
Hashing

The DYNAMIC SET ADT

The set is a fundamental structure in mathematics.

Computer science view to a set:
• it groups objects together;
• the objects in a set are called the elements or members of the set;
• these elements are taken from the universal set U, which contains all possible set

elements;
• all the members of- a given set are unique.
 

 The number of elements contained in a set S is referred to as the cardinality of S,
denoted by |S|. It is often refered to a set with cardinality n as an n-set.
 

 The elements of a set are not ordered. Thus, {1, 2, 3} and {3, 2, 1} represent the same
set.
 

 Mathematical operations with sets:
 

• an element x is (or is not) a member of the set S;
• the empty set;
• two sets A and B are equal (or not);
• an A is said to be a subset of B (the empty set is a subset of every set);
• the union of A and B;
• the intersection of A and B;
• the difference of A and B;
• the Cartesian product of two sets.
 

 In computer science it is often useful to consider set-like structures in which the
ordering of the elements is important, such sets will be refered as an ordered n-tuple,
like (al, a2, …, an).
 

 The concept of a set serves as the basis for a wide variety of useful abstract data types.
A large number of computer applications involve the manipulation of sets of data
elements. Thus, it makes sense to investigate data structures and algorithms that
support efficient implementation of various operations on sets.
 

 Another important difference between the mathematical concept of a set and the sets
considered in computer science:
 

• a set in mathematics is unchanging, while the sets in CS are considered to change
over time as data elements are added or deleted.



Thus, sets are refered here as dynamic sets. In addition, we will assume that each
element in a dynamic set contains an identifying field called a key, and that a total
ordering relationship exists on these keys.

It will be assumed that no two elements of a dynamic set contain the same key.

The concept of a dynamic set as an DYNAMIC SET ADT is to be specified, that is, as
a collection of data elements, along with the legal operations defined on these data
elements.

If the DYNAMIC SET ADT is implemented properly, application programmers will
be able to use dynamic sets without having to understand their implementation details.
The use of ADTs in this manner simplifies design and development, and promotes
reusability of software components.

A list of general operations for the DYNAMIC SET ADT. In each of these operations,
S represents a specific dynamic set:

1. Search(S, k). Returns the element with key k in S, or the null value if an element
with key k is not in S.

2. Insert(S, x). Adds element x to S. If this operation is successful, the boolean value
true is returned; otherwise, the boolean value false is returned.

3. Delete(S, k). Removes the element with key k in S. If this operation is successful,
the boolean value true is returned; otherwise, the boolean value false is returned.

4. Minimum(S). Returns the element in dynamic set S that has the smallest key value,
or the null value if S is empty.

5. Maximum(S). Returns the element in S that has the largest key value, or the null
value if S is empty.

6. Predecessor(S, k). Returns the element in S that has the largest key value less than
k, or the null value if no such element exists.

7. Successor(S, k). Returns the element in S that has the smallest key value greater
than k, or the null value if no such element exists.

In addition, when considering the DYNAMIC SET ADT (or any modifications of this
ADT) we will assume the following operations are available:

1. Empty(S). Returns a boolean value, with true indicating that S is an empty dynamic
set, and false indicating that S is not.
2. MakeEmpty(S). Clears S of all elements, causing S to become an empty dynamic
set.

Since these last two operations are often trivial to implement, they generally are to be
omitted.



In many instances an application will only require the use of a few DYNAMIC SET
operations. Some groups of these operations are used so frequently that they are given
special names:

• the ADT that supports Search, Insert, and Delete operations is called the
DICTIONARY ADT;

• the STACK, QUEUE, and PRIORITY QUEUE ADTs are all special types of
dynamic sets.

A variety of data structures will be described in forthcoming considerations that they
can be used to implement either the DYNAMIC SET ADT, or ADTs that support
specific subsets of the DYNAMIC SET ADT operations.

Each of the data structures described can be analyzed in order to determine how
efficiently they support the implementation of these operations. In each case, the
analysis is to be performed in terms of n, the number of data elements stored in the
dynamic set.

This analysis will demonstrate that there is no optimal data structure for
implementing dynamic sets.

Rather, the best implementation choice will depend upon:

• which operations need to be supported,
• the frequency with which specific operations are used,
• and possibly many other factors.

As always, the more we know about how a specific application will use data, the
better we can fine tune the associated data structures so that this data can be accessed
efficiently.

Dictionary ADT

The Dictionary ADT is the Dynamic set ADT with operations: search, insert, delete.

The classical problem with dictionary is of automatically creating a rough index for an
electronic document. Given an input file in ASCII format, there is a need to produce
an output file that contains an alphabetical list of keywords, along with the page
numbers on which they appear in the input document.

One way of producing an index would be to read through the entire document, storing
each novel word that is encountered in a list. Next a user would remove from the list
those words that should not appear in the index. Finally the document would be read
again, noting the pages on which each word in the list appears. This process requires
two passes through (i.e., readings of) the input document.



It is possible to construct an index in a single pass by keeping track of the page
numbers on which words occur as they are encountered. The problem with this
approach is that the user is not given the opportunity to cull words from the list, which
means that commonly occurring words (e.g., “and”, “the”, “and”, “it”, …, etc.) would
appear in the index.

To solve this problem it is necessary to augment one-pass method with a dictionary
containing words that should not appear in the index (this dictionary is “LeaveOut”).
The question then becomes:

• what words should appear in LeaveOut?

Obviously, words such as “and”, “the”, “and”, “it”, should appear in LeaveOut, and
the user can add many other common words to this dictionary. However, certain words
such as "tree" and "algorithm", may occur frequently in some texts, and may occur
very infrequently in other documents.

Let us assume that the words are stored, which have to be included into the index, in a
dictionary called Master, and that along with a word, the list of page numbers on
which it occurs, is stored, and also the number of times they occur. The modified one-
pass approach then works as follows:

• each time a word is read from the input document, it is checked to see if it appears
in LeaveOut;

• if it does, then ignore this word and read the next one;
• if it does not, then it is first to be searched in Master to see if it contains this word;
• if the word is not present, it is added to Master, along with the page number on

which it appeared, and then it is initialized its number of occurrences to one;
• if the word it is searched for, is found in Master, then simply the list of page

numbers on which the word occurs, is apdated, and the number of occurrences in
incremented by one;

• after this it is checked to see if the number of occurrences of the word has exceeded
the threshold;

• if it has, then the word is deleted from Master and is added to LeaveOut.

The method just described entails quite a bit of time searching the LeaveOut and
Master dictionaries. For this reason, these dictionaries can be implemented using
binary search trees, which should perform much better than lists in this application.

Pseudocode for one-pass index creation method is given next. In this pseudocode it is
assumed that Master and LeaveOut store compound data objects consisting of a key
(which is a function of a word), a list called pages, which stores page numbers, and a
variable occur, which keeps track of the number of occurrences of a given word. This



pseudocode also assumes that a special word, PgBk, will be used in the input
document to indicate a page break.

The loop spanning lines 3-14 of Index() performs a single pass through the input
document, implementing the steps just described. Specifically, line 3 reads the words
in the input document sequentially until it reaches the end of the file (i.e., encounters a
null value). If the current word is not in LeaveOut, then Master is searched on line 7.
If the result of this search is the null value (which means the word is not currently in
Master) then the word is inserted in Master. If the search on line 7 is successful and
the number of occurrences of the word does not exceed the threshold, then the list of
page numbers is updated on line 10, and the number of occurrences is incremented on
line 11. If, on the other hand, the number of occurrences of the current word exceeds
the threshold, then this word is inserted into LeaveOut, and deleted from Master on
line 12. After all words in the input document have been processed, the Master
dictionary is written to an output file using an inorder traversal. If the key values for
words will be choosen appropriately, this will output the words in alphabetical order.

Hashing Procedures

Let us denote the set of all possible key values (i.e., the universe of keys) used in a
dictionary application by U. Suppose an application requires a dictionary in which
elements are assigned keys from the set of small natural numbers. That is, U ⊂⊂ Z+ and
U is relatively small.

If no two elements have the same key, then this dictionary can be implemented by
storing its elements in the array T[0, … , U - 1]. This implementation is referred to
as a direct-access table since each of the requisite DICTIONARY ADT operations -
Search, Insert, and Delete - can always be performed in ΘΘ(1) time by using a given
key value to index directly into T, as shown:



The obvious shortcoming associated with direct-access tables is that the set U rarely
has such "nice" properties. In practice, U can be quite large. This will lead to
wasted memory if the number of elements actually stored in the table is small relative
to U.

Furthermore, it may be difficult to ensure that all keys are unique. Finally, a specific
application may require that the key values be real numbers, or some symbols which
cannot be used directly to index into the table.

An effective alternative to direct-access tables are hash tables. A hash table is a
sequentially mapped data structure that is similar to a direct-access table in that both
attempt to make use of the random-access capability afforded by sequential mapping.

However, instead of using a key value to directly index into the hash table, the index is
computed from the key value using a hash function, which we will denote using h.
This situation is depicted as follows:

In this figure h(ki) is the index, or hash value, computed by h when it is supplied with
key ki ∈∈ U. We will say that ki hashes to slot T[h(ki)] in hash table T. If we can ensure
that all keys have unique hash values, then the DICTIONARY ADT operations can be
implemented almost in the same way as for regular arrays.

The advantages of this approach are that, if we pick the hash function properly, the
size of the hash table m can be chosen so as to be proportional to the number of



elements actually stored in the table n, and the key values will not be restricted to the
set of small natural numbers.

Furthermore, if the hash function itself can be computed in ΘΘ(1) time, then each of the
DICTIONARY ADT operations can be implemented in ΘΘ(1) time. Of course, this
strategy relies on proper selection of the hash function.

An ordinary hash function h performs a mapping from the universe of keys U to slots
in the hash table T [0, …, m – 1]:

h : U →→ [0, 1, ..., m – 1]

Since U is generally much larger than m, h is unlikely to perform a one-to-one
mapping. In other words, it is very probable that:

for two keys ki and kj, where i ≠≠ j, h(ki) = h(kj).

This situation, where two different keys hash to the same slot, is referred to as a
collision. Since two elements cannot be stored in the same slot in a hash table, the
Insert operation must resolve collisions by relocating an element so that it can be
found by subsequent Search and Delete operations. This will increase the running
time of all three operations.

There is an interesting space-time trade-off associated with hash tables. By making the
table size m larger, the chances of collisions are generally reduced. However, if m is
too large most of the hash table slots will never be utilized.

In general, m should be proportional to n, the number of elements that must be stored
in the hash table. If we let α denote the load factor of a hash table (i.e., the ratio of the
number of elements currently stored in the table, to the size of the table), then a rule of
thumb that works well in practice is:

to choose m so that αα never exceeds 0.8 while using the hash table

The development of efficient strategies for resolving collisions is an important issue.

But the issues related to the design of "good" hash functions, and various methods for
creating them are important too.

Hash Functions

The most important properties of a good hash function are that it can be computed
very quickly (i.e., only a few simple operations are involved), while at the same time
minimizing collisions. After all, any hash function that never yields a collision, and



whose computation takes Θ(1) time, can be used to implement all DICTIONARY
ADT operations in Θ(1) time.

In order to minimize collisions, a hash function should not be biased towards any
particular slot in the hash table. Ideally, a hash function will have the property that
each key is equally likely to hash to any of the m slots in the hash table. This behavior
is referred to as simple uniform hashing, which implies that independently drawing
keys from U are uniformly distributed:

If this condition holds, then the average running time of any DICTIONARY ADT
operation is ΘΘ(l).

The difficulty in designing good hash functions is that we usually do not know the
distribufion P of values of U.

Let k represents an arbitrary key, m represents the size of the hash table, and n
represents the number of elements stored in the hash table. Let us assume that the
universe of keys is some subset of the natural numbers. It is typically quite easy to
transform values from some other set to natural numbers.

There is a number of specific techniques used to create hash functions. Although a
wide variety of hash functions have been suggested, the ones presented next have
proved to be most useful in practice.

Division Method

Hash functions that make use of the division method generate hash values by
computing the remainder of k divided by m:

h(k) = k mod m

With this hash function, h(k) will always compute a value that is an integer in the
range

0, 1, ..., m - 1

The choice of m is critical to the performance of the division method. For instance
choosing m as a power of 2 is usually ill-advised, since h(k) is simply the p least
significant bits of k whenever m = 2P. In this case, the distribution of keys in the hash
table is based only on a portion of the information contained in the keys.



For similar reasons, choosing m as a power of 10 should be avoided: when m = 10P,
h(k) is simply the last p digits in the decimal representation of k.

In general, the best choices for m when using the division method turn out to be prime
numbers that do not divide rb ± a, where b and a are small natural numbers, and r is
the radix of the character set that is used.

As an example of a properly chosen value for m, if we must store n = 725 alphabetic
strings, and each character is encoded using its ASCII representation, the reasonable
table size is m = 907, since this is a prime number which is not close to a power of
128, and the load factor will be roughly 0.8 when all strings have been stored.

Multiplication Method

Hash functions that make use of the multiplication method generate hash values in two
steps. First the fractional part of the product of k and some real constant A, 0 < A < 1,
is computed. This result is then multiplied by m before applying the floor function to
obtain the hash value:

h(k) = m ( k A - k A )

The hash values must be integers in the range 0, 1, . . . , m - 1. One choice for A that
often does a good job of distributing keys throughout the hash table is the inverse of
the golden ratio

A = 2 / ( √5 + 1 ) = 0.61803399…

The multiplication method exhibits a number of nice mathematical features. Because
the hash values depend on all bits of the key, permutations of a key are no more likely
to collide than any other pair of keys. Furthermore, keys such as "ptrl" and "ptr2" that
are very similar, and therefore have transformed key values that are numerically close
to each other, will yield hash values that are widely separated.

A particularly nice property of the multiplication method is that it can be easily
approximated using fixed-point arithmetic, exploring fixed-point representation of the
numbers as well as a floating-point representation.

The analysis of these representations suggests the following approach for computing
hash values using the multiplication method. If b is the number of bits in a machine
word, choose the table size to be a power of 2 such that m = 2P, where p < b.
Represent key values using b-bit integers, and approximate A as a b-bit fixed-point
fraction. Perform the fixed- point multiplication kA saving only the low-order b-bit
word. The high-order p bits of this word, when interpreted as an integer, is the hash
value h(k):



Collision Resolution Strategies

Although hash functions have to minimize collisions, in most applications the
collisions will occur. Therefore the manner in which collisions are resolved will
directly affect the efficiency of the DICTIONARY ADT operations. It is also
important to recognize that a given collision resolution strategy has a more subtle
impact on efficiency - if collision resolution is not handled intelligently, it may
actually cause additional collisions in the future, thereby impacting the running time of
future operations.

There is a number of important collision resolution strategies. The strategies can
involve constructing additional data structures for storing the data elements, and then
attaching these data structures to the hash table in some fashion.

Separate Chaining

One of the simplest collision resolution strategies, called separate chaining, involves
placing all elements that hash to the same slot in a linked list (i.e., a chain). Thus every
element stored in a given linked list will have the same key. In this case the slots in the
hash table will no longer store data elements, but rather pointers to linked lists:

This strategy is easily extended to allow for any dynamic data structure, not just linked
lists. Note that with separate chaining, the number of items that can be stored is only
limited by the amount of available memory.

If unordered linked lists are used in this strategy, then the Insert operation can be
implemented in ΘΘ(1) time, independent of collisions---each new element is simply



added to the head of a specific list. The same cannot be said for the Search and Delete
operations. It is easy to see that in the worst case, both of these operations will take
time that is proportional to the length of the longest list.

That is, in the worst case, all n elements hash to the same slot, and the element we are
searching for (or deleting) is stored at the tail of this list. This leads to worst-case
running times of ΘΘ(n) for both of these operations. Of course, hash tables should not
be selected for a given application based on their worst-case performance.

Open Addressing

In open addressing all data elements are stored in the hash table itself. In this case,
collisions are resolved by computing a sequence of hash slots. This sequence is
successively examined, or probed, until an empty hash table slot is found, in the case
of Insert, or the desired key is found in the case of Search or Delete.

The advantage of this approach is that it avoids the use of pointers. The memory saved
by not storing pointers can be used to construct a larger hash table if necessary. Thus,
using the same amount of memory we can construct a larger hash table, which
potentially leads to fewer collisions and therefore faster DICTIONARY ADT
operations.

In open addressing, the ordinary hash functions are modified so that they use both a
key and a probe number when computing a hash value. This additional information is
used to construct the probe sequence. More specifically, in open addressing, hash
functions perform the mapping

h : U × [0, 1, ..., ∞] → [0, 1, ..., m – 1]

and produce the probe sequence

< h(k, 0), h(k, 1), h(k, 2).... >

Because the hash table contains m slots, there can be at most m unique values in a
probe sequence.

Note, however, that for a given probe sequence we are allowing the possibility of h(k,
i) = h(k, j) for i ≠≠ j. Tberefore it is possible for a probe sequence to contain more than
m values.



Inserting an element using open addressing involves probing the hash table using the
computed probe sequence until an empty array slot is found, or some stopping criteria
is met, as shown in the following pseudocode:

Initially all hash table locations store the empty value; however, if an element is stored
in the table and later deleted, we will mark the vacated slot using the deleted symbol
rather than the empty symbol.

Searching for (or deleting) an element involves probing the hash table until the desired
key is found. Note that the same sequence of probes used to insert an element must
also be used when searching for (or deleting) it.

The use of deleted (rather than empty) to mark locations that have had an element
deleted increases the efficiency of future Search operations. To see why, note that if
these locations were instead marked with the empty symbol, we would always have to
assume that an element had been deleted and continue probing through the entire
probe sequence whenever an empty was encountered. However, if the deleted symbol
is used, then a search can terminate whenever an empty value is encountered. In this
case, we know that the element being searched for is not in the hash table.

Some of the set of specific open addressing strategies:

Linear Probing

This is one of the simplest probing strategies to implement; however, its performance
tends to decrease rapidly with increasing load factor.

If the first location probed is j, and cl is a positive constant, the probe sequence
generated by linear probing is

< j, (j + cl - 1) mod m, (j + cl - 2) mod m, ... >



Given any ordinary hash function h', a hash function that uses linear probing is easily
constructed using

h (k, i) = (h'(k) + cl i) mod m

where i = 0, 1, …, m - 1 is the probe number. Thus the argument supplied to the mod
operator is a linear function of the probe number.

It should be noted that some choices for cl and m work better than others. For
example, if we choose m arbitrarily and cl = 1, then every slot in the hash table can be
examined in m probes. However, if we choose m to be an even number and cl = 2, then
only half the slots can be examined by any given probe sequence.

In general, cl needs to be chosen so that it is relatively prime to m if all slots in the
hash table are to be examined by the probe sequence.

The use of linear probing leads to a problem known as clustering – elements tend to
clump (or cluster) together in the hash table in such a way that they can only be
accessed via a long probe sequence (i.e., after a large number of collisions). This
results from the fact that once a small cluster emerges in the hash table, it becomes a
"target" for collisions during subsequent insertions.

There are two factors in linear probing that lead to clustering. First, every probe
sequence is related to every other probe sequence by a simple cyclic shift, this leads to
a specific form of clustering called primary clustering: because any two probe
sequences are related by a cyclic shift, they will overlap after a sufficient number of
probes. Second factor is less severe form of clustering, called secondary clustering,
results from the fact that if two keys have the same initial hash value h(k1, 0) = h(k2,
0), then they will generate the same probe sequence- h (ki, i) = h (k2, i) for i = 1, 2, . .
., m - 1.

The probe sequence in linear probing is completely determined by the initial hash
value, and since there are m of these, the number of unique probe sequences is m. This
is far fewer than the m! possible unique probe sequences over m elements. This fact,
coupled with the clustering problems, conspire to make linear probing a poor
approximation to uniform hashing whenever n approaches m.

Quadratic Probing

This is a simple extension of linear probing in which one of the arguments supplied to
the mod operation is a quadratic function of the probe number. More specifically,
given any ordinary hash function h', a hash function that uses quadratic probing can be
constructed using

h (k, i) = (h'(k) + cl i + c2 i
2) mod m



where cl and c2 are positive constants. Once again, the choices for cl, c2, and m are
critical to the performance of this method.

Since the left-hand argument of the mod operation in equation is a non-linear function
of the probe number, probe sequences cannot be generated from other probe sequences
via simple cyclic shifts. This eliminates the primary clustering problem, and tends to
make quadratic probing work better than linear probing.

However, as with linear probing, the initial probe h(k, 0) determines the entire probe
sequence, and the number of unique probe sequences is m. Thus, secondary clustering
is still a problem, and quadratic probing only offers a good approximation to uniform
hashing if m is large relative to n.

Double Hashing

Given two ordinary hash functions h'1 and h'2, double hashing computes a probe
sequence using the hash function

h (k, i) = (h'1 (k) + i h'2 (k)) mod m

Note that the initial probe h (k, 0) = h'1 (k) mod m, and that successive probes are
offset from previous probes by the amount h'2(k) mod m. Thus the probe sequence
depends on k through both h'1 and h'2. This approach alleviates primary and secondary
clustering by making the second and subsequent probes in a sequence independent of
the initial probe.

The probe sequences produced by this method have many of the characteristics
associated with randomly chosen sequences, which makes the behavior of double
hashing a good approximation to uniform hashing.

Coalesced Hashing

This form of collision resolution is similar to the separate chaining approach, except
that all data elements are stored in the hash table itself. This is accomplished by
allowing each slot in the hash table to store not only a data element, but also a pointer.

These pointers may store either the null value, or the address of some other location
within the hash table. Thus, starting from a pointer stored in any non-empty slot, a
chain is formed by following this pointer to the slot it points to, reading the pointer
contained in the new slot, and continuing in this fashion until a null pointer is reached.

During an insertion, a collision is resolved by inserting the data element into the
largest-numbered empty slot in the hash table, and then linking this element to the end
of the chain that contains its hash address:



A variation on coalesced hashing sets aside a portion of the hash table, called the
cellar, for handling collisions. The portion of the hash table that is not part of the cellar
is referred to as the address region. A hash function is selected so that its range is
restricted to the address region.

Whenever a collision occurs during an insertion, it is resolved by storing the data
element in the next available slot in the cellar. In practice, this approach appears to
slightly improve search time; however, the difficulty of determining the appropriate
size for the cellar is introduced. Empirical studies have shown that allocating 14
percent of the hash table to the cellar leads to good performance:

Table Overflow

Up to this point, we have assumed the hash table size m will always be large enough to
accommodate the data sets we are working with. In practice, however, we must
consider the possibility of an insertion into a full table (i.e., table overflow).

If separate chaining is being used, this is typically not a problem since the total size of
the chains is only limited by the amount of available memory in the free store. Thus
we will restrict our discussion to table overflow in open address hashing.

Two techniques that circumvent the problem of table overflow by allocating additional
memory will be considered. In both cases, it is best not to wait until the table becomes
completely full before allocating more memory; instead, memory will be allocated
whenever the load factor a exceeds a certain threshold which we denote by at.



Table Expansion

The simplest approach for handling table overflow involves allocating a larger table
whenever an insertion causes the load factor to exceed ααl, and then moving the
contents of the old table to the new one. The memory of the old table can then be
reclaimed.

Using the technique of implementing lists by arrays for hash tables the method can be
suggested but it is also complicated by the fact that the output of hash functions is
dependent on the table size.

This means that after the table is expanded (or contracted), every data element needs
to be "rehashed" into the new table. The additional overhead due to rehashing tends to
make this method too slow. An alternative approach is considered next.

Extendible Hashing

Extendible hashing limits the overhead due to rehashing by splitting the hash table into
blocks. The hashing process then proceeds in two steps: The low-order bits of a key
are first checked to determine which block a data element will be stored in (i.e., all
data elements in a given block will have identical low-order bits), and then the data
element is actually hashed into a particular slot in that block using the methods
discussed.

The addresses of these blocks are stored in a directory table. In addition, a value b is
stored with the table - this gives the number of low-order bits to use during the first
step of the hashing process.

Table overflow can now be handled as follows. Whenever the load factor αα, of any
one block d is exceeded, an additional block d' the same size as d is created, and the
elements originally in d are rehashed into both d and d' using b + 1 low-order bits in
the first step of the hashing process. Of course, the size of the directory table must be



doubled at this point, since the value of b is increased by one. This process is
demonstrated in figure above.

Extendible hashing, if applied to disk memory, gives an alternative to B-trees. This
method involves two disk accesses for each search in typical applications while at the
same time allowing efficient insertion. The records are stored on pages (clusters)
which are split into two pieces when they fill up.

The example, for the string of input data:

“E X T E R N A L S E A R C H I N G E X A M P L E”

The first page

Directory split

First page again full



Second split

Third split

Fourth split



Extendible hashing access

Property: With pages that can hold M records, extendible hashing may be expected to
require about 1.44 ( N / M ) pages for a file of N records. The directory may be
expected to have about N1+1/M / M entries.

The analysis of algorithm is complicated and beyond the scope of material.

Radix Searching

The most simple radix search method is digital tree searching - the binary search
tree with the branch in the tree according to the bits of keys: at the first level the
leading bit is used, at the second level the second leading bit, and so on until an
external node is encountered. The code of the algorithm is similar to binary search
tree. The data structures for the program. i.e. how to initialize the memory, are the



same as those that for elementary binary search trees. The constant maxb is the
number of bits in the keys to be sorted:

function digitalsearch(u: integer; x: link): link;
var b: integer;
begin
z|.key:=u; b:=maxb;
repeat
if bits (v, b, 1)=0 then x:=x|.l else x:=x|.r;
b:= b-1;
until v=x|.key;
digitalsearch:=x
end;

Equal keys are anathema in radix sorting, and the same is true in radix
searching. Thus, all the keys to appear in the data structure are distinct: if necessary, a
linked list could be maintained for each key value of the records whose keys have that
value. It is assumed that the ith letter of the alphabet is represented by the five-bit
binary representation of i.:

The insert procedure for digital search trees also derives directly from the
corresponding procedure for binary search trees:

function digitalinsert(v: integer; x: link): link;
var p: link; b: integer;
begin
b:=maxb;
repeat
p:=x;
if bits (v., b. 1)=0 then x:=x|.1 else x:=x|.r;
b:=b-1;
until x=z;
new(x); x|.key:=u; x|.l:=z; x|.r:=z;
if bits(u.b+l,l)=0 then p|.l:=x else p|.r:=x;
digitalinsert:=x
end;



Figure below shows what happens when a new key Z= 11010 is added to the
tree:

The worst case for trees built with digital searching is much better than for
binary search trees, if the number of keys is large and the keys are not long. The length
of the longest path in a digital search tree is the length of the longest match in the
leading bits between any two keys in the tree, and this is likely to be relatively small
for many applications (for example, if the keys are comprised of random bits).

Property: A search or insertion in a digital search tree requires about lgN
comparisons on the average and b comparisons in the worst case in a tree built from
N random b-bit keys.

It is obvious that no path will ever be any longer than the number of bits in the
keys: for example, a digital search tree built from eight-character keys with, say, six
bits per character will have no path longer than 48, even if there are hundreds of
thousands of keys.

Radix Search Tries

It is quite often the case that search keys are very long, consisting of many
characters. In such a situation, the cost of comparing a search key for equality with a
key from the data structure can be a dominant cost which cannot be neglected. Digital
tree searching uses such a comparison at each tree node; and it is possible in most
cases to get by with only one comparison per search.

The idea is to not store keys in tree nodes at all, but rather to put all the keys in
external nodes of the tree. Thus, we have two types of nodes:
• internal nodes, which just contain links to other nodes,
• external nodes, which contain keys and no links.

To search for a key in such a structure, we just branch according to its bits, as
above, but we don't compare it to anything until we get to an external node. Each key
in the tree is stored in an external node on the path described by the leading bit pattern
of the key and each search key winds up at one external node, so one full key
comparison completes the search:



For example, to reach E in the figure, we go left, left, right from the root, since
the first three bits of E are 001; but none of the keys in the trie begin with the bits 101,
because an external node is encountered if one goes right, left, right. Before thinking
about insertion, the reader should ponder the rather surprising property that the trie
structure is independent of the order in which the keys are inserted: there is a unique
trie for any given set of distinct keys.

As usual, after an unsuccessful search, we can insert the key sought by replacing the
external node which terminated the search, provided it doesn't contain a key. If the
external node which terminates the search does contain a key, then it must be replaced
by an internal node which will have the key sought and the key which terminated the
search in external nodes below it. Unfortunately, if these keys agree in more bit
positions, it is necessary to add some external nodes which correspond to no keys in
the tree (or put another way, some internal nodes with an empty external node as a
child):

Implementing this method in Pascal is actually relatively complicated because
of the necessity to maintain two types of nodes, both of which could be pointed to by
links in internal nodes. This is an example of an algorithm for which a low-level



implementation might be simpler than a high-level implementation. The left subtree of
a binary radix search trie has all the keys which have 0 for the leading bit; the right
subtree has all the keys which have I for the leading bit. This leads to an immediate
correspondence with radix sorting: binary trie searching partitions the file in exactly
the same way as radix exchange sorting.

Property: A search or insertion in a radix search trie requires about lgN bit
comparisons for  an average search and b bit comparisons in the worst case in a tree
built from N random b-bit keys.

An annoying feature of radix tries, and one which distinguishes them from the
other types of search trees we've seen, is the "one-way" branching required for keys
with a large number of bits in common. For example, keys which differ only in the last
bit require a path whose length is equal to the key length, no matter how many keys
there are in the tree. The number of internal nodes can be somewhat larger than the
number of keys.

Property: A radix search trie built from N random b -bit keys has about N/ln2
� 1.44N nodes on the average.

The height of tries is still limited by the number of bits in the keys, but we
would like to consider the possibility of processing records with very long keys (say
1000 bits or more) which perhaps have some uniformity, as might arise in encoded
character data. One way to shorten the paths in the trees is to use many more than two
links per node (though this exacerbates the "space" problem of using too many nodes);
another way is to "collapse" paths containing one-way branches into single links.

Multiway Radix Searching

For radix sorting, we could get a significant improvement in speed by
considering more than one bit at a time. The same is true for radix searching: by
examining m bits at a time, we can speed up the search by a factor of 2m. However, the
problem is that considering m bits at a time corresponds to using tree nodes with M =
2m links, which can lead to a considerable amount of wasted space for unused links:

Note that there is some wasted space in this tree because of the large number of
unused external links. As M gets larger, this effect gets worse: it turns out that the
number of links used is about MN/lnM for random keys. On the other hand, this is a
very efficient searching method: the running time is about logm N. A reasonable
compromise can be struck between the time efficiency of multiway tries and the space



efficiency of other methods by using a "hybrid" method with a large value of M at the
top (say the first two levels) and a small value of M (or some elementary method) at
the bottom. Again, efficient implementations of such methods can be quite
complicated, however, because of multiple node types.

Patricia

The radix trie searching method as outlined above has two annoying flaws: the
"one-way branching" leads to the creation of extra nodes in the tree, and there are two
different types of nodes in the tree, which complicates the code somewhat (especially
the insertion code). D. R. Morrison discovered a way to avoid both of these problems
in a method which he named Patricia ("Practical Algorithm To Retrieve Information
Coded In Alphanumeric"). In the present context, Patricia allows searching for N
arbitrarily long keys in a tree with just N nodes, but requires only one full key
comparison per search.

One-way branching is avoided by a simple device: each node contains the index
of the bit to be tested to decide which path to take out of that node. External nodes are
avoided by replacing links to external nodes with links that point upwards in the tree,
back to our normal type of tree node with a key and two links. But in Patricia, the keys
in the nodes are not used on the way down the tree to control the search; they are
merely stored there for reference when the bottom of the tree is reached:

To search in this tree, we start at the root and proceed down the tree, using the
bit index in each node to tell us which bit to examine in the search key-we go right if
that bit is 1, left if it is 0. The keys in the nodes are not examined at all on the way
down the tree. Eventually, an upwards link is encountered: each upward link points to
the unique key in the tree that has the bits that would cause a search to take that link.
For example, S is the only key in the tree that matches the bit pattern 10*11. Thus if
the key at the node pointed to by the first upward link encountered is equal to the
search key, then the search is successful; otherwise it is unsuccessful. For tries, all
searches terminate at external nodes, whereupon one full key comparison is done to
determine whether or not the search was successful; for Patricia all searches terminate
at upwards links, whereupon one full key comparison is done to determine whether or
not the search was successful. Furthermore, it's easy to test whether a link points up,
because the bit indices in the nodes (by definition) decrease as we travel down the tree.



This leads to the following search code for Patricia, which is as simple as the code for
radix tree or trie searching:

type link= | node;
node= record key, info. b: integer; l, r: link end;
var head.z: link;

function patriciasearch (v: integer; x: link): link;
var p: link;
begin
repeat

p:=x;
if bits (v , x|.b, 1)=0 then x:=x|.l else x:=x|.r;
until p|.b < =x|.b;

patriciasearch:=x
end;

This function returns a link to the unique node which could contain the record
with key v. The calling routine then can test whether the search was successful or not.
Thus to search for Z= 11010 in the above tree we go right and then up at the right link
of X. The key there is not Z, so the search is unsuccessful.

Figure below shows the result of inserting Z=11010 into the Patricia tree:

By the defining property of the tree, X is the only key in the tree for which a
search would terminate at that node. If Z is inserted, there would be two such nodes,
so the upward link that was followed into the node containing X must be made to point
to a new node containing Z, with a bit index corresponding to the leftmost point where
X and Z differ, and with two upward links: one pointing to X and the other pointing to
Z. This corresponds precisely to replacing the external node containing X with a new
internal node with X and Z as children in radix trie insertion, with one-way branching
eliminated by including the bit index.

Inserting T=10100 illustrates a more complicated case. . The search for T ends
at P=10000, indicating that P is the only key in the tree with the pattern 10*0*. Now,
T and P differ at bit 2, a position that was skipped during the search. The requirement
that the bit indices decrease as we go down the tree dictates that T be inserted between
X and P, with an upward self-pointer corresponding to its own bit 2. Note carefully



that the fact that bit 2 was skipped before the insertion of T implies that P and R have
the same bit-2 value:

Patricia is the quintessential radix searching method: it manages to identify the
bits which distinguish the search keys and build them into a data structure (with no
surplus nodes) that quickly leads from any search key to the only key in the data
structure that could be equal. Clearly, the same technique as used in Patricia can be
used in binary radix trie searching to eliminate one-way branching, but this only
exacerbates the multiple-node-type problem.

Unlike standard binary tree search, the radix methods are insensitive to the order
in which keys are inserted; they depend only upon the structure of the keys
themselves. For Patricia the placement of the upwards links depend on the order of
insertion, but the tree structure depends only on the bits in the keys, as in the other
methods. Thus, even Patricia would have trouble with a set of keys like 001, 0001,
00001, 000001, etc., but for normal key sets, the tree should be relatively well-
balanced so the number of bit inspections, even for very long keys, will be roughly
proportional to lgN when there are N nodes in the tree.

Property: A Patricia trie built from N random b-bit keys has N nodes and requires
lgN bit comparisons for an average search.

The most useful feature of radix trie searching is that it can be done efficiently
with keys of varying length. In all of the other searching methods we have seen the
length of the key is "built into" the searching procedure in some way, so that the
running time is dependent on the length as well as the number of the keys. The
specific savings available depends on the method of bit access used. For example,
suppose we have a computer which can efficiently access 8-bit "bytes" of data, and we
have to search among hundreds of 1000-bit keys. Then Patricia would require
accessing only about 9 or 10 bytes of the search key for the search, plus one 125-byte
equality comparison, while hashing would require accessing all 125 bytes of the
search key to compute the hash function plus a few equality comparisons, and
comparison-based methods require several long comparisons. This effect makes
Patricia (or radix trie searching with one-way branching removed) the search method
of choice when very long keys are involved.


