
String Matching Algorithms

String Searching

The context of the problem is to find out whether one string (called "pattern")
is contained in another string. This problem correspond to a part of more general
one, called "pattern recognition". The strings considered are sequences of symbols,
and symbols are defined by an alphabet. The size and other features of the alphabet
are important factors in the design of string-processing algorithms.

Brute-force algorithm: The obvious method for pattern matching is just to
check, for each possible position in the text at which the pattern could match,
whether it does in fact match. The following program searches in this way for the
first occurrence of a pattern string p in a text string a:

or
function brutesearch: integer;

var i, j: integer;
begin i:= 1; j:= 1;
repeat  if a[i] = p[j]

then begin i:= i+1; j:= j+1 end
else begin i:= i - j +2; j:= 1 end;

until ( j > M ) or ( i > N );
if j > M then brutesearch:= i - M else brutesearch:= i
end;

Property: brute-force string searching can require about M N character
comparisons.



Knuth-Morris-Pratt Algorithm

The basic idea behind the algorithm is this:

when a mismatch is detected, our "false start" consists of characters that we know in
advance (since they're in the pattern). Somehow we should be able to take
advantage of this information instead of backing up the i pointer over all those
known characters.

A simple example of the pattern of 10000000.

The idea is worth thinking about and the Knuth-Morris-Pratt algorithm is a
generalization of it. Searching for pattern 10100111 in the string 1010100111 we
detect mismatch at 5th position, but we back up at 3rd position. Surprisingly, it is
always possible to arrange things so that the i pointer is never decremented.

It depends entirely on the pattern:

Restart positions for KMP search

The array next[M] will be used to determine how far to go back up when a
mismatch is detected.

By the definition of the next array, the first next[j] characters at that position match
the first next[j] characters of the pattern.

Very precise definition of next[j]:
• next[1]:=0;
• if j > 1, then next[j] is equal to the maximal number of k < j, such that the first

(k-1)-characters of pattern coincide with the least (k-1) characters of string of j-1
character.

We do not need to backup the pointer i, we can simply leave the pointer unchanged
and set the pointer j to next[j].



The function, which calculates the index for back up:

function kmpsearch: integer;
var i, j: integer;
begin i:= 1; j:= 1; initnext;
repeat if (j = 0) or (a[i] = p[j])

then begin  i:= i+1; j:= j+1 end
else begin j:= next[j] end;

until (j > M) or (i > N);
if j > M then kmpsearch:= i - M else kmpsearch:= i;
end;

The program is quite transparent:

procedure initnext;
var i,j: integer;
begin i:= 1; j:= 0; next[1]:= 0;
repeat if (j = 0) or (p[i] = p[j])

then begin i:= i+1; j:= j+1; next[i]:= j; end
else begin j:= next[j] end;

until i > M;
end;

Sometime the pattern, often used, can be ”wired in” to the program (as for the
pattern above):

i:=0;
0: i:= i+1;
1: if a[i] <> '1' then goto 0; i:+ i+1;
2: if a[i] <> '0' then goto 1; i:+ i+1;
3: if a[i] <> '1' then goto 1; i:+ i+1;
4: if a[i] <> '0' then goto 2; i:+ i+1;
5: if a[i] <> '0' then goto 3; i:+ i+1;
6: if a[i] <> '1' then goto 1; i:+ i+1;
7: if a[i] <> '1' then goto 2; i:+ i+1;
8: if a[i] <> '1' then goto 2; i:+ i+1;

return:= i - 8;

This program is a simple example of ”string matching compiler”: given a pattern,
we can produce a very efficient program to scan that pattern in an arbitrarily long
text string.



The program above uses just a few very basic operations to solve the string
searching problem. This means that it can easily be described in terms of a very
simple machine model called a finite-state machine.

Figure shows the finite- state machine for the program above:

The machine consists of states (indicated by circled numbers) and transitions
(indicated by lines). Each state has two transitions leaving it:

• a match transition (solid line, going right);
• a non-niatch transition (dotted line, going left).

The states are where the machine executes instructions; the transitions are the goto
instructions.

When in the state labeled "x," the machine can perform only one instruction:
• "if the current character is x then scan past it and take the match transition,

otherwise take the non-match transition."

To "scan past" a character means to take the next character in the string as the
”current character”; the machine scans past characters as it matches them.

There are two exceptions to this:

• the first state always takes a match transition and scans to the next character
(essentially this corresponds to scanning for the first occurrence of the first
character in the pattern),

• and the last state is a "halt" state indicating that a match has been found.

Similar (but more powerful) machines can be used to help develop much more
powerful pattern-matching algorithms.

Property: KMP string matching never uses more than M + N character
comparisons.



KMP string matching in binary text.

This figure shows that this method certainly uses far fewer comparisons than the
brute-force method for our binary example.

However, the Knuth-Morris-Pratt algorithm is not likely to be significantly faster
than the brute-force method in many actual applications, because few applications
involve searching for highly self-repetitive patterns in highly self-repetitive text.

However, the method does have a major practical advantage: it proceeds
sequentially through the input and never "backs up" in the input. This makes it
convenient for use on a large file being read in from some external device.

(Algorithms requiring backup need some complicated buffering in this situation.)

Finite automata

Many string-matching algorithms build a finite automaton that scans the text string
T for all occurrences of the pattern P. These string-matching automata are very
efficient:
• they examine each text character exactly once, taking constant time per text

character.

The time used (after the automaton is built) is therefore È(n). The time to build the
automaton, however, can be large if alphabet is large.

The finite automaton begins in state q  and reads the characters of its input string
one at a time. If the automaton is in state q and reads input character a, it moves



("makes a transition") from state q to state ä (q, a). Whenever its current state q is a
member of A, the machine M is said to have accepted the string read so far. An
input that is not accepted is said to be rejected. Figure below illustrates these
definitions with a simple two-state automaton.

A finite automaton M induces a function ö, called the final-state function, from Ó*
to Q such that ö(ù) is the state M ends up in after scanning the string ù. Thus, M
accepts a string ù if and only if ö(ù) is in A. The function ö is defined by the
recursive relation:

Example:

A simple two-state finite automaton with state set Q = {0, 1}, start state q  = 0, and
input alphabet Ó = {a, b}. (a) A tabular representation of the transition function ä.
(b) An equivalent state-transition diagram. State 1 is the only accepting state (shown
blackened). Directed edges represent transitions. For example, the edge from state 1
to state 0 labeled b indicates ä(1,b) = 0. This automaton accepts those strings that
end in an odd number of a's. More precisely, a string x is accepted if and only if x =
yz, where y = å or y ends with a b, and z = a  , where k is odd. For example, the
sequence of states this automaton enters for input abaaa (including the start state) is
(0, 1, 0, 1, 0, 1), and so it accepts this input. For input abbaa, the sequence of states
is (0, 1, 0, 0, 1, 0), and so it rejects this input.

String-matching automata

There is a string-matching automaton for every pattern P; this automaton must be
constructed from the pattern in a preprocessing step before it can be used to search
the text string. Figure in example below illustrates this construction for the pattern P
= ababaca. From now on, we shall assume that P is a given fixed pattern string; for
brevity, we shall not indicate the dependence upon P in our notation.

In order to specify the string-matching automaton corresponding to a given pattern
P[1…m], we first define an auxiliary function ó, called the suffix function
corresponding to P.



The function σσ is a mapping from Ó* to [0, 1, . . . , m] such that ó(x) is the length of
the longest prefix of P that is a suffix of x:

ó(x) = max {k: P  » x}

The suffix function σσ is well defined since the empty string P  = å is a suffix of
every string.

For a pattern P of length m, we have ó(x) = m if and only if P » x. It follows from
the definition of the suffix function that if x » y, then ó (x) < ó (y).

We define the string-matching automaton corresponding to a given pattern
P[1….m] as follows:

• The state set Q is {0, 1, … m}. The start state q  is state 0, and state m is the only
accepting state.

• The transition function ä is defined by the following equation, for any state q
and character a:

ä(q, a) = ó(P a)

Here is an intuitive rationale for defining ä(q, a) = ó(P a) The machine maintains as
an invariant of its operation that

φφ(T ) = σσ(T )

this result is proved as a Theorem below.

In words, this means that after scanning the first i characters of the text string T, the
machine is in state φφ(T ) = q, where q = σσ(T ) is the length of the longest suffix of T
that is also a prefix of the pattern P.

If the next character scanned is T[i + 1] = a, then the machine should make a
transition to state σσ(T ) = σσ(T a).

The proof of the theorem shows that a(T a) = c(P a). That is, to compute the length
of the longest suffix of T a that is a prefix of P, we can compute the longest suffix
of P a that is a prefix of P. At each state, the machine only needs to know the length
of the longest prefix of P that is a suffix of what has been read so far.

Therefore, setting δδ(q, a) = σσ (Pq a) maintains the desired invariant above. This
informal argument will be made rigorous shortly.



Example:
(a) A state-transition diagram for the string-matching automaton that accepts all

strings ending in the string ababaca. State 0 is the start state, and state 7 (shown
blackened) is the only accepting state. A directed edge from state i to state j
labeled a represents δδ(i, a) = j. The right-going edges forming the "spine" of the
automaton, shown heavy in the figure, correspond to successful matches
between pattern and input characters. The left-going edges correspond to failing
matches. Some edges corresponding to failing matches are not shown; by
convention, if a state i has no outgoing edge labeled a for some a in ΣΣ, then δδ (i,
a) = 0.

(b) The corresponding transition function δδ, and the pattern string P = ababaca.
The entries corresponding to successful matches between pattern and input
characters are shown shaded.

(c) The operation of the automaton on the text T = abababacaba. Under each text
character T[i] is given the state φφ(T ) the automaton is in after processing the
prefix T. One occurrence of the pattern is found, ending in position 9.

In the string-matching automaton of example above, for example, we have δδ(5, b) =
4. This follows from the fact that if the automaton reads a b in state q = 5, then P b
= ababab, and the longest prefix of P that is also a suffix of ababab is P  = abab.

To clarify the operation of a string-matching automaton, we now give a simple,
efficient program for simulating the behavior of such an automaton (represented by
its transition function δδ ) in finding occurrences of a pattern P of length m in an
input text T[ 1 … n ]. As for any string-matching automaton for a pattern of length



m, the state set Q is { 0, 1, … , m }, the start state is 0, and the only accepting state is
state m.

FINITE-AUTOMATON-MATCHER (T, δδ, m)

1 n := length[T]
2 q := 0
3 for i := I to n
4 do q := δ(q, T[I])
· if q = m
· then s := i - m
7                 print "Pattern occurs with shift" ~s

The simple loop structure of FINITE-AUTOMATON-MATCHER implies that its
running time on a text string of length n is O(n). This running time, however, does
not include the time required to compute the transition function δδ. We address this
problem later, after proving that the procedure FINITE-AUTOMATON-
MATCHER operates correctly.

Consider the operation of the automaton on an input text T[1, …, n]. We shall prove
that the automaton is in state σσ(T ) after scanning character T[i]. Since σσ(T ) = m if
and only if P »T , the machine is in the accepting state m if and only if the pattern P
has just been scanned. To prove this result, we make use of the following two
lemmas about the suffix function σσ.

Illustration of Lemma 1.

Lemma 1 (Suffix-function inequality):
For any string x and character a, we have σσ(xa) < σσ(x) + 1.

Proof Referring to figure above, let r = σσ(xa). If r = 0, then the conclusion r < σσ(x)
+ I is trivially satisfied, by the nonnegativity of σσ(x). So assume that r > 0. Now, P
» xa, by the definition of a. Thus, P , » x, by dropping the a from the end of P ,
and from the end of xa.  Therefore, r - I < ó(x), since ó(x) is largest k that P  » x.

Lemma 2 (Suffix-function recursion lemma):

For any string character a, if q = ó(x), then ó (xa) = ó (Pqa).



Illustration of lemma 2.

Proof: From the definition of ó, we have P  » x. as figure above shows P a » xa. If
we let r = ó(xa), then r < q+1 by lemma 1. Since P a » xa, P  » xa, and �P �<
�P a�, lemma above implies that P  » P a. Therefore, r < ó(P a), that is, ó(xa) <
ó(P a). But we also have ó (P a) < ó (xa), since Pqa » xa. Thus, ó (xa) = ó (P a).

We are now ready to prove the main theorem characterizing the behavior of a
string-matching automaton on a given input text. As noted above, this theorem
shows that the automaton is merely keeping track, at each step, of the longest prefix
of the pattern that is a suffix of what has been read so far.

Theorem :

If φφ is the final-state function of a string-matching automaton for a given pattern P
and T[ I … n ] is input text for the automaton, then φφ (Ti) = σσ (T ) for i = 0, 1, … n.

Proof: The proof is by induction on i. For i = 0, the theorem is trivially true, since
T  = εε. Thus, φφ(T ) = σσ(T ) = 0.

Now, we assume that φφ (T ) = σσ (T ) and prove that φφ (T ) = σσ (T ). Let q denote
φφ(T ), and let a denote T[i + 1].  Then,

φφ(T ) = φφ(T a) (by the definitions of T  and a)
= δδ(φφ(T ), a) (by the definition of φφ)
= δδ(q, a) (by the definition of q)
= σσ(P a) (by the definition of δδ)
= σσ(T a) (by lemma 2 and induction)
= σσ(T ) (by the definition of T ).

By induction, the theorem is proved.

By this theorem, if the machine enters state q on line 4, then q is the largest value
such that P  » T . Thus, we have q = m on line 5 if and only if an occurrence of the
pattern P has just been scanned. We conclude that FINITE-AUTOMATON-
MATCHER operates correctly.



Computing the Transition Function

The following procedure computes the transition function 5 from a given pattern
P[ 1 … m ].

COMPUTE-TRANSITION-FUNCTION (P, Ó)

1 m := length [P]
2 for q := 0 to m
3 do for each character a ∈∈ Ó
4 do k := min (m + 1, q + 2)
5 repeat k := k - 1
6 until P  » P a
7 δ(q, a):= k
8 return δ

This procedure computes δδ(q, a) in a straightforward manner according to its
definition.  The nested loops beginning on lines 2 and 3 consider all states q and
characters a, and lines 4-7 set δδ(q, a) to be the largest k such that P  » P a. The code
starts with the largest conceivable value of k, which is min(m, q + 1), and decreases
k until P  » P a.

The running time Of COMPUTE-TRANSITION-FUNCTION is O(m �Ó�),
because the outer loops contribute a factor of m�Ó�, the inner repeat loop can run
at most m + I times, and the test P  » P a on line 6 can require comparing up to m
characters. Much faster procedures exist; the time required to compute δδ from P can
be improved to O(m�Ó�) by utilizing some cleverly computed information about
the pattern P. With this improved procedure for computing δδ, the total running time
to find all occurrences of a length-m pattern in a length-n text over an alphabet Ó is
O(n + m�Ó�).

Boyer – Moore Algorithm

If "backing up" is not difficult, then a significantly faster string-searching method
can be developed by scanning the pattern from right to left when trying to match it
against the text.

When searching for our sample pattern 10100111, if we find matches on the
eighth, seventh, and sixth character but not on the fifth, then we can immediately
slide the pattern seven positions to the right, and check the fifteenth character next,
because our partial match found 111, which might appear elsewhere in the pattern.

Of course, the pattern at the end does appear elsewhere in general, so we need a
next table as above.



A right-to-left version of the next table for the pattern 101 10101 is shown in
figure below: in this case next [j] is the number of character positions by which the
pattern can be shifted to the right given that a mismatch in a right-to-left scan
occurred on the j  character from the right in the pattern.

This is found as before, by sliding a copy of the pattern over the last j-1
characters of itself from left to right, starting with the next-to-last character of the
copy lined up with the last character of the pattern and stopping when all
overlapping characters match.

This leads directly to a program which is quite similar to the above
implementation of the Knuth-Morris-Pratt method. We won't explore this in more
detail because there is a quite different way to skip over characters with right-to-
left.

Using ”backup” more often, sometime we can expect better results, by scanning the
pattern from right to left.

For the pattern above, if we scan from the right, we can expect restart positions:

Restart positions for Boyer-Moore search

Boyer-Moore string search using the mismatched character heuristics

function mischarsearch: integer;
var i, j: integer;



begin i:= M; j:= M; init skip;
repeat if a[i] = p[j]

then begin i:= i-1; j: j-1 end
else begin if M-j+1 > skip[index(a[i])]

then i:= i + M - j + 1 else i:= i + skip[index(a[i])];
j:= Mp end;

until (j < 1) or (i > N);
mischarsearch:= i+1;
end;

Property: Boyer-Moore never uses more than M + N character comparisons, and
uses about N/M steps if the alphabet is not small and the pattern is not long.

Rabin-Karp Algorithm

A brute-force approach to string searching that we didn't examine above would be
to exploit a large memory by treating each possible M -character section of the text
as a key in a standard hash table.

But it is not necessary to keep a whole hash table, since the problem is set up so that
only one key is being sought; all we need to do is compute the hash function for
each of the possible M-character sections of the text and check if it is equal to the
hash function of the pattern.

The problem with this method is that it seems at first to be just as hard to compute
the hash function for M characters from the text as it is merely to check to see if
they're equal to the pattern. Rabin and Karp found an easy way to get around this
difficulty for the hash function:

h(k) = k mod q

where q (the table size) is a large prime. In this case, nothing is stored in the hash
table, so q can be taken to be very large.

The method is based on computing the hash function for position i in the text given
its value for position i - 1, and follows directly from a mathematical formulation.

Let's assume that we translate our M characters to numbers by packing them
together in a computer word, which we then treat as an integer. This corresponds to
writing the characters as numbers in a base-d number system, where d is the number
of possible characters.

The number corresponding to a [ i ], ... a [ i + M – 1] is thus

x=a [i] d  +a [i +1] d +...+a[i+M – 1]



and we can assume that we know the value of h(x) = x mod q. But shifting one
position right in the text simply corresponds to replacing

x by (x - a[i] dM-1)d + a[i + M].

Using the property of mod operation (we can transpose it with all other arithmetic
operations) to keep the numbers as small as possible, it leads to an efficient
algorithm.

Property: Rabin-Karp pattern matching is extremely likely to be linear.

Longest Common Subsequence (LCS)

Problem is formulated as a need to find the longest common subsequence in two
given sequences, and it is meet in various application so often, that for example,
UNIX has a special command diff, to compare files.

Algorithm will be expressed in the terms of set data structure, main operations for
data are:

• FIND(r) – finds the set, containing element r;
• SPLIT(S, T, U, r) – set S will be splitted into two sets, T and U, and set T will

contain elements, less then r, and the set U – greater or equal to r;
• MERGE(S, T, U) - sets S and T will be merged into the set U.

The final goal is to find LCS from two sequences A and B.
Algorithm begins with sets PLACES(a) for any element from the sequence A:

PLACES(a) = {i - number| that element a is in i  position}.

This set of sets can be created efficiently by creating corresponding lists of
positions. If elements of the sequence A are complicated enough, let’s say lines of
text file, hashing porcedures can be used.

The complexity of PLACES is expected as O(n).

PLACES being created, the LCS can be find straightforward. We present an
algorithm to calculate the length of LCS, the modification to find LCS is left to the
students.

The algorithm begins with the consecutive elements of the sequence B. For every
element b , 0 < j < m of the set B, we need to find the LCS for the sets {a ,...a } and
{b ,...b }.
We start with S  = {all the positions of the sequence A}.



The position indices i are joined into sets S , such that the length of LCS of the sets
{a ,...a } and {b ... b } is equal to k (0 =< k =< n). Let’s note that the set S  always
has numbers in ascending order, and numbers in S , are always greater than
numbers in the set S .

The algorithm is iterative. Let’s say that all the sets S , for the position of j-1 of the
sequence B are already created, and now we consider position j in order to create
for this position new sets S . We need only to modify existing sets S .

We consider the set PLACES(b ). For every element r of this set we need to decide
if it is able to extend the LCS or not. If yes, and if both elements (r-1) and r will be
in the same set S , then all the elements s >= r have to be in the set S . This
checking will be done by modifying sets in the following way:

• FIND(r) – we find the set containing r, (in order to find S  needed);
• if FIND(r-1) is not equal to the set S , then the new element b  is not able to

increase the length of common subsequence, so nothing to modify, and the
algorithm finishes this step;

• if FIND(r-1) = S , then the operation SPLIT (S , S , S ', r) will be produced, in
order to find elements from the set S  , greater or equal then r;

• MERGE(S ', S , S ) – selected elements from the previous step will be moved
to the set S .

When all the elements of the set B are processed, the length of LCS will be find in
the set S , where k is a maximal number.

The algorithm is expected to work more efficiently, if the numbers of set
PLACES(b ) will be processed in descending order, this may reduce the number of
operations.

The complexity of the algorithm. The number of operations can be evaluated
assymptotically by O(p log n): where n is a max of lengths of sequences, and p is a
number of pairs of positions where symbols of sequences coincide. In the worst
case p is equal to n .

Algorithmic Analysis

Asymptotic Notation

Asymptotic analysis is used to explore the behavior of a function, or a relationship
between functions, as some parameter of the function tends toward an asymptotic
value. This type of analysis can be used to show that two functions are roughly
equal to each other, or that the value of some function grows asymptotically at a
greater rate than some other function.



A notational convention used extensively in asymptotic analysis is O-notation. By
using O-notation we will have a means of expressing an asymptotic upper bound
on a function.

Let Z  represent the set of nonnegative integers (i.e., natural numbers), and R  the
set of nonnegative real numbers, then this notation is defined as follows:

Definition of O-notation. Assume there are two arbitrary functions f (n) and g(n)
such that (f (n), g(n) : Z  -> R ). It is said that f (n) is "big-oh" of g(n), written as

f (n) = O (g(n))
if there exist positive constants c and n  such that f (n) <= cg(n) for all n > n .

More details and examples.

ln x <= O (x/4)

It is also important to recognize that the equality in the statement f (n) = O(g(n)) is
"one-way." Since the term O(g(n)) really specifies an infinite set of functions, this
statement is saying that f(n) belongs to the set of functions that can be bounded
from above by a fixed multiple of g(n), when n is sufficiently large. However, for
mainly historical reasons, this relationship is usually represented by an equality.

Let’s derive some additional properties of the O-notation. Recall that we are
dealing with asymptotic upper bounds. Thus, if f (n) = O (g (n)), and h (n) is a
function that is larger in value than g (n) when n is sufficiently large, then f (n) = O
(h (n)). This means that it is perfectly correct to write that for f (n) = n , f (n) = O
(n ). However, in this case the upper bound is not tight.

Since logarithms to the base b of n are related to logarithms to the base a of n by a
constant, there is no difference between the expressions O(lgn), O(log n), or
O(log n). Thus, we will simply use O(logn).

An asymptotic lower bound on a function is defined:



There is a relation with the previous definition of a O–notation.

An asymptotic tight bound on a function:

A useful approximation of n! makes use of  ΘΘ – notation (so-called Stirling’s
formula):

Therefore, for that an expression like
∑∑  O (i)

there is only a single anonymous function (a function of i). This expression is thus
not the same as O(1) + O(2) +    + O(n), which doesn't really have a clean
interpretation.

In some cases, asymptotic notation appears on the left-hand side of an equation, as
in

2 n2 + ΘΘ (n) = ΘΘ (n 2)

To interpret such equations use the following rule:
• No matter how the anonymous functions are chosen on the left of the equal sign,

there is a way to choose the anonymous functions on the right of the equal sign to
make the equation valid.

o-notation

The asymptotic upper bound provided by O-notation may or may not be
asymptotically tight. The bound   2 n  = O(n )   is asymptotically tight, but the



bound   2 n = O(n )   is not. We use o-notation to denote an upper bound that is not
asymptotically tight. We formally define o(g(n)) ("little-oh of g of n") as the set

o (g (n)) = { f (n) : for any positive constant c > 0, there exists a constant n  > 0
such that 0 < f (n) < cg (n) for all n > n

For example, 2n = o(n ), but 2n  <> o(n ).

The definitions of O-notation and o-notation are similar. The main difference is that
in
f (n) = O(g (n)), the bound 0 < f (n) <= cg (n) holds for some constant c > 0, but in
f(n) = o(g(n)), the bound 0 < f(n) < cg(n) holds for all constants c > 0.

Intuitively, in the o-notation, the function f (n) becomes insignificant relative to g
(n) as n approaches infinity:

ωω-notation

By analogy, ω-notation is to Ω-notation as o-notation is to O-notation. ω-notation
is used to denote a lower bound that is not asymptotically tight. One way to define it
is by

f(n) ∈∈ ωω (g (n)) if and only if g (n) ∈∈ o (f (n))

Formally, however, we define ωω(g(n)) ("little-omega of g of n") as the set
ωω (g(n)) = {f(n) : for any positive constant c > 0, there exists a constant n  > 0 such
that
                0 < cg(n) < f(n) for all n > n  }.

The relation f(n) = ωω(g(n)) implies that

if the limit exists. That is, f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity.

Comparison of functions

Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f(n) and g(n) are asymptotically positive.



Because of these properties hold for asymptotic notations, one can draw an
analogy between the asymptotic comparison of two functions f and g and the
comparison of two real numbers a and b:

One property of real numbers, however, does not carry over to asymptotic
notation:

Trichotomy: For any two real numbers a and b, exactly one of the following must
hold:

 a < b, a = b, or a > b.

Although any two real numbers can be compared, not all functions are
asymptotically comparable. That is, for two functions f(n) and g(n), it may be the
case that neither

f(n) = O(g(n)) nor f(n) = ΩΩ(g(n)) holds.



For example, the functions n and n  cannot be compared using asymptotic
notation, since the value of the exponent in n  oscillates between 0 and 2,
taking on all values in between.

Efficiency of Algorithms
Typically we are interested in analyzing the efficiency of a given algorithm.

This involves determining the quantity of computer resources consumed by the
algorithm.

The resources that are usually measured include the amount of memory and the
amount of computational time required by the algorithm. Determining the
efficiency of an algorithm is by no means the only figure of merit that can be used
to judge an algorithm.

Of utmost importance is the correctness of the algorithm itself-that is, does the
algorithm always produce the correct result for all possible input values. Suffice it
to say that rigorously proving the correctness of a nontrivial algorithm can be an
extremely difficult task.

A more qualitative figure of merit involves the program complexity of an
algorithm, which considers both the difficulty of implementing an algorithm along
with the efficiency of the algorithm itself. A measure for program complexity
requires a consideration of the context in which the algorithm will be used.

In many instances, it is more advantageous to implement a simple algorithm that
solves a given problem, than to implement a more complex algorithm that solves
the same problem using fewer resources.

For example, if we consider the two algorithms for computing the exponential
function, a straightforward approach and a more complicated recursive approach,
then the first saves many efforts for small integer powers but , if exponentials to
large integer powers must be computed, then a tremendous number of
multiplications can be saved by using the recursive procedure, for the case where n
= 65,536, the straightforward approach will execute 65,535 multiplications, while
the recursive procedure only executes 16 multiplications.

Running Time and Memory Usage
Our analysis of algorithms and data structures will mainly focus on efficiency

considerations. This analysis is performed by considering the amount of resources
an algorithm consumes as a function of the size of the input to the algorithm. For
example, the efficiency of an algorithm might be determined by the amount of
memory required, and/or by the amount of computational time required, as the size
of the input to the algorithm grows.



We will use the term memory space (or simply space) to refer to the amount of
memory required by an algorithm, and the term running time (or simply time) to
refer to the computational time required by an algorithm.

The space occupied by an algorithm is determined by the number and sizes of the
variables and data structures used by the algorithm. The time required by an
algorithm is determined by the number of elementary operations that must be
performed during the algorithm's execution.

In many cases, the space and time required by an algorithm are inversely related.
That is, we may be able to reduce space requirements by increasing the running
time, or conversely, reduce time requirements by increasing memory space. This
situation is referred to as the space-time tradeoff.

In many cases, we will restrict our analysis to the running time of an algorithm, and
we will assume that there is sufficient memory to implement the algorithm. This is
justified by noting that with current technology, computer memory is typically
abundant and cheap in relation to the processor. This is not to say that issues of
memory space are unimportant. For example, in certain embedded systems a
processor may have a very limited amount of memory associated with it. Therefore,
we wish to stress that the techniques developed below for analyzing the running
time oi an algorithm can also be applied to the analysis of space requirements.

Measuring Running Time
Since the running time of an algorithm may differ depending upon the input it

receives, it is calculated as a function of the input size. Therefore, one approach
would be to implement a given algorithm, and for various input sizes, measure the
running time using a stopwatch. Computational time measured in this fashion is said
to use wall-clock time.

This approach may not be considered very rigorous for a number of reasons. First,
the speed with which a program executes depends upon the type of machine
executing the program, as well as the skill of the programmer who implemented it.
These factors, which are included when measuring running time using a wall clock,
should not be considered when analyzing an algorithm.

We would like to be able to make judgments regarding the merit of an algorithm
independent of a specific software implementation, or the hardware on which it is
implemented. In order to perform this type of analysis, we must assume some
general model of computation on which an implementation of the algorithm we are
investigating will be executed. The most common model of computation used to
evaluate algorithms is the random-access machine (RAM).

This model assumes the existence of a single generic processor, random-access
memory, and a set of basic operations that the processor can execute. It is then



assumed that the algorithm is implemented as a computer program that will execute
on this RAM model using its set of basic operations, and that the instructions are
executed one after another, with no concurrent operations.

Now, to determine the running time of an algorithm we must determine the time
required by each basic operation, and multiply that by how many times the
operation is used when implementing the algorithm on the RAM model.
Asymptotic analysis is normally used to express the running time of an algorithm
and the use of asymptotic notation in algorithmic analysis has a number of
advantages. Recall that regarding an algorithm, we wish to arrive at some figure of
merit that is independent of a particular software implementation or hardware
platform.

The use of asymptotic notation hides the constant amounts of operations, whose
values are machine specific; and distills the most important aspect of the
algorithm-that its running time somehw depend with increasing input size. It gives
the rate of growth of the running time, not the actual running time of an algorithm.

We will refer to the running time of an algorithm that is obtained in this fashion as
the asymptotic running time complexity, or simply time complexity of the
algorithm.

Because we are only interested in the asymptotic complexity of an algorithm, it will
not be necessary to go through the analysis in order to determine an algorithm's
running time. Instead, the running time of a nonrecursive algorithm can be
determined by simply observing the behavior of any of its loop structures.

Typically, the number of iterations performed by a loop will vary with the size of
the input to the algorithm. Therefore, in order to determine the running time of an
algorithm, we simply count the number of basic operations that are performed
inside of its loop structures.

For recursive algorithms we also need to count the number of basic operations that
are performed-but in this case, there are no loop structures to analyze. Instead, we
must perform an analysis to determine the number of operations that the recursive
algorithm will implement as a function of the input size.

Polynomial-Time and Superpolynomial-Time Algorithms
In the previous section, we introduced the notion that algorithms can be judged

according to their efficiency. This idea is actually carried a step further by computer
scientists when they categorize an algorithm as either being reasonable (tractable,
efficient) or unreasonable (intractable, inefficient).

The dividing line between these two categories is drawn as follows. If the time
complexity of an algorithm can be expressed as O(p(n)) for some polynomial



function p, where n is the input size, then this algorithm is said to be a
polynomial-time algorithm. Any algorithm that cannot be bounded in this fashion is
called a superpolynomial-time algorithm.

The motivation for categorizing algorithms as discussed above follows from this
fact: As the size of the input n grows large, the running times of
superpolynomial-time algorithms become exceedingly large, while the running
times of polynomial-time algorithms generally remain reasonable. This
phenomenon is clearly illustrated in the table below, where it compares the running
times of several polynomial and superpolynomial algorithms:

Effects of improvements in computer technology on the size of the largest problem
solvable in one hour for several polynomial-time and superpolynomial-time
algorithms.

So if we can show that some algorithm is intractable, then it makes no sense
to try to solve large problems using this algorithm--even if we have a
supercomputer at our disposal. Instead, we would be better served by spending time
looking for a better algorithm, one that solves a special case of the problem under



consideration, or one that solves the problem approximately. One of these
approaches may yield an algorithm that is useful as well as tractable.

Algorithmic Analysis
It is important to recognize the distinction between a problem and an

algorithm that solves a problem. A problem has a single problem statement that
describes it in some general terms; however, there may be many different ways to
solve this problem, and some of these solutions may be more efficient than others.
Thus, a number of different algorithms can exist for solving a computational
problem, and each of these algorithms could have a different running-time
complexity.

Given a computational problem, an algorithm designer is typically interested in
finding the fastest possible algorithm that solves it. In some cases, it is possible to
specify a theoretical lower bound on the number of operations required to solve a
problem for any possible algorithm and input instance.

We can also talk about an obvious or trivial lower bound for the number of
operations required to solve a problem.

In many cases there is a so-called algorithmic gap between the theoretical lower
bound for a problem, and the best available algorithm for solving that problem. In
these cases, algorithm designers may work to close this gap by developing faster
algorithms. If a faster algorithm is found, then it establishes a new lower bound for
the fastest known algorithm that solves the problem.

If an algorithm is found that asymptotically matches the theoretical lower bound for
a problem, then at least in an asymptotic sense, no algorithm could be faster.

This is not to say that nothing can be done to improve such a solution-its asymptotic
running time may be "hiding" a large constant, or the asymptotic results may only
apply when the input size is extremely large.

For many important problems, theoretical lower bounds have not been found. In
these cases, the only basis of comparison is against the lower bound established by
the fastest known algorithm for solving the problem.

In order to analyze a problem in the manner discussed above, we must be able to
determine the running time of any new algorithms we develop. A little refine of this
idea further by considering how to handle cases where the running time of an
algorithm varies depending upon the order in which the input data is supplied to it.

Worst-case Analysis
In many algorithms, running time will vary not only for inputs of different

sizes, but also for different inputs of the same size. That is, we may find that the



running times of an algorithm will vary for inputs of the same size, depending upon
the initial ordering of the input data.

Typically, in the analysis of algorithms, the worst-case situation is used to express
running time. This convention is actually useful for a number of reasons.

First, if we know the worst-case running time of an algorithm, then we have a
guarantee that the algorithm will never take more than this time. Such a guarantee
can be quite important in time-critical software applications that deal with, for
example, air-traffic control, missile and aircraft guidance systems, or control of a
nuclear power plant. In addition, it is often found in practical applications that the
worst-case running time of an algorithm occurs frequently.

We define the worst-case running time of an algorithm to be the maximum running
time of that algorithm over all possible inputs of size n.

A warning should be issued. In practice we might find that an algorithm whose
worst-case running time is given by, for example, ΘΘ (n log n) usually takes longer
to execute than an algorithm that accomplishes the same task, but whose worst-case
running time is given by ΘΘ (n ).

It may turn out that the ΘΘ (n ) algorithm almost always has a running time that is
close to n, while the ΘΘ (n log n) algorithm may almost always have a running time
that is close to nIgn. In spite of this possibility, we may safely state that in the
majority of cases, algorithms whose worst-case running times are better in the
ΘΘ-notation sense are also better in practice.

Average-case Analysis
We may also define the average-case running time of an algorithm for an

input of size n, to be the value that is obtained by averaging the running times of the
algorithm over all possible inputs of size n.

Although average-case analysis may appear to be better than worst-case
analysis for measuring running time, it usually is not. Average-case analysis
requires that we assume some underlying probability distribution for the input
instances. If this assumption is violated in practice, then the average-case analysis
may not be meaningful. In addition to the difficulty of determining an appropriate
probability distribution function for the input data, such average-case analysis quite
often becomes mathematically intractable. Nevertheless, on occasion we will find it
convenient to assume that each input instance is equally likely (i.e., that the
underlying probability distribution for the input data is uniform) and proceed with
an analysis of the running time of that algorithm. In summary, for the reasons stated
above we will typically use the worst-case measure to express the running time
complexity of an algorithm; however, we will use average-case analysis if it makes
sense for a particular algorithm or application of an algorithm.


