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The goal of the course: 

provide a comprehensive introduction to the modern study of computer 
algorithms. The algorithms and data structures selected are basic ones, constituting 
the background of computer science. The exposition of the theory, the design, and 
implementation of data structures and algorithms, as well as their issues are 
especially oriented to the applications typical for databases, information systems, 
geographic information systems, computer graphics, and multimedia. The content 
of the course: 

Algorithms, abstract data types, computers, memory 

•  outline of topic, Euclid algorithm and it’s implication to objects like very 
big numbers and polynomials, basic data types 

•  pseudocode (and other conventions) 

•  abstract data types (stack ADT, queue ADT, list ADT, matrix ADT, the 
dynamic set ADT) 

•  models of memory, data in physical memory, data in multimedia systems 

Trees and priority queues 

•  trees, binary trees, AVL trees, 2-3-4 trees, red-black trees 

•  heaps, heapsort, priority queues 

•  B-trees 

•  data compression and Huffman codes 

•  trees in computer memory 

Hashing and indexing 

•  hashing and hashing functions 

•  linear chaining, open addressing 

•  extendable hashing 

Sorting algorithms 

•  elementary sorting methods 

•  quicksort 

•  radix sorting 

•  mergesort 

•  external sorting 

Radix searching 



•  digital search trees 

•  radix search trees 

•  multiway radix searching 

•  Patricia algorithm 

External searching 

•  indexed sequential access 

•  virtual memory 

String processing 

•  brute-force algorithm 

•  Knuth-Morris-Pratt algorithm 

•  Boyer-Moore algorithm 

•  Rabin-Karp algorithm 

Pattern matching 

•  finite automata 

•  longest subsequence problem 

•  constrained patterns 

Range searching 

•  elementary methods 

•  grid method 

•  two-dimensional trees 

•  multidimensional range searching 

Hierarchical multidimensional data 

•  quadtrees and octrees 

•  R-trees 

Algorithms and abstract data types 
Informally, algorithm means is a well-defined computational procedure that 

takes some value, or set of values, as input and produces some other value, or set of 
values, as output. An algorithm is thus a sequence of computational steps that 
transform the input into the output. 

Algorithm is also viewed as a tool for solving a well-specified problem, 
involving computers. The statement of the problem specifies in general terms the 
desired input/output relationship. The algorithm describes a specific computational 
procedure for achieving that input/output relationship. 

There exist many points of view to algorithms. One if these points is a 
computational one. A good example of this is a famous Euclid’s algorithm: 

for two integers x, y calculate the greatest common divisor gcd (x, y) 
 

Direct implementation of the algorithm (in Pascal) looks like: 

 

program euclid (input, output); 
var x,y: integer; 
function gcd (u,v: integer): integer; 
 var t: integer; 
 begin 
 repeat 
  if u<v then 
  begin t := u; u := v; v := t end; 
  u := u-v; 
 until u = 0; 
 gcd := v 
 end; 
begin 
 while not eof do 
 begin 
 readln (x, y); 
 if (x>0) and (y>0) then writeln (x, y, gcd (x, y)) 
 end; 
end. 
 

 

 



The same algorithm in C++: 

#include  
int gcd(int u, int v) 
  { 
    int t; 
    while (u > 0) 
      { 
        if (u < v) { t = u; u = v; v = t; } 
        u = u - v; 
      } 
    return v; 
   } 
main() 
  { 
    int x, y; 
    while (cin >> x && cin >> y) 
      if (x>0 && y>0) cout << x << ' ' << y << ' '  
                                << gcd(x,y) << '\n'; 
  } 
 

This algorithm has some exceptional features, nevertheless specific to the 
computational procedures: 

•  it is computationally intensive (uses a lot of processor mathematical 
instructions); 

•  it is applicable only to numbers; 

•  it has to be changed every time when the environment changes, say if numbers 
are to be very long and consequently do not fit to size of variable (numbers like 
1000!). 

 

(d1) 

402387260077093773543702433923003985719374864210↵
714632543799910429938512398629020592044208486969↵
404800479988610197196058631666872994808558901323↵
829669944590997424504087073759918823627727188732↵
519779505950995276120874975462497043601418278094↵
646496291056393887437886487337119181045825783647↵
849977012476632889835955735432513185323958463075↵
557409114262417474349347553428646576611667797396↵
668820291207379143853719588249808126867838374559↵
731746136085379534524221586593201928090878297308↵
431392844403281231558611036976801357304216168747↵
609675871348312025478589320767169132448426236131↵
412508780208000261683151027341827977704784635868↵
170164365024153691398281264810213092761244896359↵
928705114964975419909342221566832572080821333186↵
116811553615836546984046708975602900950537616475↵
847728421889679646244945160765353408198901385442↵
487984959953319101723355556602139450399736280750↵
137837615307127761926849034352625200015888535147↵
331611702103968175921510907788019393178114194545↵
257223865541461062892187960223838971476088506276↵
862967146674697562911234082439208160153780889893↵
964518263243671616762179168909779911903754031274↵
622289988005195444414282012187361745992642956581↵
746628302955570299024324153181617210465832036786↵
906117260158783520751516284225540265170483304226↵
143974286933061690897968482590125458327168226458↵
066526769958652682272807075781391858178889652208↵
164348344825993266043367660176999612831860788386↵
150279465955131156552036093988180612138558600301↵
435694527224206344631797460594682573103790084024↵
432438465657245014402821885252470935190620929023↵
136493273497565513958720559654228749774011413346↵
962715422845862377387538230483865688976461927383↵
814900140767310446640259899490222221765904339901↵
886018566526485061799702356193897017860040811889↵
729918311021171229845901641921068884387121855646↵
124960798722908519296819372388642614839657382291↵
123125024186649353143970137428531926649875337218↵
940694281434118520158014123344828015051399694290↵
153483077644569099073152433278288269864602789864↵
321139083506217095002597389863554277196742822248↵
757586765752344220207573630569498825087968928162↵
753848863396909959826280956121450994871701244516↵
461260379029309120889086942028510640182154399457↵
156805941872748998094254742173582401063677404595↵
741785160829230135358081840096996372524230560855↵
903700624271243416909004153690105933983835777939↵
410970027753472000000000000000000000000000000000↵
000000000000000000000000000000000000000000000000↵
000000000000000000000000000000000000000000000000↵
000000000000000000000000000000000000000000000000↵
000000000000000000000000000000000000000000000000↵
000000000000000000000000



For algorithms of applications, like databases, information systems, they are 
usually understood in a slightly different way, more like tools to achieve 
input/output relationship. The example of an algorithm in such sense would be a 
sorting procedure. This procedure is frequently appearing in a transaction (a prime 
operation in information systems or databases), and even while the same 
transaction, the sorting: 

•  is repeated many times; 

•  in a various circumstancies; 

•  with different types of data. 

Pseudocode 
The notation language to describe algorithms is needed. This language called 

pseudocode, often is a lingua franca. 

Pseudocode is used to express algorithms in a manner that is independent of a 
particular programming language. The prefix pseudo is used to emphasize that this 
code is not meant to be compiled and executed on a computer. The reason for using 
pseudocode is that it allows one to convey basic ideas about an algorithm in general 
terms. This, in essence, is the difference between pseudocode and a computer 
program. A pseudocode program simply states the steps necessary to perform some 
computation, while the corresponding computer program is the translation of these 
steps into the syntax of a particular programming language. 

The ability to ignore implementation details when using pseudocode will 
facilitate analysis by allowing us to focus solely on the computational or behavioral 
aspects of an algorithm. Constructs of pseudocode: 

•  assignments; 
•  for … to … [step] … do [in steps of]; 
•  while … do; 
•  do … while; 
•  begin … end; 
•  if … then … else; 
•  pointer, and null pointer; 
•  arrays; 
•  composite data types; 
•  procedure and its name; 
•  formal parameters versus actual parameters. 

 

Abstract Data Types 
 

A theoretical description of an algorithm, if implemented in application is 
affected very much by: 

•  computer resources, 

•  implementation, 

•  data. 

To avoid unnecessary troubles, limitations, specificity, etc. in the design of 
algorithm, some additional theory has to be used. 

Such a theory include fundamental concepts (guide lining the content of the 
course): 

•  concepts of Abstract Data Type (ADT) or data type, or data structures; 

•  tools to express operations of algorithms; 

•  computational resources to implement the algorithm and test its functionality; 

•  evaluation of the complexity of algorithms. 

 

Level of Abstraction 

The level of abstraction is one of the most crucial issues in the design of 
algorithms. The term abstraction refers to the intellectual capability of considering 
an entity apart from any specific instance of that entity. This involves an abstract or 
logical description of components: 

•  the data required by the software system, 

•  the operations that can be performed on this data. 

The use of data abstraction during software development allows the software 
designer to concentrate on how the data in the system is used to solve the problem 
at hand, without having to be concerned with how the data is represented and 
manipulated in computer memory. 

 

Abstract Data Types 

The development of computer programs is simplified by using abstract 
representations of data types (i.e., representations that are devoid of any 
implementation considerations), especially during the design phase. 



Alternatively, utilizing concrete representations of data types (i.e., 
representations that specify the physical storage of the data in computer memory) 
during design introduces: 

•  unnecessary complications in programming (to deal with all of the issues 
involved in implementing a data type in the software development process), 

•  a yield a program that is dependent upon a particular data type implementation. 

An abstract data type (ADT) is defined as a mathematical model of the data 
objects that make up a data type, as well as the functions that operate on these 
objects (and sometime impose logical or other relations between objects). 

So ADT consist of two parts: data objects and operations with data objects. The 
operations that manipulate data objects are included in the specification of an ADT. 

At this point it is useful to distinguish between ADTs, data types, and data 
structures. 

The term data type refers to the implementation of the mathematical model 
specified by an ADT. That is, a data type is a computer representation of an ADT. 

The term data structure refers to a collection of computer variables that are 
connected in some specific manner. This course is concerned also with using data 
structures to implement various data types in the most efficient manner possible. 

The notion of data type include built-in data types. Built-in data types are 
related to a programming language. 

A programming language typically provides a number of built-in data types. 
For example, the integer data type in Pascal, or int data type available in the C 
programming language provide an implementation of the mathematical concept of 
an integer number. 

 

Consider INTEGER ADT, which: 

•  defines the set of objects as numbers (−infinity, … -2, -1, 0, 1, 2, ..., +infinity); 

•  specifies the set of operations: integer addition, integer subtraction, integer 
multiplication, div (divisor), mod (remainder of the divisor), logical operations 
like <, >, =, etc. 

 

The specification of the INTEGER ADT does not include any indication of 
how the data type should be implemented. For example, it is impossible to 
represent the full range of integer numbers in computer memory; however, the 

range of numbers that will be represented must be determined in the data type 
implementation. 

Built-in data type INT in C, or INTEGER in Pascal are dealing with the set of 
objects as numbers in the range (minint, … -2, -1, 0, 1, 2, …, maxint), and format of 
these numbers in computer memory can vary between one's complement, two's 
complement, sign-magnitude, binary coded decimal (BCD), or some other format. 

The implementation of an INTEGER ADT involves a translation of the ADT's 
specifications into the syntax of a particular programming language. This 
translation consists of the appropriate variable declarations necessary to define the 
data elements, and a procedure or accessing routine that implements each of the 
operations required by the ADT. 

The INTEGER ADT when implemented according to specification gives a 
freedom to programmers. Generally they do not have to concern themselves with 
these implementation considerations when they use the data type in a program. 

In many cases the design of a computer program will call for data types that are 
not available in the programming language used to implement the program. In 
these cases, programmers must be able to construct the necessary data types by 
using built-in data types. This will often involve the construction of quite 
complicated data structures. The data types constructed in this manner are called 
user-defined data types. 

The design and implementation of data types as well as ADTs are often 
focused on user-defined data types. Then a new data type has to be considered 
from two different viewpoints: 

•  a logical view; 

•  an implementation view. 

 

The logical view of a data type should be used during program design. This is 
simply the model provided by the ADT specification. 

The implementation view of a data type considers the manner in which the data 
elements are represented in memory, and how the accessing functions are 
implemented. Mainly it is to be concerned with how alternative data structures and 
accessing routine implementations affect the efficiency of the operations performed 
by the data type. 

There should be only one logical view of a data type, however, there may be 
many different approaches to implementing it. 



Taking the whole process of ADT modeling and implementation into account, 
many different features have to be considered. One of these characteristics is an 
interaction between various ADTs, data types, etc. In this course a so-called 
covering ADT will be used to model the behavior of a specific ADT and to 
implement it. 

 

The STACK ADT 

This ADT covers a set of objects as well as operations performed on these 
objects: 

•  initialize (S) – creates a necessary structured space in computer memory to 
locate objects in S; 

•  push(S, x) – inserts x into S; 

•  pop(S) – deletes object from the stack that was most recently inserted into; 

•  top(S) – returns an object from the stack that was most recently inserted into; 

•  kill(S) - releases an amount of memory occupied by S. 

The operations with stack objects obey LIFO property: Last-In-First-Out. This 
is a logical constrain or logical condition. 

The operations Initialize and Kill are more oriented to an implementation of this 
ADT, but they are important in some algorithms and applications too. 

The stack is a dynamic data set with a limited access to objects. 

The model of application to illustrate usage of a stack is: 

calculate the value of an algebraic expression. 
If the algebraic expression is like: 

9*(((5+8)+(8*7))+3) 

then the sequence of operations of stack to calculate the value would be: 

push(9); 
push(5); 
push(8); 

push(pop+pop); 
push(8); 
push(7); 

push(pop*pop); 
push(pop+pop); 

push(3); 

push(pop+pop); 
push(pop*pop); 

writeln(pop). 
 

The content of stack after each operation will be: 

 

 
 

The stack is useful also to verify the correctness of parentheses in an algebraic 
expression. 

If objects of stack fit to ordinary variables the straightforward implementation 
will look like expressed below. 

type link=^node; 
 node=record key:integer; next:link; end; 
 var head,z:link; 
procedure stackinit; 

begin 
 new(head); new(z); 
 head^.next:=z; z^.next:=z 
end; 

procedure push(v:integer); 
 var t:link; 

begin 
 new(t); 
 t^.key:=v; t^.next:=head^.next; 
 head^.next:=t 
end; 

function pop:integer; 
 var t:link; 

begin 
 t:=head^.next; 
 pop:=t^.key; 
 head^.next:=t^.next; 
 dispose(t) 



end; 
function stackempty:boolean; 
begin stackempty:=(head^.next=z) end. 
 

Implementation by the built-in data type of array: 

 

const maxP=100; 
var stack: array[0..maxP]of integer; p:integer; 

procedure push(v:integer); 
begin stack[p]:=v; p:=p+1 end; 

function pop:integer; 
begin p:=p-1; pop:=stack[p] end; 

procedure stackinit; 
begin p:=0 end; 

function stackempty:boolean; 
begin stackempty:=(p=<0) end. 

 

The algebraic expression is implemented by using stack: 

stackinit; 
repeat 

repeat read(c) until c<>''; 
if c=')' then write(chr(pop)); 
if c='+' then push(ord(c)); 
if c='*' then push(ord(c)); 
while (c=>'0') and (c=<'9') do 

begin write(c); read(c) end; 
if c<>'(' then write(''); 

until eoln; 
 

The QUEUE ADT 

 

This ADT covers a set of objects as well as operations performed on objects: 

•  queueinit (Q) – creates a necessary structured space in computer memory to 
locate objects in Q; 

•  put (Q, x) – inserts x into Q; 

•  get (Q) – deletes object from the queue that has been residing in Q the longest; 

•  head (Q) – returns an object from the queue that has been residing in Q the 
longest; 

•  kill (Q) – releases  an amount of memory occupied by Q. 

The operations with queue obey FIFO property: First-In-First-Out. This is a 
logical constrain or logical condition. The queue is a dynamic data set with a 
limited access to objects. The application to illustrate usage of a queue is: 

queuing system simulation (system with waiting lines) 
(implemented by using the built-in type of pointer) 

type link=^node; 
 node=record key:integer; next:link; end; 
var head,tail,z:link; 
 
procedure queueinit; 

begin 
 new(head); new(z); 
 head^.next:=z; tail^.next=z; z^.next:=z 
end; 

 
procedure put(v:integer); 
 var t:link; 

begin 
 new(t); 
 t^.key:=v; t^.next:=tail^.next; 
 tail^.next:=t 
end; 
 

function get:integer; 
 var t:link; 

begin 
 t:=head^.next; 
 get:=t^.key; 
 head^.next:=t^.next; 
 dispose(t) 
end; 

 
function queueempty:boolean; 

begin queueempty:=(head^.next=z;tail^.next=z) 
end. 



The queue operations by array: 

const max=100; 
var queue:array[0..max] of integer; 
 head, tail:integer; 
procedure put(v:integer); 

begin 
 queue[tail]:=v; tail:=tail+1; 
 if tail>max then tail:=0 
end; 

function get: integer; 
begin  get:=queue[head]; head:=head+1; 
 if head>max then head:=0 
end; 

procedure queueinitialize; 
begin head:=0; tail:=0  
end; 

function queueempty:boolean; 
begin queueempty:=(head=tail)  
end. 

 
The Queue Implementation 

A queue is used in computing in much the same way as it is used in everyday 
life: 

•  to allow a sequence of items to be processed on a first-come-first-served basis. 

In most computer installations, for example, one printer is connected to several 
different machines, so that more than one user can submit printing jobs to the same 
printer. Since printing a job takes much longer than the process of actually 
transmitting the data from the computer to the printer, a queue of jobs is formed so 
that the jobs print out in the same order in which they were received by the printer. 
This has the irritating consequence that if your job consists of printing only a single 
page while the job in front of you is printing an entire 200-page thesis, you must 
still wait for the large job to finish before you can get your page. 

The actions allowed on a queue are: 

•  creating an empty queue. 
•  testing if a queue is empty. 
•  adding data to the tail of the queue. 
•  removing data from the head of the queue. 
 

Just as with stacks, queues can be implemented using arrays or lists. For the first 
of all, let’s consider the implementation using arrays. 

Define an array for storing the queue elements, and two markers: 

•  one pointing to the location of the Head of the queue, 

•  the other to the first empty space following the Tail. 

When an item is to be added to the queue, a test to see if the Tail marker points 
to a valid location is made, then the item is added to the queue and the Tail marker 
is incremented by 1. When an item is to be removed from the queue, a test is made 
to see if the queue is empty and, if not, the item at the location pointed to by the 
Head marker is retrieved and the Head marker is incremented by 1. 

This procedure works well until the first time when the Tail marker reaches the 
end of the array. If some removals have occurred during this time, there will be 
empty space at the beginning of the array. However, because the Tail marker points 
to the end of the array, the queue is thought to be 'full' and no more data can be 
added. 

We could shift the data so that the Head of the queue returns to the beginning of  

 

the array each time this happens, but shifting data is costly in terms of computer 
time, especially if the data being stored in the array consist of large data objects. 

A more efficient way of storing a queue in an array is to “wrap around” the end 
of the array so that it joins the front of the array. Such a circular array allows the 
entire array (well, almost, as we'll see in a bit) to be used for storing queue elements 
without ever requiring any data to be shifted. A circular array with QSIZE elements 
(numbered from 0 to QSIZE-1) may be visualized: 

The array is, of course, stored in the normal way in memory, as a linear block of 
QSIZE elements. The circular diagram is just a convenient way of representing the 
data structure. 

 

 



We will need Head and Tail markers to indicate the location of the head and the 
location just after the tail where the next item should be added to the queue,  

 

respectively. An empty queue is denoted by the condition Head = Tail: 

At this point, the first item of data would be added at the location indicated by 
the Tail marker, that is, at array index 0. Adding this element gives us the situation: 

 

Let us use the queue until the Tail marker reaches QSIZE-1. We will assume 
that some items have been removed from the queue, so that Head has moved along 
as well: 

 

Now we add another element to the queue at the location marked by Tail, that 
is, at array index QSIZE-1. The Tail marker now advances one step, which 
positions it at array index 0. The Tail marker has wrapped around the array and 
come back to its starting point. Since the Head marker has moved along, those 
elements at the beginning of the array from index 0 up to index Head-1 are 
available for storage. Using a circular array means that we can make use of these 
elements without having to shift any data. 

In a similar way, if we keep removing items from the queue, eventually Head 
will point to array index QSIZE-1. If we remove another element, Head will 
advance another step and wrap around the array, returning to index 0. 

We have seen that the condition for an empty queue is that Head == Tail. What 
is the condition for a full queue? If we try to make use of all the array elements, 
then in a full queue, the tail of the queue must be the element immediately prior to 
the head. Since we are using the Tail marker to point to the array element 
immediately following the tail element in the queue, Tail would have to point to the 
same location as Head for a full queue. But we have just seen that the condition 
Head == Tail is the condition for an empty queue. Therefore, if we try to make use 
of all the array elements, the conditions for full and empty queues become 
identical. We therefore impose the rule that we must always keep at least one free 
space in the array, and that a queue becomes full when the Tail marker points to 
the location immediately prior to Head. 

We may now formalize the algorithms for dealing with queues in a circular 
array. 

•  Creating an empty queue: Set Head = Tail = 0. 
•  Testing if a queue is empty: is Head == Tail? 
•  Testing if a queue is full: is (Tail + 1) mod QSIZE == Head? 
•  Adding an item to a queue: if queue is not full, add item at location Tail and set 

Tail = (Tail + 1) mod QSIZE. 
•  Removing an item from a queue: if queue is not empty, remove item from 

location Head and set Head = (Head + 1) mod QSIZE. 
 

The mod operator ensures that Head and Tail wrap around the end of the array 
properly. For example, suppose that Tail is QSIZE-1 and we wish to add an item to 
the queue. We add the item at location Tail (assuming that the queue is not full) and 
then set Tail 

((QSIZE - 1) + 1) mod QSIZE = QSIZE mod QSIZE = 0 

The following program codes present implementation of elementary abstract data 
types (stacks and queues) in C++. 

const int N = 1000; 
main() 
  { 
    int i, j, a[N+1]; 
    for (a[1] = 0, i = 2; i <= N; i++) a[i] = 1; 
    for (i = 2; i <= N/2; i++) 
      for (j = 2; j <= N/i; j++)  



        a[i*j] = 0; 
    for (i = 1; i <= N; i++) 
      if (a[i]) cout << i << ' '; 
    cout << '\n'; 
  } 
 
    struct node  
      { int key; struct node *next; }; 
 
    struct node *head, *z; 
    head = new node; z = new node; 
    head->next = z; z->next = z; 
  
struct node  
  { int key; struct node *next; }; 
main() 
  {  
    int i, N, M;  
    struct node *t, *x; 
    cin >> N >> M; 
    t = new node; t->key = 1; x = t; 
    for (i = 2; i <= N; i++) 
      {  
        t->next = new node; 
        t = t->next; t->key = i; 
      } 
    t->next = x; 
    while (t != t->next) 
      { 
        for (i = 1; i < M; i++) t = t->next; 
        cout << t->next->key << ' '; 
        x = t->next; t->next = x->next; 
        delete x; 
      } 
    cout << t->key << '\n'; 
  } 
  
    key[x] = v; next[x] = next[t]; next[t] = x++; 
  
class Stack  

  { 
    private: 
      itemType *stack; 
      int p; 
    public: 
      Stack(int max=100)  
        { stack = new itemType[max]; p = 0; } 
     ~Stack() 
        { delete stack; } 
      inline void push(itemType v) 
        { stack[p++] = v; } 
      inline itemType pop() 
        { return stack[--p]; } 
      inline int empty() 
        { return !p; } 
  }; 
  
    char c; Stack acc(50); int x; 
    while (cin.get(c)) 
      { 
        x = 0; 
        while (c == ' ') cin.get(c); 
        if (c == '+') x = acc.pop() + acc.pop(); 
        if (c == '*') x = acc.pop() * acc.pop(); 
        while (c>='0' && c<='9') 
          { x = 10*x + (c-'0');  cin.get(c); } 
        acc.push(x); 
      } 
   cout << acc.pop() << '\n'; 
  
    char c; Stack save(50); 
    while (cin.get(c)) 
      { 
        if (c == ')') cout.put(save.pop()); 
        if (c == '+') save.push(c); 
        if (c == '*') save.push(c); 
        while (c>='0' && c<='9')  
          { cout.put(c); cin.get(c); }  
        if (c != '(') cout << ' '; 
      } 



    cout << '\n'; 
  
class Stack  
  { 
    public: 
      Stack(int max);  
     ~Stack(); 
      void push(itemType v); 
      itemType pop(); 
      int empty(); 
    private: 
      struct node  
       { itemType key; struct node *next; }; 
      struct node *head, *z; 
  }; 
  
Stack::Stack(int max)  
  { 
    head = new node; z = new node; 
    head->next = z;  z->next = z; 
  } 
Stack::~Stack()  
  {  
    struct node *t = head; 
    while (t != z)  
      { head = t; t = t->next; delete head; } 
  } 
  
void Stack::push(itemType v)  
  { 
    struct node *t = new node; 
    t->key = v; t->next = head->next;  
    head->next = t; 
  } 
itemType Stack::pop()    
  { 
    itemType x; 
    struct node *t = head->next;  
    head->next = t->next; x = t->key; 
    delete t; return x; 

  } 
int Stack::empty() 
  { return head->next == z; } 
  
void Queue::put(itemType v) 
  { 
    queue[tail++] = v; 
    if (tail > size) tail = 0;  
  } 
itemType Queue::get() 
  {  
    itemType t = queue[head++]; 
    if (head > size) head = 0; 
    return t; 
  } 
int Queue::empty() 
  { return head == tail; } 
 

Generalized Queues 

Specifically, pushdown stacks and FIFO queues are special instances of a more 
general ADT: the generalized queue. Instances generalized queues differ in only 
the rule used when items are removed: 

•  for stacks, the rule is "remove the item that was most recently inserted"; 

•  for FIFO queues, the rule is "remove the item that was least recently inserted"; 

•  there are many other possibilities to consider. 

A powerful alternative is the random queue, which uses the rule: 

•  "remove a random item" 

The algorithm can expect to get any of the items on the queue with equal 
probability. The operations of a random queue can be implemented: 

•  in constant time using an array representation (it requires to reserve space 
ahead of time) 

•  using linked-list alternative (which is less attractive however, because 
implementing both insertion and deletion efficiently is a challenging task). 

 Random queues can be used as the basis for randomized algorithms, to avoid, 
with high probability, worst-case performance scenarios. 



Stacks and FIFO queues are identifying items according to the time that they 
were inserted into the queue. Alternatively, the abstract concepts may be 
identified in terms of a sequential listing of the items in order, and refer to the 
basic operations of inserting and deleting items from the beginning and the end of 
the list: 

•  if we insert at the end and delete at the end, we get a stack (precisely as in 
array implementation); 

•  if we insert at the beginning and delete at the beginning, we also get a stack 
(precisely as in linked-list implementation); 

•  if we insert at the end and delete at the beginning, we get a FIFO queue 
(precisely as in linked-list implementation); 

•  if we insert at the beginning and delete at the end, we also get a FIFO queue 
(this option does not correspond to any of implementations given). 

Building on this point of view, the deque ADT may be defined, where either 
insertion or deletion at either end are allowed. The implementation of deque is a 
good exercise to program. 

The priority queue ADT is another example of generalized queue. The items in 
a priority queue have keys and the rule for deletion is: 

"remove the item with the smallest key" 

The priority queue ADT is useful in a variety of applications, and the problem 
of finding efficient implementations for this ADT has been a research goal in 
computer science for many years. Identifying and using the ADT in applications 
has been an important factor in this research: 

•  an immediate indication can be given for whether or not a new algorithm is 
correct by substituting its implementation for an old implementation in a huge, 
complex application and checking if there has been got the same result; 

•  an immediate indication can be given for whether a new algorithm is more 
efficient than an old one by noting the extent to which substituting the new 
implementation improves the overall running time (the data structures and 
algorithms for solving this problem will be considered later, they are interesting, 
ingenious, and effective). 

The symbol tables ADT is one more example of generalized queues, where the 
items have keys and the rule for deletion is: 

"remove an item whose key is equal to a given key, if there is one" 

This ADT is perhaps the most important one to consider, and dozens of 
implementations will be examined. 

Each of these ADTs also give rise to a number of related, but different, ADTs 
that suggest themselves as an outgrowth of careful examination of application 
programs and the performance of implementations. 

Duplicate and Index Items 

For many applications, the abstract items to be processed are unique, a quality 
that lead to modification of idea how stacks, FIFO queues, and other generalized 
ADTs should operate. Specifically, in this section, the effect of changing the 
specifications of stacks, FIFO queues, and generalized queues to disallow duplicate 
items in the data structure will be considered. 

For example, a company that maintains a mailing list of customers might want 
to try to grow the list by performing insert operations from other lists gathered from 
many sources, but would not want the list to grow for an insert operation that refers 
to a customer already on the list. The same principle applies in a variety of other 
applications. For another example, consider the problem of routing a message 
through a complex communications network. It might be trials to go through 
several paths simultaneously in the network, but there is only one message. So any 
particular node in the network would want to have only one copy in its internal data 
structures. 

One approach to handle this situation is to leave up to the programs the task of 
ensuring that duplicate items are not presented to the ADT. But since the purpose 
of an ADT is to provide clients with clean solution to application problems, the 
detection and resolution of duplicates have to be a part of ADT. 

Disallowing duplicate items is a change in the abstraction: 

•  the interface, names of operations, and so forth for such an ADT are the same as 
those for the corresponding original ADT, but the behavior of the 
implementation changes in a fundamental way. 

In general, modification of the specification of a structure gives a completely 
new ADT – one that has completely different properties. This situation also 
demonstrates the precarious nature of ADT specification: 

•  being sure that clients and implementations adhere to the specifications in an 
interface is difficult enough, but enforcing a high-level statement such as this 
one is another matter entirely. 

In general, a generic decision has to be made when a client makes an insert 
request for an item that is already in the data structure: 

•  should it be proceeded as though the request never happened? 



•  or should it be proceeded as though the client had performed a delete followed 
by an insert? 

This decision affects the order in which items are ultimately processed for 
ADTs such as stacks and FIFO queues, and the distinction is significant for 
programs. For example, the company using such an ADT for a mailing list might 
prefer to use the new item (perhaps assuming that it has more up-to-date 
information about the customer), and the switching mechanism using such an ADT 
might prefer to ignore the new item (perhaps it has already taken steps to send 
along the message). 

Furthermore, such choice affects the implementations: 

•  the forget-the-old-item statement is generally more difficult to implement than 
the ignore-the-new-item statement, because it requires to modify the data 
structure. 

To implement generalized queues with no duplicate items: 

•  an abstract operation for testing item equality has to be presented; 

•  the determination whether a new item to be inserted is already in the data 
structure has to be available. 

There is an important special case with a straightforward solution: 

•  if the items are integers in the range [0, …, N-1], then a second array of size N, 
indexed by the item itself, to determine whether that item is in the stack, may be 
used. 

Inserting the item, the ith entry in the second array may be set to 1; and deleting 
item i, the ith entry in the array may be set to 0. The same code as before may be 
used to insert and delete items, with one additional test: 

the test to see whether the item is already in the structure. 

If it is, the insert or delete operation have to be ignored. This solution does not 
depend on whether an array or linked-list (or some other) representation for the 
ADT. Implementing an ignore-the-old-item case involves more work. 

In summary, one way to implement a generalized queue ADT with no 
duplicates using an ignore-the-new-item case is to maintain two data structures: the 
first contains the items in the structure, as before, to keep track of the order in 
which the items in the queue were inserted; the second is an array that allows us to 
keep track of which items are in the queue, by using the item as an index. Using an 
array in this way is a special case of a symbol-table implementation, which is 
discussed later. 

This special case arises frequently. The most important example is when the 
items in the data structure are array indices themselves, so such items are referred 
as index items. Typically, a set of N objects, kept in yet another array, has to be 
passed through a generalized queue structure as a part of a more complex 
algorithm. Objects are put on the queue by index and processed when they are 
removed, and each object is to be processed precisely once. Using array indices in a 
queue with no duplicates accomplishes this goal directly. 

Each of these choices (disallow duplicates, or do not; and use the new item, or 
do not) leads to a new ADT The differences may seem minor, but they obviously 
affect the dynamic behavior of the ADT as seen by programs, and affect the choice 
of algorithm and data structure to implement the various operations, so there is no 
alternative but to treat all the ADTs as different. 

Furthermore, in many cases additional options have to be considered. For 
example, there might be the wish to modify the interface to inform the client 
program when it attempts to insert a duplicate item, or to give the client the option 
whether to ignore the new item or to forget the old one. 

To conclude, informally using a term such as pushdown stack, FIFO queue, 
deque, priority queue, or symbol table, it potentially referees to a family of ADTs, 
each with different sets of defined operations and different sets of conventions 
about the meanings of the operations, each requiring different and, in some cases, 
more sophisticated implementations to be able to support those operations 
efficiently. 

First class ADT 

The objects of built-in data types and in ADTs considered above are 
disarmingly simple, there is only one object in a given program and no possibility 
to declare variables of different types in client programs for the same ADT. 

A first-class data type is one for which there is potentially many different 
instances, and which can be assigned to variables declared to hold the instances. 

For example, it could be used first-class data types as arguments and return 
values to functions. 

The implemention of first-class data types have to provide us with the capability 
to write programs that manipulate stacks and FIFO queues in much the same way 
as with types of data in programming language like C. This capability is important 
in the study of algorithms because it gives a natural way to express high level 
operations involving such ADTs. For example, two queues can be joined into one. 

Some modern languages provide specific mechanisms for building first-class 
ADTs. Being able to manipulate instances of ADTs in much the same way that of 



built-in data types int or float, it allows any application program to be written such 
that the program manipulates the objects of central concern to the application; it 
allows many programmers to work simultaneously on large systems, all using a 
precisely defined set of abstract operations, and it provides for those abstract 
operations to be implemented in many different ways without any changes to the 
applications code - for example for new machines and programming environments. 
Some languages even allow operator overloading, to use basic symbols such as + 
or * to define operators. 

First-class ADTs play a central role in many of implementations because they 
provide the necessary support for the abstract mechanisms for generic objects and 
collections of objects. 

Nevertheless, the ability to have multiple instances of a given ADT in a single 
program can lead to complicated situations: 

•  Do we want to be able to have stacks or queues with different types of objects 
on them? 

•  How about different types of objects on the same queue? 

•  Do we want to use different implementations for queues of the same type in a 
single client because we know of performance differences? 

•  Should information about the efficiency of implementations be included in the 
interface? 

•  What form should that information take? 

Such questions underscore the importance of understanding the basic 
characteristics of algorithms and data structures and how client programs may use 
them effectively. 

The List ADT 

A list is one of the most fundamental data structures used to store a collection of 
data items. 

The importance of the List ADT is that it can be used to implement a wide 
variety of other ADTs. That is, the LIST ADT often serves as a basic building 
block in the construction of more complicated ADTs. A list may be defined as a 
dynamic ordered n-tuple: 

L == (l1, 12, ….., ln) 
The use of the term dynamic in this definition is meant to emphasize that the 

elements in this n-tuple may change over time. 

Notice that these elements have a linear order based upon their position in list. 

•  the first element in the list, 11, is called the head of the list. 

•  the last element, ln, is referred to as the tail of the list. 

•  the number of elements in a list L is referred to as the length of the list. 

•  the empty list, represented by (), has length 0. 

•  list can be homogeneous or heterogeneous. 

In many applications it is also useful to work with lists of lists. In this case, each 
element of the list is itself a list. For example, consider the list 

((3), (4, 2, 5), (12, (8, 4)), ()) 

The operations we will define for accessing list elements are given below. For 
each of these operations, L represents a specific list. It is also assumed that a list has 
a current position variable that refers to some element in the list. This variable can 
be used to iterate through the elements of a list. 

1. Initialize (L). This operation is needed to allocate the amount of memory and 
to give a structure to this amount. 

2. Insert (L, x, i). If this operation is successful, the boolean value true is 
returned; otherwise, the boolean value false is returned. 

3. Append (L, x). Adds element x to the tail of L, causing the length of the list to 
become n+1. If this operation is successful, the boolean value true is 
returned; otherwise, the boolean value false is returned. 

4. Retrieve (L, i). Returns the element stored at position i of L, or the null value 
if position i does not exist. 

5. Delete (L, i). Deletes the element stored at position i of L, causing elements to 
move in their positions. 

6. Length (L). Returns the length of L. 

7. Reset (L). Resets the current position in L to the head (i.e., to position 1) and 
returns the value 1. If the list is empty, the value 0 is returned. 

8. Current (L). Returns the current position in L. 

9. Next (L). Increments and returns the current position in L. 

Note that only the Insert, Delete, Reset, and Next operations modify the lists to 
which they are applied. The remaining operations simply query lists in order to 
obtain information about them. 

 

 



Sequential Mapping 

If all of the elements that comprise a given data structure are stored one after the 
other in consecutive memory locations, we say that the data structure is 
sequentially mapped into computer memory. 

Sequential mapping makes it possible to access any element in the data structure 
in constant time. Given the starting address of the data structure in memory, we can 
find the address of any element in the data structure by simply calculating its offset 
from the starting address. 

An array is an example of a sequentially mapped data structure: 

 
 

Because it takes the same amount of time to access any element, a 
sequentially-mapped data structure is also called a random access data structure. 
That is, the accessing time is independent of the size of data structure, and requires 
O(l) time (constant time). 

Schematic representations of (a) a singly-linked list and (b) a doubly-linked list: 

 

 
 

List operations Insert and Delete with double-linked list and single-linked list:  
 

 

 
 

The skip lists: 

 
 

The MATRIX ADT 

The abstract data type MATRIX is used to represent matrices, as well as the 
operations defined on matrices. A matrix is defined as a rectangular array of 
elements arranged by rows and columns. A matrix with n rows and m columns is 
said to have row dimension n, column dimension m, and order n x m. An element of 
a matrix M is denoted by ai,j. representing the element at row i and column j.  

The example of matrix: 

 



Numerous operations are defined on matrices. A few of these are: 

1. InitializeMatrix (M) – creates a necessary structured space in computer memory 
to locate matrix. 

2. RetrieveElement (i, j, M) – returns the element at row i and column j of matrix 
M. 

3. AssignElement (i, j, x, M) – assigns the value x to the element at row i and 
column j of matrix M. 

4. Assignment (MI, M2) – assigns the elements of matrix M1 to those of matrix M2. 
Logical condition: matrices M1 and M2 must have the same order. 

5. Addition (MI, M2) – returns the matrix that results when matrix M1 is added to 
matrix M2. Logical condition: matrices M1 and M2 must have the same order. 

6. Negation (M) – returns the matrix that results when matrix M is negated. 

7. Subtraction (MI, M2) – returns the matrix that results when matrix M1 is 
subtracted from matrix M2. Logical condition: matrices M1 and M2 must have 
the same order. 

8. Scalar Multiplication (s, M) – returns the matrix that results when matrix M is 
multiplied by scalar s. 

9. Multiplication (MI, M2) – returns the matrix that results when matrix M1 is 
multiplied by matrix M2. The column dimension of M1 must be the same as the 
row dimension of M2. The resultant matrix has the same row dimension as M1, 
the same column dimension as M2. 

10. Transpose(M) – returns the transpose of matrix M. 

11. Determinant(M) – returns the determinant of matrix M. 

12. Inverse(M) – returns the inverse of matrix M. 

13. Kill (M) – releases an amount of memory occupied by M. 

Many programming languages have this data type implemented as built-in one, 
but usually in some restricted way. Nevertheless an implementation of this ADT 
must provide a means for representing matrix elements, and for implementing the 
operations described. It is highly desirable to treat elements of the matrix in a 
uniform way, paying no attention whether elements are numbers, long numbers, 
polynomials, or other types of data. 

 

The DYNAMIC SET ADT 

The set is a fundamental structure in mathematics, and the computer science 
view to a set is as follows: 

•  it groups objects together; 

•  the objects in a set are called the elements or members of the set; 

•  these elements are taken from the universal set U, which contains all possible set 
elements; 

•  all the members of- a given set are unique. 

The number of elements contained in a set S is referred to as the cardinality of 
S, denoted by |S|. It is often referred to a set with cardinality n as an n-set. The 
elements of a set are not ordered. Thus, {1, 2, 3} and {3, 2, 1} represent the same 
set. Mathematical operations with sets: 

•  an element x is (or is not) a member of the set S; 

•  the empty set; 

•  two sets A and B are equal (or not); 

•  an A is said to be a subset of B (the empty set is a subset of every set); 

•  the union of A and B; 

•  the intersection of A and B; 

•  the difference of A and B; 

•  the Cartesian product of two sets. 

In computer science it is often useful to consider set-like structures in which the 
ordering of elements is important; such sets are referred as an ordered n-tuple, like 
(al, a2, … an). 

The concept of a set serves as the basis for a wide variety of useful abstract data 
types. A large number of computer applications involve the manipulation of sets of 
data elements. Thus, it makes sense to investigate data structures and algorithms 
that support efficient implementation of various operations on sets. 

Another important difference between the mathematical concept of a set and the 
sets considered in computer science: 

•  a set in mathematics is unchanging, while the sets in computer science are 
considered to change over time as data elements are added or deleted. 

Thus, sets are referred here as dynamic sets. In addition, it is assumed each 
element in a dynamic set contains an identifying field called a key, and that a total 
ordering relationship exists on these keys. It is often assumed no two elements of a 
dynamic set contain the same key. 

If the dynamic set ADT is implemented properly, application programmers will 
be able to use dynamic sets without having to understand their implementation 



details. The use of ADTs in this manner simplifies design and development, and 
promotes reusability of software components. 

A list of general operations for the dynamic set ADT (S represents a specific 
dynamic set): 

1. Search(S, k). Returns the element with key k in S, or the null value if an 
element with key k is not in S. 

2. Insert(S, x). Adds element x to S. If this operation is successful, the boolean 
value true is returned; otherwise, the boolean value false is returned. 

3. Delete(S, k). Removes the element with key k in S. If this operation is 
successful, the boolean value true is returned; otherwise, the boolean value false 
is returned. 

4. Minimum(S). Returns the element in dynamic set S that has the smallest key 
value, or the null value if S is empty. 

5. Maximum(S). Returns the element in S that has the largest key value, or the 
null value if S is empty. 

6. Predecessor(S, k). Returns the element in S that has the largest key value less 
than k, or the null value if no such element exists. 

7. Successor(S, k). Returns the element in S that has the smallest key value greater 
than k, or the null value if no such element exists. 

In addition, when considering the dynamic set ADT (or any modifications of this 
ADT) the following operations are available: 

8. Empty(S). Returns a boolean value, with true indicating that S is an empty 
dynamic set, and false indicating that S is not. 

9. MakeEmpty(S). Clears S of all elements, causing S to become an empty 
dynamic set. 

Since these last two operations are often trivial to implement, they generally are 
omitted. In many instances an application will only require the use of a few 
dynamic set operations. Some groups of these operations are used so frequently 
that they are given special names: 

•  the ADT that supports Search, Insert, and Delete operations is called the 
dictionary ADT; 

•  the stack, queue, and priority queue ADTs are all special types of dynamic sets. 

A variety of data structures will be described in forthcoming considerations that 
they can be used to implement either the dynamic set ADT, or ADTs that support 
specific subsets of the dynamic set ADT operations. 

Each of the data structures described will be analyzed in order to determine how 
efficiently they support the implementation of these operations. In each case, the 
analysis is performed in dependence of n, the number of data elements stored in the 
dynamic set. This analysis demonstrates - there is no optimal data structure for 
implementing dynamic sets. Rather, the best implementation choice will depend 
upon: 

•  which operations need to be supported, 

•  the frequency with which specific operations are used, 

•  and possibly many other factors. 

As always, the more we know about how a specific application will use data, 
the better we can fine tune the associated data structures so that this data can be 
accessed efficiently. 

Models of Memory 
Organizing data in computer memory, three types of memory can be 

considered: 

•  primary (RAM) 

•  secondary (HDD) 

•  ternary (CD-ROM, Video-tape, magnetic tape like streamer, etc.) 

Primary memory 

Primary memory is a homogeneous one, which means the accessible amount of 
memory is a smallest one (byte) and the access time to any element of memory is a 
constant, denoted by O(1) and measured in nanoseconds: 

          

 

While working with data structures, however, primary memory is managed in a 
complicated way too. First, let us make a distinction between static and dynamic 
data structures. 

A data structure is said to be static if a fixed amount of memory is allocated for 
that data structure before program execution (i.e., at compile time), and this amount 
of memory does not change during program execution.  

A dynamic data structure requires to allocate an amount of memory as it is 
needed during program execution. The allocation procedure is referred to as 
dynamic memory allocation. With dynamic data structure the amount of memory 
that can be used by ADT is not fixed at compile time. 



 

The management of the primary memory is presented as the model above. It is 
useful to view this model as a one-dimensional array of storage locations (or 
bytes) that is divided into three parts. Variables that will persist in memory 
throughout the execution of the program are allocated in static memory. The 
amount of storage allocated to static memory is determined at compile time, and 
this amount does not change during program execution. 

A run-time stack is maintained by the computer system in low memory. The 
amount of storage that the run-time stack uses will vary during program execution. 

The arrows emanating from the run-time stack indicate that the runtime stack 
"grows" toward high memory and "shrinks" toward low memory. Each time a 
procedure is called in a program, an activation record is created and stored in 
computer memory on the run-time stack. 

This activation record contains storage for all variables declared in the 
procedure, as well as either a copy of, or a reference to, the parameters that are 
being passed to the procedure. In addition, an activation record must contain some 
information that specifies where program execution will resume when the 
procedure is completed. At the completion of the procedure, the associated 
activation record will be removed from the run-time stack, and program control 
will return to the point specified in the activation record. 

Finally, the logical model shows a free store that "grows" toward low memory 
and "shrinks" toward high memory. Memory that is allocated at run time (i.e., 
dynamically) is stored on the free store. 

Note that the run-time stack and the free store "grow" toward each other in this 
model. Thus, an obvious error situation occurs if either too much memory is 
dynamically allocated without reclaiming it, or too many activation records are 
created. 

While memory allocation and deallocation on the run-time stack are controlled 
by the computer system itself, such may not be the case for the free store. 

In many programming languages, the responsibility of reclaiming dynamically 
allocated memory is the programmer's. If the memory is not reclaimed by the 
programmer, then it will remain on the free store. 

This approach to reclaiming dynamically allocated memory is referred to as the 
explicit approach. On the other hand, in an implicit approach to the deallocation of 
dynamic memory, memory management functions provided by the system are 
responsible for reclaiming memory as it is no longer needed. The implicit approach 
is usually called garbage collection. 

Secondary memory 

This memory also is referred to as a disc-memory (HDD). It consists of units of 
equal size (so-called pages, or clusters). Data to be stored in this memory has to be 
organized into files. Clusters are much bigger in size comparing to bytes. Usually a 
few clusters are allocated to one file. 

Also there is an index stored in a specific cluster (as for disc-memory, it’s so-
called zero-track) and having all files on that disc listed.  The read operation (as 
well as write one) is dealing with clusters, and transfer the whole information of 
cluster to the main memory. 

 

 
index cluster 
 
 
 
record, specifying 
a location of a file 
 

clusters allocated to a specific file 
 

Furthermore, the access time for main memory is typically orders of magnitude 
faster than the access time for secondary storage. For this reason, it is preferable to 
implement data structures in main memory- referred to these as internal data 
structures. 

In general, secondary storage will be used only if a data structure is too large to 
fit in main memory. Data structures that reside in secondary storage are referred to 
as external data structures. 

 



Ternary memory 

Data, especially multimedia ones, need high capacity. Magnetic disks are too 
small (20 – 80 GB), and above all they are not changeable. They are useful as work 
area. The ternary mamory name refers to magnetic tapes, CDs, optical disks, 
magneto-optic disks, magnetic tapes, video tapes, etc. The specific features of such 
memory include access time (could last even 1 minute), size of clusters (which are 
huge), clusters are of different size, etc. 

Dependences between capacity, access times and bit costs 
 

Processor capacity cost (cents/bit) access 

buffer(cache) 256, 512 KB ≈ 1 ≈ 20 ns 
main memory ≈ 128 – 1024 MB ≈ 0.1 ≈ 1 µs 

Disk ≈ 40 GB ≈ 10-4 ≈ 20 ms 
bulk memory ≈ 1000 GB ≈ 10-5 ≈ 10 s 

 

The multimedia data include: text, images, graphics, sound recordings, video 
recordings, signals, etc., that are digitalized and stored, their properties can be 
compared: 

 
Medium Elements Configuration Typical size Time dependent Sense 

Text printable 
characters 

sequence 10 KB 
(5 pages) 

no visual/ 
acoustic 

Graphic vectors, 
regions 

set 10 KB no visual 

raster image pixels matrix 1 MB no visual 
Audio sound/ 

volume 
sequence 600 MB 

(audio CD) 
yes acoustic 

video-clip raster image/ 
graphics 

sequence 2 GB 
(30 min.) 

yes visual 

 

The Memory Hierarchy 
As might be expected, there is a tradeoff among the three key characteristics of 

memory: namely, cost, capacity, and access time. At any given time, a variety of 
technologies are used to implement memory systems. Across this spectrum of 
technologies, the following relationships hold: 

•  smaller access time, greater cost per bit 

•  greater capacity, smaller cost per bit 

•  greater capacity, greater access time. 

The way out of this dilemma is not to rely on a single memory component or 
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated 
below. As one goes down the hierarchy, the following occur: 

•  decreasing cost per bit 

•  increasing capacity 

•  increasing access time 

•  decreasing frequency of access of the memory by the processor. 

Thus, smaller, more expensive, faster memories are supplemented by larger, 
cheaper, slower memories. The key to the success of this organization is the last 
item: decreasing frequency of access. 

 
 

External Memory Algorithms 

Data sets in large applications are often too massive to fit completely inside the 
computer's internal memory. The resulting input/output communication (or I/O) 
between fast internal memory and slower external memory (such as disks) can be a 
major performance bottleneck. 

The design and analysis of external memory algorithms (also known as EM 
algorithms or out-of-core algorithms or I/O algorithms). External memory 
algorithms are often designed using the parallel disk model (PDM). The three 
machine independent measures of an algorithm's performance in PDM are: 

•  the number of I/O operations performed,  

•  the CPU time, 

•  the amount of disk space used. 

PDM allows for multiple disks (or disk arrays) and parallel CPUs, and it can be 
generalized to handle cache hierarchies, hierarchical memory, and tertiary storage. 



Experiments on some newly developed algorithms for spatial databases 
incorporating these paradigms, implemented using TPIE (Transparent Parallel I/O 
programming Environment), show significant speedups over currently used 
methods. 

For reasons of economy, general-purpose computer systems usually contain a 
hierarchy of memory levels, each level with its own cost and performance 
characteristics. At the smallest scale, CPU registers and caches are built with the 
fastest but most expensive memory. For internal main memory, dynamic random 
access memory (DRAM) is typical. At a larger scale, inexpensive but slower 
magnetic disks are used for external mass storage, and even slower but larger 
capacity devices such as tapes and optical disks are used for archival storage.  

 

 

 

Figure depicts an example of memory hierarchy and its characteristics. The 
memory hierarchy of a uniprocessor, consisting of registers, data cache, level 2 
cache, internal memory, and disk. The B parameter denotes the block transfer size 
between two adjacent levels of the hierarchy. The size of each memory level is 
indicated at the bottom.  

Most modern programming languages are based upon a programming model in 
which memory consists of one uniform address space. The notion of virtual 
memory allows the address space to be far larger than what can fit in the internal 
memory of the computer. A natural tendency for programmers is to assume that all 
memory references require the same access time. In many cases, such an 
assumption is reasonable (or at least doesn't do any harm), especially when the 
datasets are not large. The utility and elegance of this programming model are to a 
large extent the reason why it has flourished in the software industry. 

However, not all memory references are created equal. Large address spaces 
span multiple levels of memory hierarchy, and accessing the data in the lowest 
levels of memory is orders of magnitude faster than accessing the data at the higher 
levels. For example, loading a register takes on the order of a nanosecond (10-9 
seconds) whereas the latency of accessing data from a disk is several milliseconds 
(10-3 seconds). The relative difference in access time is more than a million. The 
Input/Output communication (or simply I/O) between levels of memory is often the 
bottleneck in applications that process massive amounts of data.  

Many computer programs exhibit some degree of locality in their pattern of 
memory references: Certain data are referenced repeatedly for a while, and then the 
program shifts attention to other sets of data. Modern operating systems can take 
advantage of such access patterns by tracking the program's so-called “working 
set”, which a vague notion that designates the data items that are being referenced 
repeatedly. 

If the working set is small, it can be cached in very high-speed memory so that 
access to it is fast. Caching and prefetching heuristics have been developed to 
reduce the number of occurrences of a ``fault,'' in which the referenced data item is 
not in cache and must be retrieved by an I/O from disk. 

By their nature, caching and prefetching methods are general-purpose ones, and 
thus they cannot be expected in all cases to take full advantage of the locality 
present in a computation.  

Some computations themselves are inherently non-local, and even with 
omniscient cache management decisions they are doomed to perform large amounts 
of I/O and suffer poor performance. Substantial gains in performance may be 
possible by incorporating locality directly into the algorithm design and by explicit 
management of the contents of each level of the memory hierarchy. 

Algorithms that explicitly manage data placement and movement are known as 
external memory algorithms, or more simply EM algorithms. Sometimes the terms 
out-of-core algorithms and I/O algorithms are used. 

 


