
Document Type Definition
(DTD)

Objectives
To understand what a DTD is
To be able to write DTDs
To be able to declare elements and attributes in a DTD
To understand the difference between general entities
and parameter entities
To be able to use conditional sections with entities
To be able to use NOTATIONS
To understand how a whitespace is to be processed

Outline
Introduction
Parsers, Well-formed and Valid XML Documents
Document Type Declaration

Element Type Declarations
Sequences, Pipe Characters and Occurrence

EMPTY, Mixed Content and ANY
Attribute Declarations

Attribute Defaults (#REQUIRED, #IMPLIED, #FlXED)
Attribute Types
Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN)
Enumerated Attribute Types
Conditional Sections

Whitespace Characters
Internet and World Wide Web Resources

Summary

Introduction
Document Tvpe Definitions (DTDs) define an XML document's structure (e.g., what elements,
attributes, etc. are permitted in the document). An XML document is not required to have a
corresponding DTD. However, DTDs are often recommended to ensure document conformity,

especially in business-to-business (B2B) transactions, where XML documents are exchanged.
DTDs specify an XML document's structure and are themselves defined using EBNF (Extended
Backus-Naur Form) grammar-not the XML syntax.

Observation:

A transition is underway in the XML community from
DTDs to Schema, which improve upon DTDs. Schema
use XML syntax, not EBNF grammar.
Parsers, Well-formed and Valid XML Documents

Parsers are generally classified as validating or nonvalidating. A validating parser is able to
read the DTD and determine whether or not the XML document conforms to it. If the document
conforms to the DTD, it is referred to as valid. If the document fails to conform to the DTD but
is syntactically correct, it is well formed but not valid. By definition, a valid document is well
formed. A nonvalidating parser is able to read the DTD, but cannot check the document against
the DTD for conformity. If the document is syntactically correct, it is well formed.

Document Type Declaration
DTDs are introduced into XML documents using the document type declaration (i.e.
DOCTYPE). A document type declaration is placed in the XML document's prolog and begins
with <!DOCTYPE and ends with >. The document type declaration can point to declarations
that are outside the XML document (called the external subset) or can contain the declaration
inside the document (called internal subset). For example, an internal subset mightlook like

<!DOCTYPE myMessage [
<!ELEMENT myMessage (#PCDATA)>

]

The first myMessage is the name of the document type declaration. Anything inside the square
brackets ([]) constitutes the internal subset. As we will see momentarily, ELEMENT and
#PCDATA are used in "element declarations."

External subsets physically exist in a different file that typically ends with the .dtd extension,
although this file extension is not required. External subsets are specified using either keyword
SYSTEM or PUBLIC. For example. the DOCTYPE external subset might look like

<!DOCTYPE myMessage SYSTEM "myDTD.dtd">

which points to the myDTD.dtd document. Using the PUBLIC keyword indicates that the
DTD is widely used (e.g., the DTD for HTML documents). The DTD may be made available in
well-known locations for more efficient downloading. The DOCTYPE

<!DOCTYPE HTML PUBLIC "-//w3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

uses the PUBLIC keyword to reference the well-known DTD for HTML version 4.01. XML
parsers that do not have a local copy of the DTD may use the URL provided to download the
DTD to perform validation.

Both the internal and external subset may be specified at the same time. For example, the
DOCTYPE

<!DOCTYPE myMessage SYSTEM "myDTD.dtd"
<!ELEMENT myElement (#PCDATA)>

contains declarations from the myDTD.dtd document as well as an internal declaration.

Observation:
• The document type declaration internal subset plus its external subset form the DTD.

• The internal subset is visible only within the document in which it resides. Other external
documents cannot be validated against it. DTDs that are used by many documents should be
placed in the external subset.

Element Type Declarations
Elements are the primary building block used in XML documents and are declared in a DTD
with element type declarations (ELEMENTs). For example, to declare element myMessage,
we might write

<!ELEMENT myElement (#PCDATA)>

The element name (e.g., MyElement) that follows ELEMENT is often called a generic
identifier. The set of parentheses that follow the element name specify the element's allowed
content and is called the content specification. Keyword PCDATA specifies that the element
must contain parsable character data. This data will be parsed by the XML parser, therefore
any markup text (i.e., <, >, &, etc.) will be treated as markup.

Error:
Attempting to use the same element name in multiple element type declarations is an error.

Example 1 lists an XML document that contains a reference to an external DTD in the
I)OCTYPE. Microsoft's XML Validator will be used to check the document's conformity
against its DTD. To use XML Validator, Internet Explorer 5 is required. Parsers XML4J and

Xerces can be used to check a document's validity against a DTD programmatically. Using Java
and one of these parsers provides a platform-independent way to validate XML documents.

<?xml version = "1.0"?>
<!DOCTYPE myMessage SYSTEM "intro.dtd">
<myMessage>
<message>Welcome to XML!</message>
</myMessage>

Example 1. XML document declaring associated DTD.
The document type declaration is named myMessage-the name of the root element. The
element myMessage contains a single child element named message.

<!ELEMENT myMessage (message)>
<!ELEMENT message (#PCDATA)>

Example 2. Validation with using an external DTD
The DTD declares element myMessage. Notice that the content specification contains the name
message. This indicates that element myMessage contains exactly one child element named
message. Because myMessage can only have an element as its content, it is said to have
element content. Element message whose content is of type PCDATA. The XML Validator is
capable of validating an XML document against both DTDs and Schemas.

Error:
Having a root element name other than the name specified in the document type declaration is
an error.

If an XML document's structure is inconsistent with its corresponding DTD but is syntactically
correct, it is only well formed-not valid. The XML Validator will generate error messages in
such cases.

Sequences, pipe characters, occurrence indicators
DTDs allow the document author to define the order and frequency of child elements. The
comma (,) - called a sequence - specifies the order in which the elements must occur. For
example,
<!ELEMENT classroom (teacher, student)>

specifies that element classroom must contain exactly one teacher element followed by exactly
one student element. The content specification can contain any number of items in sequence.

Similarly, choices are specified using the pipe character (|) as in

<!ELEMENT dessert (iceCream | pastry)>

which specifies that element dessert must contain either one icecream element or one pastry
element, but not both. The content specification may contain any number of pipe character-
separated choices.

An element's frequency (i.e., number of occurrences) is specified by using either the plus sign
(+), asterisk (*) or question inark (?) occurence indicator.

Occurrence
Indicator

Description

Plus sign (+) An element can appear any number of
times, but must be appear at least once
(i.e., the element appears one or more
times).

Asterisk (*) An element is optional and ifused, the
element can appear any number of
times (i.e., the element appears zero or
more times).

Question mark
(?)

An element is optional, and if used, the
element can appear only once (i.e., the
element appears zero or one times).

Example 4 Occurrence indicators.
A plus sign indicates one or more occurrences. For example,

<!ELEMENT album (song+)>

specifies that element album contains one or more song elements.

The frequency of an element group (i.e., two or more elements that occur in some combination)
is specified by enclosing the element names inside the content specification with parentheses,
followed by either the plus sign, asterisk or question mark. For example,

<!ELEMENT album (title, (songtitle, duration)+)>

indicates that element album contains one title element followed by any number of
songTitle/duration element groups. At least one songTitle/duration group must follow title,
and in each of these element groups, the songtitle must precede the duration. An example of
markup that conforms to this is

<album>
<title>XML Classical Hits</title>
<songTitle>XML overture</songTitle>
<duration>lo</duration>
<songTitle>XML Symphony 1.0</songTitle>
<duration>54</duration>
</album>

which contains one title element followed by two songTitle/duration groups.
The asterisk (*) character indicates an optional element that, if used, can occur any number of
times. For example,

<!ELEMENT library (book*)>

indicates that clement library contains any number of book elements, including the possibility
of none at all. Markup examples that conform to this are:

<library>
<book>The wealth of Nations</book>
<book>The Iliad</book>
<book>The Jungle</book>
</library>
and
<library></library>

Optional elements that, if used, may occur only once are allowed by a question mark (?). For
example,

<!ELEMENT seat (person?)>

indicates that element seat contains at most one person element. Examples of markup that
conform to this are:

<seat>
<person>Jane Doe</person>
</seat>
and
<seat></seat>

EMPTY, Mixed Content and ANY

Elements must be further refined by specifying the types of content they contain. The element
content introduced were indicating that an element can contain one or more child elements as
its content. Content specification types describe non-element content.

In addition to element content, three other types of content exist: EMPTY, mixed content and
ANY. Keyword EMPTY declares empty elements. Empty elements do not contain character
data or child elements. For example,

<!ELEMENT oven EMPTY>

declares element oven to be an empty element. The markup for an oven element would appear
as
<oven/>

in an XML document conforming to this declaration.

An element can also be declared as having mixed content. Such elements may contain any
combination of elements and PCDATA. For example, the declaration

<!ELEMENT myMessage (#PCDATA | message)*>

indicates that element myMessage contains mixed content. Markup conforming to this
declaration might look like

<myMessage>Here is some text, some
<message>other text</message>and
<message>even more text</message>.
</myMessage>

Element myMessage contains two message elements and three instances of character data.
Because of the *, element myMessage could have contained nothing.

Example 5 specifies a DTD as an internal subset as opposed to an external subset (example 1).
In the prolog there is standalone attribute with a value of yes. An XML document is
standalone if it does not reference an external subset. This DTD defines three elements: one
that contains mixed content and two that contain parsed character data.

<?xml version = "1.0" standalone = "yes"?>
<!DOCTYPE format [
<!ELEMENT format (#PCDATA | bold | italic)*>
<!ELEMENT bold (#PCDATA)>
<!ELEMENT italic (#PCDATA)>
]>
<format>

This is a simple formatted sentence.
<bold>l have tried bold.</bold>
<italic>l have tried italiC.</italic>
 Now what?
</format>

Example 5 A mixed-content element.
Element format declares as a mixed content element. According to the declaration, the format
element may contain either parsed character data (PCDATA), element bold or element italic.
The asterisk indicates that the content can occur zero or more times. Bold and italic elements
are specified as to have PCDATA only for their content specification - they cannot contain
child elements. Despite the fact that elements with PCDATA content specification cannot
contain child elements, they are still considered to have mixed content. The comma (,), plus
sign (+) and question mark (?) occurrence indicators cannot be used with mixed content
elements that contain only PCDATA.

An element declared as type ANY can contain any content, including PCDATA, elements or a
combination of elements and PCDATA. Elements with ANY content can also be empty
elements.

Error:
Child elements ofan element declared as type ANY must have their own element type
declarations.

Observation:
Elements withcANY content are commonly used in the early stages of DTD development.
Document authors typically replace ANY content with more specific content as theDTD
evolves.

Attribute Declarations
In this section, we discuss attribute declarations. An attribute declaration specifies an attribute
list for an element by using the ATTLIST attribute list declaration. An element can have any
number of attributes. For example,

<!ELEMENT x EMPTY>
<!ATTLIST x y CDATA #REQUIRED>
declares EMPTY element x. The attribute declaration specifies that y is an attribute of x.
Keyword CDATA indicates that y can contain any character text except for the <, >, &, ' and "
characters. Note that the CDATA keyword in an attribute declaration has a different meaning
than the CDATA section in an XML document. Recall that in a CDATA section all characters

are legal except the]] > end tag. Keyword #REQUIRED specifies that the attribute must be
provided for element x.

Example 7 demonstrates how to specify attribute declarations for an element. Attributes id and
to are declared for element message. Both id and to contain required CDATA. Attribute values
are normalized (i.e., consecutive whitespace characters are combined into one whitespace
character). Attribute id is assigned the value "451", and attribute to is assigned the value "The
world".

<?xml version = "1.0"?>
<!DOCTYPE myMessage [
<!ELEMENT myMessage (message)>
<!ELEMENT message (#PCDATA)>
<!ATTLIST message id CDATA #REQUIRED>
]>
<myMessage>
<message id = "445">
 Welcome to XML!
</message>
</myMessage>

Example 7. Declaring attributes.

Attribute Defaults (#REQUIRED, #IMPLIED, #FIXED)
DTDs allow document authors to specify an attribute's default value using attribute defaults.
Keywords #XMPLXED, #REQUIRED and #FIXED are attribute defaults. Keyword
#IMPLIED specifies that if the attribute does not appear in the element, then the application
using the XML document can use whatever value (if any) it chooses.

Keyword #REQUIRED indicates that the attribute must appear in the element. The XML
document is not valid if the attribute is missing. For example, the markup

<message>number</message>

when checked against the DTD attribute list declaration

<!ATTLIST message number CDATA #REQUIRED>

does not conform because attribute number is missing from element message.

An attribute declaration with default value #FIXED specifies that the attribute value is constant
and cannot be different in the XML document. For example,

<!ATTLIST address zip #FIXED "02115">

indicates that the value "02115" is the only value attribute zip can have. The XML document is
not valid if attribute zip contains a value different from "02115". If element address does not
contain attribute zip, the default value "02115" is passed to the application using the XML
document's data.

Attribute Types
Attribute types are classified as either strings (CDATA), tokenized or enumerated. String
attribute types do not impose any constraints on attribute values-other than disallowing the <, >,
&, ' and " characters. Entity references (e.g., <, >, etc.) must be used for these characters.
Tokenized attributes impose constraints on attribute values-such as which characters are
permitted in an attribute name. Enumerated attributes are the most restrictive of the three types.
They can take only one of the values listed in the attribute declaration.

Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN)

Tokenized attribute types allow a DTD author to restrict the values used for attributes. For
example, an author may want to have a unique ID for each element or only allow an attribute to
have one or two different values. Four different tokenized attribute types exist: ID, IDREF,
ENTITY and NMTOKEN.

Tokenized attribute type ID uniquely identifies an element. Attributes with type XDREF point
to elements with an ID attribute. A validating parser verifies that every ID attribute type
referenced by IDREF is in the XML document.

Example 8 lists an XML document that uses ID and IDREF attribute types. Element bookstore
consists of element shipping and element book. Each shipping element describes a shipping
method.

Attribute shipID is declared as an ID type attribute (i.e., each shipping element has a unique
identifier). Book elements is declared with attribute shippedBy of type IDREF. Attribute
shippedBy points to one of the ship ping elements by matching its shipID attribute.

If to assign shippedBy the value "s3", an error occurs when to use Microsoft's Validator. No
shipID attribute has a value "s3", which results in a non-valid XML document.

<?xml version = "1.0"?>
<!DOCTYPE bookstore [

<!ELEMENT bookstore (shipping+, book+)>
<!ELEMENT shipping (duration)>
<!ATTLIST shipping shipID ID #REQUIRED>
<!ELEMENT book (#PCDATA)>
<!ATTLIST book shippedBy IDREF #IMPLIED>
<!ELEMENT duration (#PCDATA)>
]>
<bookstore>
<shipping shipID = "s1">
 <duration>2 to 4 days</duration>
</shipping>
<shipping shipID = "s2">
 <duration>l day</duration>
</shipping>
<book shippedBy = "s2">
 Java How to Program 3rd edition.
</book>
<book shippedBy = "s2"
 C How to Program 3rd edition.
</book>
<book shippedBy = "s1"
 C++ How to Program 3rd edition.
</book>
</bookstore>

Example 8. XML document with ID and IDREF attribute types

The file (lang.xml) referenced lang.dtd, which contained the values for the entity references
&assoc; and &text;. External subset lang. dtd contains the two entity declarations
<!ENTITY assoc
"أسّوشِيَتْ&
#1587;11>

and

<!ENTITY text
"اليونيكود">

for entities assoc and text. A parser replaces the entity references with their values. For
example, consider the following entity declaration

<!ENTITY digits "0123456789">

for digits. This entity might be used as follows

<useAnEntity>&digits;</useAnEntity>

The entity reference &digits; is replaced by its value, resulting in

<useAnEntity>0123456789</useAnEntity>

the value 0123456789 being placed inside the tags. These entities are called general entities.

Related to entities are entitv attributes, which indicate that an attribute has an entity for its
value. These entity attributes are specified by using tokenized attribute type ENTITY. The
primary constraint placed on ENTITY attribute types is that they must refer to extertial
uiiparsed entities. An external unparsed entity is defined in the external subset of a DTD and
consists of character data that will not be parsed by the XML parser.

Example 9 lists an XML document that demonstrates the use of entities and entity attribute
types.

<?xml version = "1.0"?>
<!DOCTYPE database [
<!NOTATION html SYSTEM "iexplorer">
<!ENTITY city SYSTEM "tour.html" NDATA html>
<!ELEMENT database (company+)>
<!ELEMENT company (name)>
<!ATTLIST company tour ENTITY #REQUIRED>
<!ELEMENT name (#PCDATA)>
]>
<database>
<company tour = "city">

<name>Deitel & Associates, Inc.</name>
</company>
</database>

Example 9 XMLdocument containing an ENTITY attribute type

<!NOTATION html SYSTEM "iexplorer">

declares a notation named html that refers to a SYSTEM identifier named "iexplorer".
Notations provide information that an application using the XML document can use to handle
unparsed entities. For example, the application using this document may choose to open
Internet Explorer and load the document tour. html.

<!ENTITY City SYSTEM "tour.html" NDATA html>

declares an entity named city that refers to an external document (tour. html). Keyword
NDATA indicates that the content of this external entity is not XML. The name of the notation
(e.g., html) that handles this unparsed entity is placed to the right of NDATA.

<!ATTLIST company tour ENTITY #REQUIRED>

declares attribute tour for element company. Attribute tour specifies a required ENTITY
attribute type.

<company tour = "city">

assigns entity city to attribute tour. Replacing this with

<company tour = "country">

the document fails to conform to the DTD because entity country does not exist. Validator if
country is used.

Attribute type ENTITIES may also be used in a DTD to indicate that an attribute has multiple
entities for its value. Each entity is separated by a space.

<!ATTLIST directory file ENTITIES #REQUIRED>

specifies that attribute file is required to contain multiple entities. An example of markup that
conforms to this might look like

<directory file = "animations graph1 graph2">

where animations, graph1 and graph2 are entities declared in a DTD.

A more restrictive attribute type is attribute type NMTOKEN (name token), whose values
consists of letters, digits, periods, underscores, huphes and colon characters. For example,
consider the declaration

<!ATTLIST sportsClub phone NMTOKEN #REQUIRED>

which indicates sportsClub contains a required NMTOKEN phone attribute. An example of
markup that conforms to this is

<sportsClub phone = "555-111-2222">

An example that does not conform to this is

<sportsClub phone = "555 555 4902">

because spaces are not allowed in an NMTOKEN attribute.

Similarly, when an NMTOKENS attribute type is declared, the attribute may contain multiple
string tokens separated by spaces.

Enumerated Attribute Types
Enumerated attribute types, which declare a list of possible values an attribute can have, are
discussed. The attribute must be assigned a value from this list to conform to the DTD.
Enumerated type values are separated by pipe characters. For example, the declaration

<!ATTLIST person gender (M | F) "F">

contains an enumerated attribute type declaration that allows attribute gender to have either the
value M or F. A default value of "F" is specified to the right of the element attribute type.
Alternatively, a declaration such as

<!ATTLIST person gender (M | F) #IMPLIED>

does not provide a default value for gender. This type of declaration might be used to validate a
marked up mailing list that contains first names, last names, addresses, etc. The application that
uses this mailing list may want to precede each name by either Mr., Ms. or Mrs. However, some
first names are gender neutral (e.g., Chris, Sam, etc.), and the application may not know the
person's gender. In this case, the application has the flexibility to process the name in a gender
neutral way.

NOTATION is also an enumerated attribute type. For example,

<!ATTLIST book reference NOTATION (JAVA | C) "C">
the declaration indicates that reference must be assigned either JAVA or C. If a value is not
assigned, C is specified as the default. The notation for C might be declared as

<!NOTATION C SYSTEM "http://www.deitel.com/books/2000/chtp3/chtp3_toc.htm">

Conditional Sections
DTDs provide the ability to include or exclude declarations using conditional sections.
Keyword INCLUDE specifies that declarations are included, while keyword IGNORE specifies
that declarations are excluded. For example, the conditional section

<![INCLUDE [<!ELEMENT name (#PCDATA)>]] >

directs the parser to include the declaration of element name.

Similarly, the conditional section

<![IGNORE[<!ELEMENT message (#PCDATA)>]] >

directs the parser to exclude the declaration of element message.

Conditional sections are often used with entities, as demonstrated in example 10.

<!ENTITY % reject "IGNORE">
<!ENTITY % accept "INCLUDE">
<![%accept; [
<!ELEMENT message (approved, signature)>
]] >

<![%reject; [
<!ELEMENT message (approved, reason, signature)>
]] >

<!ELEMENT approved EMPTY>
<!ATTLIST approved flag (true I false) "false">
<!ELEMENT reason (#PCDATA)>
<!ELEMENT signature (#PCDATA)>

Example 10. Conditional sections in a DTD

<?xml version = "1.0" standalone = "no"?>
<!DOCTYPE message SYSTEM "conditional.dtd">

<message>
<approved flag = "true"/>
<signature>Chairman</signature>
</message>

Example 11 XMLdocument that conforms to conditional.dtd.
<!ENTITY % reject "IGNORE">
<!ENTITY % accept "INCLUDE">

declare entities reject and accept, with the values IGNORE and INCLUDE, respectively.
Because each of these entities is preceded by a percent (%) character, they can be used only
inside the DTD in which they are declared. These types of entities-called parameter entities-
allow document authors to create entities specific to a DTD-not an XML document. [Note:
Recall that the DTD is the combination of the internal subset and external subset. Parameter
entities may only be placed in the external subset.]

The entities accept and reject, which represent the strings INCLUDE and IGNORE, are used
respectively. Notice that the parameter entity references are preceded by %, where as normal
entity references are preceded by &.

<![%accept; [

represents the beginning tag of an IGNORE section (the value of the accept entity is
IGNORE), while another line represents the start tag of an INCLUDE section. By changing
the values of the entities, we can easily choose which message element declaration to allow.
Example 11 shows the XML document that conforms to the DTD in example 11.

Observation:
Parameter entities allows document authors to use entity names in DTDs without conflicting
with entities used in an XML document.

Whitespace Characters
Whitespace characters and normalization are discussed how they relate to DTDs. Whitespace is
either preserved or normalized, depending on the context in which it is used. Example 12
contains a DTD and markup that conforms to the DTD. The output shown is generated by a
Java application.

<?xml version = "1.0"?>
<!DOCTYPE whitespace [

<!ELEMENT whitespace (hasCDATA,
 hasID, hasNMTOKEN, hasEnumeration, hasMixed)>
<!ELEMENT hasCDATA EMPTY>
<!ATTLIST hasCDATA cdata CDATA #REQUIRED>
<!ELEMENT hasID EMPTY>
<!ATTLIST hasID id ID #REQUIRED>
<!ELEMENT hasNMTOKEN EMPTY>
<!ATTLIST hasNMTOKEN rmtoken NMTOKEN
#REQUIRED>
<!ELEMENT hasEnumeration EMPTY>
<!ATTLIST hasEnuxneration enumeration (true | false)
#REQUIRED>
<!ELEMENT hasMixed (#PCDATA | hasCDATA)*>
] >
<whitespace>
<hasCDATA cdata = "simple cdata"/>
<hasID id = "i20"/>
<hasNMTOKEN nmtoken = "hello"/>
<hasEnumeration enumeration = "true"/>
<hasMixed>
 This is text.
<hasCDATA cdata = " simple cdata"/>
 This is some additional text.
</hasMixed>
</whitespace>

Example 12 Processing whitespace in an XML document

<hasCDATA cdata = " simple cdata"/>

assigns a value containing multiple whitespace characters to attribute cdata. Attribute cdata is
required and must contain CDATA. As mentioned earlier, CDATA can contain almost any
text, including whitespace. As the output illustrates, spaces in CDATA are preserved and
passed on to the application using the XML document.

Attribute id is declared with tokenized attribute type ID. Because this is not CDATA, it is
normalized and the leading whitespace characters are removed. Similarly, values that contain
leading whitespace are assigned to attributes nmtoken and enumeration which are declared in
the DTD as an NMTOKEN and an enumeration, respectively. Both these attributes are
normalized by the parser.

Internet and World Wide Web Resources
www.wdvl.com/Authoring/HTML/Validation/DTD.html
Contains a description of the historical uses of DTDs, including a description of SGML and the
HTML DTD.

www.dtd.com
A repository of DTDs for XML documents.

www.xmllOl.com/dtd
Contains tutorials and explanations on creating DTDs.

wdvl.internet.com/Authoring/Languages/XML/Tutorials/Intro/index3.html
A DTD tutorial.

www.w3schools.com/dtd
Contains DTD tutorials and examples.

www.schema.net
A DTD repository with XML links and resources.

msdn.microsoft.com/downloads/samples/Internet/xml/xml-validator/ sample.asp
Download page for Microsoft's XML Validator.

www.networking.ibm.com/xml/xmlvalidatorForm.html
IBM's DOMit XML Validator.

SUMMARY
1. Document Type Definitions (DTDs) define an XML document's structure (e.g., what

elements, attributes, etc. are permitted in the XML document). An XML document is not
required to have a corresponding DTD. DTDs use EBNF (Extended Backus-Naur Form)
grammar.

2. Parsers are generally classified as validating or nonvalidating. A validating parser is able to
read the DTD and determine whether or not the XML document conforms to it. If the
document conforms to the DTD, it is referred to as valid. If the document fails to conform to
the DTD but is syntactically correct, it is well formed but not valid. By definition, a valid
document is well formed.

3. A nonvalidating parser is able to read a DTD, but cannot check the document against the
DTD for conformity. If the document is syntactically correct, it is well formed.

4. DTDs are introduced into XML documents by using the document type declaration (i.e.,
DOCTYPE). The document type declaration can point to declarations that are outside the
XML document (called the external subset) or can contain the declaration inside the
document (called internal subset).

5. External subsets physically exist in a different file that typically ends with the .dtd
extension, although this file extension is not required. External Subsets are specified using
keyword SYSTEM. Both the internal and external subset may be specified at the same
time.

6. Elements are the primary building block used in XML documents and are declared in a
DTD with element type declarations (ELEMENTs).

7. The element name that follows ELEMENT is often called a generic identifier. The set of
parentheses that follow the element name specify the element's allowed content and is
called the content specification.

8. Keyword PCDATA specifies that the element must contain parsable character data-that is,
any text except the characters less-than (<), greater-than (>), ampersand (&), quote (')
and double quote (").

9. An XML document is a standalone XML document if it does not reference an external
DTD.

10. An XML element that can only have another element for content, it is said to have element
content.

11. DTDs allow the document author to define the order and frequency of child elements. The
comma (,) - called a sequence - specifies the order in which the elements must occur.
Choices are specified using the pipe (|) character. The content specification may contain
any number of pipe character separated choises.

12. An element's frequency (i.e., number of occurrences) is specified by using either the plus
sign (+), asterisk (*) or question mark (?) occurrence indicator.

13. The frequency of an element group (i.e., two or more elements that occur in some
combinaition) is specified by enclosing the element names inside the content specification
followed by an occurrence indicator.

14. Elements can be further refined by describing the content types they may contain. Content
specification types (e.g., EMPTY, mixed content, ANY, etc.) describe nonelement content.

15. An element can be declared as having mixed content (i.e., a combination of elements and
PCDATA). The comma (,), plus sign (+) and question mark (?) occurrence indicators
cannot be used with mixed content elements.

16. An element declared as type ANY can contain any content including PCDATA, elements,
or a cornbination of elements and PCDATA. Elements with ANY content can also be
empty elements.

17. An attribute list for an element is declared using the ATTLIST element type declaration.
18. Attribute values are normalized (i.e., consecutive whitespace characters are combined into

one whitespace character).
19. DTDs allow document authors to specify an attribute's default value using attribute defaults.

Keywords #IMPLIED, #REQUIRED and #FIXED are attribute defaults.
20. Keyword #IMPLIED specifies that if the attribute does not appear in the element, then the

application using the XML document can apply whatever value (if any) it chooses.
21. Keyword #REQUIRED indicates that the attribute must appeair in the element. The XML

document is not valid if the attribute is missing.
22. An attribute declaration with default value #FIXED specifies that the attribute value is

constant and cannot be different in the XML document.

23. Attribute types are classified as either strings (CDATA), tokenized or enumerated. String
attribute types do not impose any constraints on attribute values-other than disallowing the
<, >, &, ', and " characters. Entity references (e.g., <, >, etc.) must be used for these
characters. Tokenized attributes impose constraints on attribute values-such as which
characters are permitted in an attribute name. Enumerated attributes are the most restrictive
of the three types. They can take only one of the values listed in the attribute declaration.

24. Four different tokenized attribute types exist: ID, IDREF, ENTITY and NMTOKEN.
Tokenized attribute type ID uniquely identifies an element. Attributes with type IDREF
point to elements with an ID attribute. A validating parser verifies that every ID attribute
type referenced by IDREF is in the XML document.

25. Entity attributes indicate that an attribute has an entity for its value and are specified using
tokenized attribute type ENTITY. The primary constraint placed on ENTITY attribute
types is that they must refer to external unparsed entities.

26. Attribute type ENTITIES may also be used in a DTD to indicate that an attribute has
multiple entities for its value. Each entity is separated by a space.

27. A more restrictive attribute type is attribute type NMTOKEN (name token), whose value
consists of letters, digits, periods, underscores, hyphens and colon characters.

28. Attribute type NMTOKENS may contain multiple string tokens separated by spaces.
29. Enumerated attribute types declare a list of possible values an attribute can have. The

attribute must be assigned a value from this list to conform to the DTD. Enumerated type
values are separated by pipe characters (|).

30. NOTATION is also an enumerated attribute type. Notations provide information that an
application using the XML document can use to handle unparsed entities.

31. Keyword NDATA indicates that the content of this external entity is not XML. The name of
the notation that handles this unparsed entity is placed to the right of NDATA.

32. DTDs provide the ability to include or exclude declarations using conditional sections.
Keyword INCLUDE specifies that declarations are included, while keyword IGNORE
specifies that declarations are excluded. Conditional sections are often used with entities.

33. Parameter entities are preceded by percent (%) characters and can be used only inside the
DTD in which they are declared. Parameter entities allow document authors to create
entities specific to a DTD - not an XML document.

34. Whitespace is either preserved or normalized, depending on the context in which it is used.
Spaces in CDATA are preserved. Attributes values with tokenized attribute types ID,
NMTOKEN and enumeration are normalized.

