
The Structures for Spatial Data

The large memory requirements associated with storing pictorial data are well known.
For example, storing an ordinary frame of television  requires at least 512x5l2 bytes,
if we use three bits for two of the primary colors and two for the third.

A black and white passport photograph requires at least a 64x64 matrix with six bits
per element, well above the size of a record containing whatever other information is
in a passport. (A page of single-spaced typewritten text requires about 3000 bytes).

Problems of storage, search, retrieval, transmission, etc. are particularly difficult
whenever pictorial data are encountered. These difficulties are somewhat
counterintuitive because humans often find it easier to deal with pictures than with
text.

The use of pattern recognition may result in higher compaction, but such processing
requires a fair amount of computing so that one is still obliged to face the problem of
storing and representing images on a computer.

The problem of data compaction has different forms in communications and in
computing. In many applications, an image is created, transmitted, observed, and then
discarded:

• the major consideration in communications is reducing the bandwidth required for
transmission under the constraint that the processing must be done in time
comparable to that required for generating and transmitting the image;

• a different situation exists in applications where a pictorial data base is needed and
images must be stored for long periods. New images must be compared with old
ones, or sets of images must be searched for certain features.

Pyramids or Quadtrees

Pyramids or quadtrees are popular data structure in both graphics and image
processing, and in other spatial data. This technique is best to present and display
when the picture is a square matrix A whose dimension is a power of 2, say 2n.

The matrix A can be subdivided into four square matrices A0, A1, A2, A3, whose
dimensions are half of A. This process can be repeated recursively n times, until the
single pixel level is reached. The levels can be numbered, starting with zero for the
whole picture, down to n for the single pixels.

A particular square may be labeled with one of the symbols 0, 1, 2, or 3, concatenated
to the label of its predecessor square. In this way single pixels will have labels that are
n characters long. We can express this arrangement as a tree, whose nodes correspond
to the squares. Nodes are connected if one of the corresponding squares immediately



contains the other. The root of the tree corresponds to the whole picture, the leaves to
single pixels, and all other nodes have down degree 4.

Since the kth-level contains 4k squares, the tree has a total of

nodes. Therefore, there are approximately 33 % more nodes than pixels. It turns out
that for many applications the tree can be stored using only 4n locations. Figure shows
the addressing notation for an 8 x 8 picture:



Creating a Quadtree

We start with an image that can be accessed row by row (the case when it is stored on
a tape or disk, or when it is digitized or one based on a television camera). We read in
two such rows, and then examine quadruples of pixels in the order shown in figure (a):

The part (a) of figure above presents so-called the Morton order of visiting the
elements of matrix. Labels are in octal assuming a 6410 x 6410 image.

Infix ordering of trees gives an efficient way to visit (or asemble) all the nodes of
quadtree:

or, by using parentheses (which are not necessary at all):

Reconstructing an Image from a Quadtree

If an image is stored as a matrix its transmission and display proceed along rows or
scan lines. Each part is displayed in full detail and if Tc denotes the time required for
the complete display, in Tc/2 we can see only the top half of the image. This is an
unsatisfactory way for browsing through pictures, especially if Tc is more than one or
two seconds long.



It would be better to display in Tc/2 the whole image at a coarse resolution so that the
viewer can decide quickly whether there is anything interesting in it, and if there is not
to abort the display. Such a "gross-information-first" display can be implemented with
quad trees.

Image Compaction with a Quadtree

The representation described in the previous two sections can be improved in a
number of ways. Our first concern is to eliminate the need for increased storage (or the
possibility of round-off errors) for the gj's. What we need is a technique for a one-to-
one mapping of four numbers onto another four.

Proposition: Let a 1, a 2, ... a n, be n numbers, each consisting of Q bits. The number n
is assumed to be a power of two. Then their average plus the n-1 differences of D2, …
Dn from that average can be stored in nQ+log2n bits.

Let L be the sum of the n numbers, q be its quotient by n and r its remainder. This
proposition shows that for the quad tree we must add two bits at each level, and this
can certainly pile up. However, there is a trade- off between the bits for q and r and ai-
q. If the numbers ai are nearly equal to each other, then r and ai-q will require very few
bits, but q may require up to Q. If there are big differences between the ai's, then q will
be small and will require fewer bits.

This feature can be exploited to produce representations that do not require additional
space. The result of proposition can be used for increasing efficiency. Instead of
transmitting the differences from the average, one can send only the differences from q
(each requiring at most Q bits), plus the last q. In addition, we can transmit the
remainders r, each requiring only log2n bits (two bits for quad trees).

The number of remainders is the increase in the volume not in 33 %, but (2/Q) times
33 %. The reconstruction can be performed by a simple modification of the given
equations.

It is possible to achieve considerable savings if the image has large uniform areas.
Indeed, suppose that the three differences for a block are zero. Then, instead of placing
three zeros in the array, one can insert a single special symbol. (This could be the
maximum value of brightness possible, since this value will not occur as a difference
from the average). After the scanning of the whole image has been completed,
repetitions of this symbol can be erased from all subsequent levels of the tree.

Quadtrees for Variable Spatial Resolution

The concept of variable spatial resolution implies varying sized units at a given
resolution level. The choise of the shape is a special matter. The square is particular
handy if the process of creating the blocks of varying size is one of the decomposing



space from a general level to more detail. For example, a polygon can be successively
approximated by sets of blocks at different levels:

In the cartography, geographic information systems, and in similar applications,
we are often associated with a map layer concept. Then the matrix and clustered forms
are designed to work with thematic layers, meaning that the attribute data are not
recorded in sequence for each and every cell. While the layering architecture is
utilized for both entity-oriented and tessellation encoding of phenomena, the two types
certainly do treat attribute data differently. For entity-oriented representations,
attributes are separated from the spatial information in most cases, whereas for regular
tessellations the positional and attribute data are associated.

Spatial aggregation can be achieved quite well for tessellations by
combinations of adjacent cells; spatial disaggregation can be dealt with by splitting
cells. Aggregations might be necessary to facilitate generalization from one resolution
(geographic scale) to another. For example, the number of points in four cells can be
added to get the incidence for a set of four cells, or, if the attributes are scalar, an
average could be obtained. Combinations might be necessary to produce the grid cell
equivalent of homogeneous regions or administrative districts.



The square cell is used most often for aggregating or disaggregating across
scales. The resulting form, known as the pyramid model (above) provides a multiple
scale representation, with spatial units constant for a given scale. Used often in image
processing, it provides a means to remove or hide detail in order to focus on structural
components like general shape, or to reveal details of form that might be hidden by too
much generalization.

It is designed for rapid detection of global (overall, not earthly) features in a
complex image. An ordinary pyramid has blocks of four cells combining to larger cells
at higher levels, without overlap. A standard overlapped pyramid has 50 per cent
overlap for adjacent blocks (b). A hierarchical representation has uses in image
processing:

§ for browsing at different scales,
§ for simplifying mapping,
§ for matching data collected at different resolutions,
§ for access at different levels.

In this way, the grid cell becomes a handy spatial indexing tool, rather than a
storage unit, for space filling curves.

The quadtree data organization, as presented above, leads to complete table of
data for the entire area, involving quadtree blocks and identifiers based on location
codes, hierarchical organization, table of attributes for the urbal polygon, complete
data. Different kinds of data can be treated in this hierarchical subdivision fashion.
Ideally we would like to be able to:

1. treat point, line, and area data in the same way;
2. capture metrical details for entities;
3. facilitate various kinds of operations;
4. deal with different ways of measuring attributes;
5. have consistent locational referencing.

The simplest form of quadtree recognizes the presence or absence of an attribute
in space, whether point, line, or area. This usually is refered to the binary incidence
representation as colour coding, using black and white to indicate presence and
absence.

A cell could contain a scalar value, or a pointer to sets of attributes under the
condition that the cell is a lowest geographic unit. Thus cells may be used to represent
point data, such as cities, where each cell contains one city; or linear features, say
water pipes, where each cell contains a segment of a pipe or a junction of several
water lines.



So we may define an attribute presence quadrant, an absence quadrant, an edge
quadrant, a vertex quadrant and a point quadrant:

In the standard form, the geometry of edges and points is not retained, only
incidence. However, as for fixed resolution regular tessellations, additional
information can be encoded for cells (b). In the case of edges representing polygon



boundaries or graphs, this could consist of the x and y Cartesian or the polar
coordinates to establish where the edges cross the boundary of a cell, or for vertices or
points, the exact coordinates for a point within a cell.

Extended quadtrees are presented below. They have different type of quadrants,
and these types can be used at different levels:

If, for linear features, the incidence is only a vertex with one or more graph
edges or a piece of an edge, then a quadtree representation will look like that in:

This figure represents a quadtree for line data, giving map and quadrants for line
objects, tree and encoding rules, data item records. Various possibilities for encoding



exist; rules must be established before the quadtree database is created from the
original data.

Unconnected points may be handled in different ways. A regular figure
decomposition process could produce squares from the orthogonal coordinate space by
subdividing using both x and y, with varieties depending on whether or not all four
squares at a given level of decomposition were recognized (the MX quadtree) or not
(the PR quadtree), The second type requires coordinate information to establish
position within the block; the former does not, representing the point at a corner of the
cell.

An example of a combined representation, based partly on segments and partly
on quadrants, is given below (this is presented as a conceptual model):

Different forms of spatial address

The specification of location for spatial databases is itself not necessarily a
simple matter. The conventional indication of position by coordinates does not cover
all aspects associated with location. For a good understanding of the quality of locator
data in spatial data processing, four elements need to be addressed:



• scale,
• resolution,
• precision,
• accuracy.

Scale (denoting the order of magnitude or level of generalization at which
phenomena exist or are perceived or observed) and resolution (the size of the smallest
recording unit, akin to precision, the fineness of measurement) are traditionally
specified separately from the traditional Cartesian coordinate form of indicating
position. Thus the scale of observation might be specified by a cartographic ratio like
1 : 1,000,000 or by reference to a unit of observation, for example nation. The
resolution may be indicated by the size of shortest length to be measured on the
ground, or by a fuzzy tolerance value for a digital map.

While Cartesian coordinates may have a length (number of digits) that varies
with machine precision (whether integer or real numbers in a digital computer
environment), dictated usually by the liardware's word length, this length does not
inherently indicate which digits are significant. The numbers themselves say nothing
about scale, and carry no guidance as to the accuracy of the measurements. Something
akin to the statistician's sampling error measures must be provided separately, as part
of the ancillary metadata. Accuracy, the correctness of measurements, in the sense of
validation against reality, is not the same as precision, which reveals the detail in
recording the observed properties.

Other types of locator can be constructed to convey something of scale,
resolution and accuracy as well as position. A quadtree address, such as 321 for the
block, conveys position for a quadrant in the NW, NE, SW, SE sequence, and
indicates resolution by the number of digits. Precision in location can be achieved by
making the quadrant sufficiently small to encompass the entire object. Accuracy can
be conferred by establishing a buffer strip around the object, that is, making the square
larger by some quantity. Similarly, a triangular tessellation coding scheme denotes
position, scale and resolution.



Operations for quadtree tessellations

The quadtree and pyramid varieties of regular tessellations can facilitate
operations associated with grid-cell data sets, and may accomplish some actions faster.
Separate quadtrees are made from the cell encoded data, and then traversal of each
tree, from the top level down, takes values for comparable spatial units and creates a
third map. If there is no branch at a givel level, then the value found at that level for
the first attribute is assigned to each of four squares at the same level for the orther
attribute.

Combination of two maps via quadtrees is presented below. There are soil
conditions map and tree, as well as slope conditions map and tree. then it's easy to get
combined map and tree:

The quadtree is especially useful for performing set operations  like union and
intersection, again doing this by traversing simultaneously two thematic trees, making
tests for the attribute coding of the nodes of the hierarchical structure:



Other operations like rotation and translation are not so much convenient for the
quadtree structure:

Storing quadtree as a tree:

The 3-dimensional structure: octtree

If the process involves systematic splitting of space in 2-dimensional space by a
rule of four, then the structure is known as a quadtree, a type of hierarchical data
model. The general properties and principles for quadtrees are applicable to the 3-
dimensional variant, the octtree, used to some extent for geologic modelling and
representing three-dimensional solids. A 3-dimensional equivalent is known as an
octtree because it involves an eightfold splitting:



As in case of quadtree, various attributes to dividing cubes can be prescribed:

KD-trees

Hierarchical decompositions of spatial data may be undertaken on the basis of
the empirical information to be encoded and stored in contrast to the regular
subdivisions. The later are data independent; the former are data dependent. For
example, a distribution of point features, such as cities, may be subdivided into
rectangular, rather than square blocks, on the basis of alternating x and y axes. A
similar process can produce two or four branches at each step. Thus, the empirical



information, the exact position of the points, governs the data structuring, not a fixed-
grid scheme. The binary subdivision, which is one of a group of K-dimensional (KD)
trees, is generally regarded as superior to the point data quadtree for operations done
in sequence.

The quadtree and related structures, clearly based on a tessellated discretization
of space, provide semantic value by their recognition of varying density of incidence
of phenomena in space, and can deal with both vector and raster data. The hierarchical
structuring cleverly addresses spatial variations at different scales, it offers the
valuable adaptability property to empirical conditions and with good locational
referencing provides a basis for efficient spatial access and indexing. As discussed
later, Boolean operations such as union, intersection and difference are easy to
perform, whereas translation, rotation and scaling are not.

In general, the hierarchical tessellations are regarded as offering benefits in the
reduction in the amount of space needed to store data for phenomena. We contrast the
more extensive grid cell encoding with the quadtree, and another device, the run-
length encoding. The first of these records data for each cell, demonstrated here for
two different resolutions. The quadtree will use a smaller number of spatial units as
produced by the hierarchical subdivision; the run-length encoding reduces data storage
by recording runs of like conditions for rows (or columns) as shown. The degree to
which the space-saving methods reduce storage depends primarily on the amount
of homogeneity in the mapped data. The extremes are a perfectly uniform landscape,
for which the quadtree block is best, or a checkered pattern in which each cell is
different from all its neighbours. In this case, there is no particular advantage in using
the two space-saving techniques. Alternative data storage schemes like linked lists are
preferable for sparse matrices.



The hierarchical structures may be differentiated on the basis of types of data,
the principles guiding or governing the decomposition process, and the type of spatial
resolution. However, because they are based on regular spatial units, they also have
advantages and limitations associated with the use of grid squares. Particularly, there
are limitations in dealing precisely with point and linear features, and in not explicitly
addressing topological spatial properties.

Rectangles and similar trees

At times lines, either 1-dimensional objects, or the boundaries for polygons, are
accessed and retrieved by reference to the boxes that contain them. Enclosing figures,
generally rectangles, but possibly circles or spheres, serve to identify the range of
values in the x and y dimensions. Lines or irregular polygons encoded geometrically
can be represented by rectangles drawn in orthogonal dimensions to touch the extreme
points of the object in both x and y dimensions. These minimum-bounding rectangles
(figure a), are useful devices for extracting particular lines or polygons from a set,
requiring specification of only the range of x and y, rather than undertaking a spatial
search on coordinates for the polygon boundary vertices.

The rectangles (or cuboids), with sides parallel to the two (three) coordinate
axes, may also serve to clip entities stored as polygons or lines in the interest of
finding what exists within a block demarcated by a particular range of x and y (and z if
required). Or the rectangle may represent a larger spatial unit, a map sheet or tile
subdivision of the entire database.

The fragmentation of entities has limitations, though, such as failure to retrieve
an entire object (b), and the fragmentation can grow to undesirable levels as boxes are
made smaller in cases where the amount of data increases. Otherwise a rectangle can
be used to access all objects within it, but, again, the chance of retrieving a few objects
is correlated with the size of the rectangles relative to the density of empirical



phenomena at a given scale. If the rectangles are bounding rectangles, then the number
of rectangles will be equal to the number of entities, and they no longer serve a
purpose of simply partitioning space. In the case of a database of different thematic
layers, polygons in each layer may be enclosed by sets of minimum rectangles, leading
to overlapping of bounding rectangles when searching for all thematic objects in a
specified coordinate range (b). It is, though, easier to compute intersections of
overlapping rectangles than to find where irregular figures might cross.

This type of spatial unit organization can also have a tree structure in order to
get different spatial resolutions, but does not involve a regular partitioning of space as
with the quadtree (d). Indeed areas void of polygons or other objects can be ignored.
Known as R-trees (rectangle trees) and illustrated in figure (e), this organization is
preferable for unconnected polygons rather than tessellations, organized either in R-
trees or in R+-trees:

R-tree (non-overlapping rectangles and hierarchical structure)

R+-tree (rectangle split by higher level rectangle and hierarchical structure)

Here, as we illustrate, we can reference the two large rectangles B and C, at one
level, but to more clearly access the matching parkland within B, we go through two
more levels to get to D. Access may be by identifier, or by a locator for the bottom left
corner (x, y based). The intent in building the rectangles is to keep overlap to a



minimum while still keeping as many features as possible completely within a single
box.

The enclosing rectangle is just one of several spatial access devices using
regular figures. Some needs may be better met if the enclosing boxes are not
dependent on being parallel to coordinate axes, as, for example, when searching for
objects in a rectangle rotated to a certain orientation, or a varying angle in the case of
vehicle navigation displays. Circles and spheres are insensitive to the rectangular axes
of Cartesian coordinate systems, and are also appropriate to searching in azimuthal
coordinate space. On the other hand, it is more involved computationally to fit a circle
around an irregular polygon:

Indexing with sphere trees

Strip trees

Linear features, as well as polygons, can be represented by rectangular cells.
One technique, using the strip tree, is beneficial for operations requiring search of
linear features. It is appropriate for single curves, rather than sets, being produced by
successive approximations enclosed in bounding rectangles (figure below). The
process of decomposition can be stopped when strips are of a predetermined width or
height. If long linear features are not split into pieces, their extents will be large,
possibly being inconsistent with zooming operations for visual display changes of
scale. Then the low-level clipping routines will have to be invoked.

A strip tree is very nice for representation of polylines at different resolution, as
might be done in the case of approximations of a coastline at'different scales. A
disadvantage is that here the rectangles, which can have varying orientations, are not
tied into a given coordinate system.



There are two main types of space partition in this context:

1. the physical subdivisions, generally sheets representing original paper or
photograph documents that are to be combined to produce a single cover,

2. tiles produced as logical units for reasons of user querying or possible
management purposes.

A sheetiess database should be created so as not to have map edge matching
problems resulting from mismatched positions of map features, and will avoid the
problems of queries returning bad data because a sheet boundary truncated an object.
However, notwithstanding the physical space savings in using logical tiles rather than
physical irregular chunks as a major unit to partition a coverage, by devices like a
reduction in the number of digits needed for storing coordinates by reducing the range
covered by the map area, queries cutting across tiles will still occur. However, while
logical partitioning is a good idea, given that user needs may not be well anticipated,
there is still a need to provide for operations that cross tile boundaries, for example, to
assemble the pieces of a road. A possible device is a double encoding for the spatial
units; and another option is to have overlapping tiles.

Space-Filling Curves And Dimensionality

Data processing and storage may be more economical if less information can be
used to meet the same requirements. Thus area units may be represented by a centroid,
a zero-dimensional object or by parametric curves. A data reduction can also occur if
objects could be positioned in only one dimension rather than two or three. The matter
of dimensionality is encountered in spatial information in different ways. It may arise
in terms of addressing systems.

Paths through space

There are different orderings, that is one-dimensional paths, through the two-
dimensional tiled space. Paths could zigzag, could go along a row in one direction and
in a reverse direction in the next row, like a bidirectional computer printer (b), or
could follow a path that reduces the total distance of travel through going to as many
immediate neighbours as possible, and having a small number of longer connections,
or could have diagonal or spiral forms (c and d).

A good sequential ordering should have certain properties that provide some
conveniences in single dimension addressing for two- or three-dimensional sets of
regularly shaped tiles. The path should pass only once to each tile in the two- or N-
dimensional space, and neighbours in space should be adjacent on the path. The path
should be useable even if there is a mixture of different sized spatial units, and should
work equally well in two or three dimensions, and for connecting to adjacent blocks of
space. In reality there is no ideal path; there are just orderings with some of these
properties.



A comparison of different paths (resolution given) can use several measures:

1. total length of the path.
2. variability in unit lengths, where unit length is the distance from one point on the

path to the next in sequence.
3. the average distance on the path from tiles to their four neighbours in space.

Comparative averages for the central block of four squares are shown in the
table below along with other properties of a sixteen-tile mosaic.

Path type Length (approximate) Variability Average distance
Row 22 2 10

Row-prime 15 1 10
Diagonal 18 2 18

Spiral 15 1 13
N 20 3 12



Space-filling curves

Often we talk about space-filling curves rather than paths through space. These
curves are special fractal curves which have characteristics of completely covering an
area or volume. While they have a topological dimension of two, their fractal
dimension is two when filling an area, or three when completely occupying a volume
space. Consequently, thinking of paths in space now as space-filling curves, lines that
pass to all possible points in space, they should have the following properties:

1. The curve must pass only once to every point in the multi-dimensional space.
2. Two points that are neighbours in space must be neighbours on the curve.
3. Two points that are neighbours on the curve must be neighbours in space.
4. It should be easy to retrieve the neighbours of any point.
5. The curve corresponds to a bijective mapping from a multi- to a onedimensional

space.
6. The curve should be able to be used for variable spatial resolution, that is, a

mixture of different-sized "points".
7. The curve should be stable, even when the space becomes very large or infinite.

In reality, we do not possess such ideal curves, but there are some with valuable
properties for our purposes. The original space-filling curve was exhibited in 1890 by
the Italian mathematician Giuseppe Peano (Peano, 1890). A later variety, now known
as the Peano or N ordering (a), facilitates retrieving neighbours, and although
neighbouring points in space are not always neighbours on the curve, they generally
are. It is also possible to deal with different resolutions as shown, and the curve is
stable:

The Hilbert curve meets most of the conditions noted above, but does not provide
an easy way to retrieve neighbours and is not stable. For the Peano curve the keys are
easily obtained, the binary digits for the x and y values are interleaved:



Generally, the ordered paths have similar shapes at different scale levels, they
are self-similar. However, the particular place of a point or tile in the sequence for a
particular curve type may not be consistent across scales. While the N curve does have
such stability, as revealed by the coded numbers, this is not so for the Hilbert curve.
That is, for the Peano case, if the space is extended by doubling each side for the block
of four quadrants, we see that the order of squares is not perturbed.

   

Space-filling curves have two principal, practical uses in the domain of spatial
information systems:

§ firstly, they provide some efficiencies in scanning operations, either hardware
devices or searches through datafiles;



§ secondly, they are used as spatial indexes, simplifying two dimensional addressing
as single dimension addressing.

Various locational reference schemes are possible, and are indeed used for
meeting different requirements.

One simple scheme is to consistently order the four blocks at each level in a
NW, NE, SW, SE sequence, using data in the record for a tree node to point to the four
nodes at a lower level if such exist (a). Numerical coding representing the NW, NE,
SW and SE by integers could be used (b); some coordinate values could be used, or a
space path could be employed to simplify movement through the entire set of cells,
without using actual coordinate values.

Referring to figure above, coding using row and column identifiers would
require more data to be stored than for a locational coding scheme, using the NW, NE,
SW, SE orientations, while a Peano N path has single dimension addressing and has
stable numbering across different levels of resolution. Thus the larger blocks in the
quadtree would be represented by fewer positional pieces of data than the number of
blocks (c), and the final table would contain items for the Peano key and quadrant size,
often the number of smallest size pixels on the side of the square block.


