Manipulations

Interpolation (in situations with limited information), especially point-
oriented interpolation:
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Value for interpolation

When points of interest are outside the region, extrapolation is utilized:
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The model approach is perhaps the most prudent one, and provides more
confidence in the results. When extrapolating, as for interpolating a certain level of
precision must be given, although in particular context it may be difficult to
establish how much error can be tolerated.



When considering more dimensions, there are different possibilities, even mixture
of them: we have to interpolate in one dimension and extrapolate in the other. We
have so-called geometric inference:

What is the elevation of the point A?

Basic Operationson Linesand Points

Many contexts are making necessary to find the intersections of line entities.
Usually we have linear functions, in Cartesian coordinates. Formulas differ
according also to the representation of segments:

by end point coordinates,
by end point coordinate and parameter.
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Segment intersections usually refer to the use of so-called parameter
expression, calculating intersections or non-intersections by linear formulas:
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Point-in-polygon procedure:
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Centroid definitions

If we need to represent polygon by one point, we refer to centroid. There are various
definitions of centroid:

defined from vertices,

obtained as a statistical bivariate median or the centre of gravity,

computed as the centre of an enclosing or enclosed rectangle or of an enclosing
or inscribing circle,

obtained as the peak value of a surface fitted within the polygon,
choosen intuitively:
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Some Operations for Polygons
I nter section of lines with polygons

A common situation comprises the intersection of a segment
with a polygon, or in the opposite way, the computation of what part of the segment
lies inside a polygon. In order to determine the segment intersection, we can
compute the intersection of the straight line for the segment and the line segments
for the polygon boundaries. If there is no intersection with the boundaries, there is
no intersection of the segment ind the polygon. If there are intersections of the
straight line and the polygon, we can determine what parts are inside by a repetitive



use of the Jordan theorem. For checking whether a segment is totally included in a
polygon, it is not sufficient to test end-points because the polygons can have strange
concavities intersecting this segment (a). Obviously we cannot examine the infinity
of segment points to see whether they are al inside or outside the polygon. In order
to facilitate the testing and to re-use the result of the Jordan theorem, a nice step is
to rotate the polygon so that the segment under study is parallel to an axis (b). After
this, it is easy to count the number of intersections only by comparing coordinates.
If the number is different from zero, we know that a part of the polygon is inside
and a part is outside. By re-using the half-line procedure on the end-points when the
number of intersections is zero, we then know whether the end-points are inside or
outside, and, consequently, whether the totality of the line segment is inside or
outside:

Union and inter section of polygons

One of the major needs and challenging problems in spatial information systemsis
to compute the difference, union and the intersection of polygons.
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We present only possibly the smplest way, based on the slab technique.
Each polygon is divided into parallel slabs, usually horizontal for the convenience
of paralelism with the coordinate axis, created by drawing lines through the
polygon vertices. This procedure creates trapezoids which are easy to compare.
When the edges are not intersecting inside the dabs, the comparison is
straightforward; otherwise, as in the last row in the diagram, some other slabs can
be created passing through these intersection points:
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The method of dabs for finding the union and intersection of

Area computation

Area computation sometimes uses the trapezoid idea although a procedure
using geometric cross-products is usualy preferred. Lines perpendicular to the x-
axis (alternatively, the y-axis could be used) are dropped to it from the vertices of
polygons. This process creates a set of overlapping figures, with four line segments:
the base on the x-axis, two vertical lines and an edge of a polygon. After the area of
each trapezoid is computed, they are summed, including subtractions for the lower
pieces. Enclaves and exclaves can be handled by this procedure by using encoded
data showing the gaps or separate pieces of the polygons.

However, the classica way in computational geometry is to use the
geometric cross-product to compute areas, and mixed products for volumes. For
computing the area of any polygon with or without holes, if we have in total N
vertices ordered in a counterclockwise sequence from 1 to N, the areais given by:
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This process, established via vector algebra using the cross-products, is more
rapid than the trapezoid decomposition. The dot product device is also useful for
obtaining angles between vectors, and for concatenating boundary lines for
polygons using a centroid as origin for the vectors.

Shape Measuresfor Polygons
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Polygon clipping

A clipping situation occurs commonly when displaying or retrieving spatial
entities within a defined area like a rectangle. When one has a rectangular window
on a screen or on another graphic device, it is necessary to know what part of the
object (say, a house) has to be displayed on the screen. Similarly, when using
enclosing rectangles for overlay purposes, particular polygon or line objects may be
cut. Three situations arise, illustrated for the display context:



object is completely inside the window,
object istotally outside the window,
the object is overlapped by the window.

Graphic objact Graphiz objoct

0O —
|

Scraen window Sorean window

{a) Befora clipping ) Attar clipping
Clipping of the object by arectangular window.

1001 \ 1000 1010
Clipping window

Top line
0001
Bottom line
0101 0100 0110
Left Right
line

line

Clipping a segment (an illustration of the algorithm).

Buffer zones

One other class of spatial operations includes the creation of boundaries,
inside or outside the existing polygon, offset by a certain distance, and parallel to

the boundary: skeleton zones and buffer zones.
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Polygon Overlay Process
The general process of overlay to create new polygons consist of:

identifying line segments, preferably having topology,

establishing minimun enclosing rectangles for the polygons,

ascertaining if line segment(s) of one polygon are inside a polygon of the overlay
map by a point-in-polygon process,

finding intersections of segments representing boundaries,

creating records for new line segments and their associated topology,

assembling the new polygons from the appropriate line segments,
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Spatial Data Transfor mations

Transformations among spatial unit types - changesin dimensionality:
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Changesin position - types of geometric transfor mations:
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Rubber sheeting - topological, projective, affine transfor mations:
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Conversion between raster and vector representations:

%
clefalole]o L
® xox®
BB |[A|AN|B|C
* B x ox @
Bia DA |[A]|E
L
BlOA]|A]|C|C
B M
Blolnje|lc|c
Blojo|E]|6 (€
- L]
Criginal call Cell boundary lines ¢ [opological junctian,
encoding for four for cells with dilaron that s 3 or 4 edges
attribuie values conditians at edges ol & vartex
AB C.D y ;
(2! (b) ey % T
o \
Staircase vecions Siraigh! line Stralghl ine veclors
3—|—I Vechors using using junclions,
based an chain codes a Junstions gnly tuming painis and
with [our orentations coll edge bisactions




