, therefore, more consistent with the levels forming the background.

The effect of the operation at an edge say, or where we transfer from background
to a region of higher gray level values, is to leave the edge values relatively
unchanged. The method is therefore attractive as a way of highlighting edge
regions in an image.



Image Segmentation and Analysis

Image processing can be broadly classified into two main areas:

ENHANCEMENT AND ANALYSIS

We concerned with image processing presenting a number of techniques directly
related to the processes of enhancement.

Now we are largely concerned with the presentation of techniques of analysis. For
example, consider the image

which shows the periodic structure within the image obtained through the Fourier
filtering process.

This image, as presented to a scientist working in the field of virology, may cause
questions to be asked about the extent and uniformity of the structure within the
image.

Similarly, a meteorologist presented with a satellite image showing various weather
formations may require further information about the particular size and



distribution of specific cloud formations in relation to the area under
consideration.

To assist in providing answers to such questions requires that we firstly further
process the image in a way which renders it suitable for subsequent analysis. This
form of processing requires that we initially identify and isolate the
components of interest within the image.

The above process is generally referred to as segmentation. The segmentation
approach is based on the detection of changes in the gray level distribution
within the image. For example, a boundary can be considered as a line of pixels
whose gray levels are distinctly different from the gray levels of the pixels either
side of it. Detection of boundaries within an image can be achieved therefore, by
identification of groups of pixels with this characteristic.

DETECTION OF POINTS, LINES AND EDGES

As pointed out above, a region in an image may be characterised by a significant
change in the gray level distribution in a specified direction. For example, consider
the single line of gray levels below:

0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0

Given the information that our background levels are represented by gray levels
having a value zero, we may conclude that at the eighth pixel from the left we have
a non background level and that this level may also characterise a single point.

Basically the gray level at the eighth position represents a discontinuity in that all
the other levels are of uniform value ie zero, except for the pixel at position eight.
The process of recognising such discontinuities particularly when they occur in
groups, may be extended to the detection of lines within an image.

Most line and point detection algorithms involve the positioning of a 'window' or
matrix of values at successive pixel positions within the image and then forming
products with the values in the matrix and gray levels at successive pixels.

A typical matrix is illustrated below and consists of a 3 by 3 set of values v1 to v9



vi v2 v3

v4 v5 v6

v7 v8 v9

Initially the matrix is located to fit into the top left corner of the image with v5

positioned at one pixel to the right and one pixel below the top leftmost pixel of
the image. Particular values are ascribed to the elements v1 … v9 (as for example,
below). If we denote the gray levels in the image corresponding to the matrix
values v1, … v9 by g1, … g9 we start the detection process by forming the
product:

P = vl gl + v2 g2 + … + v9 g9

We then shift our mask one pixel to the right and repeat the calculation. The
process is repeated for all the pixels in the line (with the exception of the edge
pixels). We then reposition the matrix one pixel down and at the left edge of the
image and repeat the procedure. Note that borders are ignored, particularly as
many images are of dimension 256 by 256 or more and the effect of ignoring the
outside edge is generally insignificant, for iinages of these dimensions.

At the end of the entire process we have a set of P values from which we are able
to determine the existence of a line. The basic rule for establishing the existence of
a line is whether among the set of P values subsets of P values can be found for
which:

P > T (where T corresponds to some arbitrary value).

Below are shown a set of matrices for detecting lines oriented horizontally,
vertically, and at + 450,  - 450:

-1 -1 -1 -1 -2 -1 -1 -1 2 2 -1 -1
2 2 2 -1 2 -1 -1 2 -1 1 2 -1

-1 -1 -1 -1 2 -1 2 -1 -1 -1 -1 2

horizontal vertical +450 - 450

detector detector detector detector



Detection of Isolated Points

The process for the detection of isolated points is very much the same as that
described for lines except that the matrix values are assigned a different set of
values to those assigned for the detection of lines. One favoured set of values is
shown below:

-1 -1 -1
-1 8 -1
-1 -1 -1

To illustrate the technique consider the distribution of gray levels below:

0 1 1 1 1 6 0 1 0 0 2 0

Positioning our matrix at the top left would give for the first evaluation of P in
accordance with equation given, ie forming products and adding:

P = (-1) 0 + (-1) 1 + (-1) 1 + (-1) 1 + (6) 8 + (-1) 0 + (-1) 0 + (-1) 0 + (-1) 2 = 43

Shifting the matrix one pixel along yields for P:

P = (-1) 1 + (-1) 1 + (-1) 1 + (-1) 6 + (0) 8 + (-1) l + (-1) 0 + (-1) 2 + (-1) 0 = -12

In general we use �P� and say that a single point has been detected if �P� > T
where T, is some arbitrary value selected on the basis of the a-prior knowledge of
the image application area.

As can be seen from the example above, the value determined for �P� in the
image is significantly higher at the position corresponding to the highest gray level
value, consistent with a level constituting a point.

The Hough Transform

This transformation enables the automatic detection of lines, straight or curved,
in any orientation. The problem of detection may be formulated as that of locating
all the points in an image which identify with straight lines or curves.

Mathematically, the problem of locating lines given a set of points is a fairly simple
one although standard approaches become computationally prohibitive for all but
the simplest images.



An alternative approach, proposed by Hough (1962) has the attraction of
significantly reducing the computational overheads incurred by the conventional
approach.

The equation for the straight line connecting a set of pixels is given by the formula:

y = mx + c
where m corresponds to the slope of the line and c its intercept with the y axis.
The approach adopted by Hough was to reformulate the above equation as:

c = yi – m xi

and to restate the problem in the following way:

§ Given a specific value for m and a set of coordinate pairs xi, yi determine
the corresponding value for c from equation above.

We can then say that for those xi,  yi and a specified m which yield the same
values for c that we have located the line (slope m, intercept c) associated with
those points.

The problem with the method is that for lines either vertical or tending towards the
vertical, the intercept value for c tends to infinity which clearly leads to
computational problems. To overcome this the normal representation of the line is
used:

x cos è + y sin è = p

Normal representation of line



The problem may now be regarded as the determination of p for a specified value
of è from the xi, yi values inserted into equation above.

In practice however, we are generally more concerned with the identification of
points that are associated with particular lines. The coordinate pairs together with
the specified values when inserted into equation above will generate a range of
values for p. We may then say that those values of p which lie within a specified
radius or neighbourhood are associated with the line defined by the p, è values
determined by the point at the centre of the neighbourhood.

An example is given to illustrate the process of the Hough transform in relation to
two points, however it should be noted before studying the example that a
property of the transform is to map single points with x, y coordinates into
sinusoidal curves in p, è space.

For example, we have chosen a situation represented by two points A, B with
respective co-ordinate values (l,l) ; (2,2) as shown in figure:

Two points to be mapped by Hough transform

Suppose we select èmin as -900 and èmax as +900 and decide to increment è in steps
of +450. Then for each of the points A, B we can establish the following table for
the values defined by equation:

For point A:



For point B:

The results may be interpreted as follows:

We firstly observe that for the values corresponding to p = 0 and è = 450, the two
curves intersect. The point of intersection identifies that the two curves (or points
in x, y coordinate space) are common to the points having a line of slope -450 with
perpendicular bisector to the line having a slope of zero.

This result is clearly confirmed by the line joining the two points A and B.

The method may be extended to the detection of points associated with
analytically defined curves.

IMAGE TEXTURE

The texture of an image can be defined in terms of its smoothness or its
coarseness sometimes called graininess. One area of image processing in which
the quantification of texture, as defined above, plays a crucial role is that of
industrial vision.



These systems may be used to assess the quality of products by measuring the
texture of the surface of the product. In general a poor surface, such as one
showing a high degree of graininess, implies a poor product. The basis of
industrial vision systems is on the use of intelligent cameras and appropriate
software for image analysis.

The attraction in using an industrial vision system of the above type is that they are
more sensitive than manual approaches to the identification of surface defects.
Furthermore, manual inspection systems are subject to varying standards and
involve fairly high costs. These factors together with the degree of subjectivity
involved in using a manual approach makes the vision systems an attractive
alternative.

We are to explain two methods for the identification and assessment of texture for
a specified region. The methods are based on:

§ the statistical properties of an image;
§ the spectral or Fourier characteristics of the image.

The use of statistical techniques enables the characterisation of the texture in terms
of smoothness or coarseness whereas the spectral approach is based on the
properties of the Fourier spectrum and is used to detect regular or periodic
features which may be present in the image. Examples showing images exhibit
different textural features:



Statistical Methods for Texture Description

For an image with a corresponding histogram distribution of gray levels p(zi)
where z denotes the ith gray level and p(zi) its frequency, the nth moment of z
about the mean m can be written as:
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where L is a number of distinct levels.

Note that ì 0 = 1 and ì 1 = 0 .

The second moment, sometimes called the variance ó2 (z), determines gray-level
contrast and may be used to establish descriptions of relative smoothness. In
particular the value for R in equation below is zero for areas of constant intensity
and approaches unity for large values of cy,(Z)

R = 1 - (1/(1 + ó2 (z)) )

Additional information such as the skewness of the histogram can be obtained
from the third moment.



The fourth moment provides details on the relative flatness.

The fifth and higher moments do not provide much information about histogram
shape but do provide further quantitative discrimination of texture content.

Fourier or Spectral Methods for Texture Description

Determination of the Fourier spectrum provides a useful way of identifying any
periodic or regular features within an image.

Three features of the spectrum that have been found useful for texture description
are:

the significant peaks in the spectrum give the principal direction of the texture
patterns;

the location of the peaks in frequency space provide the spatial period of the
patterns;

filtering of periodic components leaves nonperiodic image elements which may
then be described by statistical techniques.

In fact this latter step corresponds to the converse filtering operation (used to
generate the biological image in previous lecture) in which the nonperiodic
components of the spectrum were filtered out prior to involving the inverse
transform operation.



(a)periodic image, (b)spectrum, (c)plot of S(r), (d)plot of S(è), (e)another texture, (f) plot of S(è)

The approach to abstracting and analyzing the features in the spectrum is to
express the spectrum in polar coordinates to yield a function S(r, è), where S is
the spectrum function and r and è are the variables in the coordinate system.

For each direction è and each frequency r, both S(r, è) and Sè(r) are considered to
be one dimensional functions. Sè(r) for a fixed value of è yields spectral
characteristics along a radial direction from the origin, whereas Sr(è) for a fixed
value of r yields the behaviour along a circle centred on the origin

A more global description is obtained using the functions:
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