
Sorting
(following R. Sedgewick)

To make introduction into the area of sorting algorithms, the most appropriate
are "elementary" methods. They provide an easy way to learn terminology and basic
mechanism for sorting algorithms giving an adequate background for more
sophisticated sorts. Furthermore, in a great many applications of sorting it's better to
use these simple methodsthen the mmore powerful general-purpose mwethods.
Finally, some of these simple methods can be used to implove the efficiency of more
powerful ones.

The best known sorting methods are selection, insertion and bubble sorting
algorithms. Selection sorting works according to the prescript:

§ first find the smallest element in the array and exchange it with the element
in the first position, then find the second smallest element and exchange it
with the element in the second position, etc.

The following program is a full implementation of this process. For each i from
1 to N-1, it exchanges the minimum element in array with an element in i's position:

 procedure selection;
 var i,j,min, t: integer ;
 begin
 for i:=1 to N -1 do
 begin
 min :=i ;
 for j :=i+1 to N do
 if a [j]<a [min] then min :=j ;
 t:=a [min]; a [min]:=a [i]:=t
 end;
 end;

Insertion and bubble sorting methods are almost as simple as selection sorting
is, but they are more flexible.

Insertion sorting:

procedure insertion;
var i,j,v:integer;

begin
for i:=2 to N do
begin
v:=a[i]; j:=i;
while a[j-1]>v do
begin a[j]:=a[j-1]; j:=j-1 end;
a[j]:=v
end

end;



Bubble sorting:

procedure bubble;
var i,j,t: integer;

begin
for i:=N downto 1 do
for j:=2 to i do
if a[j-1]>a[j] then
begin t:=a[j-1]; a[j-1]:=a[j]; a[j]:=t  end

end;

Performance characteristics of these methods:

§ selection sort uses about N2/2 comparisons and N exchanges;
§ insertion sort uses N2/4 comparisons and N2/8 exchanges on the average, twice as

many in the worst case;
§ bubble sort uses N2/2 comparisons and N2/2 exchanges on the average and in the

worst case.

Sorting files with large records

It is possible to arrange things so that any sorting method uses only N
exchanges of full records, by having the algorithm operate indirectly on the file. The
additional array of indices may be considered and the rearrangement may be done
afterwards.

procedure insertion;
var i, j, v: integer;
begin

for i:=l to N do p [i ]:=i;
for i:=2 to N do

begin
v:=p [i ]; j:=i;

while a[p[j-1]]>a[vl do
begin p [j]:=p [j- 1]; j:=j - 1 end;

p [j]:=v
end

end;

Specifically, if the array a[1…N] consists of large records, then we prefer to
manipulate a "pointer array" p[1…N] accessing the original array only for
comparisons. If we define p [ i ] = i initially, then the algorithms above need only be
modified to refer to a p[ i ] rather than a[ i ]. This produces an algorithm that will
"sort" the index array so that p[ 1 ] is the index of the smallest element in a, p[ 2 ] is
the index of the second smallest element in a, etc. and the cost of moving large records



around excessively is avoided. The code above shows how insertion sort might be
modified to work in this way.

We are dealing with two files. Let's consider the situation when there isn't
enough room for another copy of the file. Then the rearrangements may be made in-
site:

procedure insitu;
var i, j, k, t: integer;
begin
for i:=l to N do

if p[i]<>i then
begin
t:=a[i]; k:=i;
repeat

j:=k; a[j]:=a[p[j]];
k:=p[j]; p[j]:=j;

until k=i;
a [j]:=t
end;

end;

The viability of this technique for particular applications of course depends on
the relative size of records and keys in the file to be sorted. Certainly one would not go
to such trouble for a file consisting of small records, because of the extra space
required for the index array and the extra time required for the indirect comparisons.
But for files consisting of large records, it is almost always desirable to use an indirect
sort, and in many applications it may not be necessary to move the data at all. Of
course, for files with very large records, plain selection sort is the method to use.

Because of the availability of this indirect approach, the conclusions we draw
and those which follow when comparing methods to sort files of integers are likely to
apply to more general situations.

Shellsort

Insertion sort is slow because it exchanges only adjacent elements. For example,
if the smallest element happens to be at the end of the array, N steps are needed to get
it where it belongs. Shellsort is a simple extension of insertion sort which gains speed
by allowing exchanges of elements that are far apart.

The idea is to rearrange the file to give it the property that taking every hth

element (starting anywhere) yields a sorted file. Such a file is said to be h-sorted. Put
another way, an h-sorted file is h independent sorted files, interleaved together. By h-
sorting for some large values of h, we can move elements in the array long distances



and thus make it easier to h-sort for smaller values of h. Using such a procedure for
any sequence of values of h which ends in I will produce a sorted file: this is Shellsort.

One way to implement Shellsort would be, for each h, to use insertion sort
independently on each of the h subfiles. But it turns out to be much easier than that: If
we replace every occurrence of "1" by "h" (and "2" by "h+l") in insertion sort, the
resulting program h-sorts the file, as follows.

procedure shellsort;
label 0;
var i, j, h, v: integer;
begin
h:=l; repeat h:=3*h+1 until h>N;
repeat
h:=h div 3;
for i:=h+l to N do
begin

v:=a [i ]; j:=i;
while a[j-h]>v do
begin

a[j]:=a[j-h]; j:=j-h;
if j< = h then goto 0

end;
0: a [j]:=v

end
until h=l;
end;

This program uses the increment sequence 1093, 364, 121, 40, 13, 4, 1. Other
increment sequences might do about as well as this in practice, but some care must be
exercised. The increment sequence in this program is easy to use and leads to an
efficient sort. Many other increment sequences may lead to a more efficient sort, as
well as to a bad sorting sequences.

The description is imprecise because of no one is able to analyse this algorithm
in a theoretical way. There is no analytical comparison to other methods too.

Nevertheless for the sequence given:

Statement: Shellsort never does more than N3/2 comparisons.

Distribution Counting

A very special situation for which there is a simple sorting algorithm is the
following: "sort a file of N records whose keys are distinct integers between 1 and N."



This problem can be solved using a temporary array t with the statement:
for i:=l to N do t[a[i]]:=a [i].

A more realistic problem in the same spirit is:
"sort a file of N records whose keys are integers between 0 and M - 1."

If M is not too large, an algorithm called distribution counting can be used to
solve this problem. The idea is to count the number of keys with each value and then
use the counts to move the records into position on a second pass through the file, as in
the following code:

for j:=0 to M-1 do count[j]:=0;
for i:=l to N do

count [a [i ] ]:=count [a [i j ]+l;
for j:=l to M- 1 do

count [j]:=count [j- 1]+count [j];
for i:=N downto 1 do

begin
b [count [a [i ]]]:=a [i];
count [a [i ] ]:=count [a [i ] ]-1
end;

for i:=l to N do a [i ]:=b [i ];
This method will work very well for the type of files postulated. Furthermore, it

can be extended to produce a much more powerful method - radix sorting.

Quicksort algorithm

The quick-sort algorithm, introduced in 1962 by C.A.R.Hoare, belongs to the
class of so-called divide-and-conquer algorithms, similar as the merge-sort too. It is
popular because of it's not difficult to implement, it's a good "general-purpose" sort (it
works in a variety of situations), and it consumes fewer resources than any other
sorting algorithm in many situations.

procedure quicksort(l, r: integer);
var i: integer;
begin

if r>l then
begin
i:=partition (l, r)
quicksort(l, i-1);
quicksort(i+1, r);
end

end;
It works by partitioning a file into two parts, then sorting the parts

independently. The exact position of the partition depends on the file, and the
algorithm has the following recursive structure:



If the partition method can be made more precise, (for example, choosing right-
most element as a partition element), and the recursive call of this procedure may be
eliminated, then the implementation of the algorithm looks like this:

procedure quicksort (l,r: integer);
var v, t, i, j: integer;
begin

if r>l then
begin
v:=a[r]; i:=l-1; j:=r;
repeat
repeat i:=i+1 until a[i]=>v;
repeat j:=j-1 until a[j]=<v;
t:=a[i]; a[i]:=a[j]; a[j]:=t;
until j=<i;
a[j]:=a[i]; a[i]:=a[r]; a[r]:=t;
quicksort (l,i-1);
quicksort (i+1,r)
end

end;

An example of a partitioning of a larger file (choosing the right-most element):

The crux of the method is the partition procedure, which must rearrange the array
to make the following conditions hold:

§ the element a[i] is in its final place in the array for some i;
§ all the elements left to the a[i] are less then or equal to it;
§ all the elements right to the a[i] are greater then or equal to it.

The first improvement: Removing Recursion

The recursion may be removed by using an explicit pushdown stack, which is
containing "work to be done" in the form of subfiles to be sorted. Any time we need a
subfile to process, we pop the stack. When we partition, we create two subfiles to be
processed which can be pushed on the stack. This leads to the following nonrecursive
implementation:



procedure quicksort;
var t, i, 1, r: integer;
begin
l:=1; r:=N; stackinit;
push (l); push (r);
repeat

if r>l then
begin
i:=partition (l, r);
if (i-l)>(r-i)

then begin push(l); push(i-1); l:=i+l end
else begin push(i+l); push(r); r:=i-I end;
end
else
begin r:=pop; l:=pop end;
until stackempty;
end;

This program differs from the description above in two important ways:
§ first, the two subfiles are not put on the stack in some arbitrary order, but their sizes

are checked and the larger of the two is put on the stack first;
§ second, the smaller of the two subfiles is not put on the stack at all; the values of

the parameters are simply reset.

For Quicksort, the combination of end-recursion removal and the policy of
processing the smaller of the two subfiles first turns out to ensure that the stack need
contain room for only about lgN entries, since each entry on the stack after the top one
must represent a subfile less than half the size of the previous entry.

This is in sharp contrast to the size of the stack in the worst case in the recursive
implementation, which could be as large as N (for example, when the file is already
sorted). This is a subtle but real difficulty with a recursive implementation of
Quicksort: there's always an underlying stack, and a degenerate case on a large file
could cause the program to terminate abnormally because of lack of memory, behavior
obviously undesirable for a library sorting routine.

The simple use of an explicit stack in the program above leads to a far more
efficient program than the direct recursive implementation, but there is still overhead
that could be removed. The problem is that, if both subfiles have only one element, an
entry with r=l is put on the stack only to be immediately taken off and discarded. It is
straightforward to change the program so that it puts no such files on the stack.

Tree diagram of the partitioning process for "a sorting example":



The second improvement: Small Subfiles

The recursive program is to call itself for many small files, so it should use as
good a method as possible when small files are encountered. One obvious way to do
this is to change the sorting procedure:

instead of "if r > l then" to call "if r - l <= M then insertion (l, r)"

The parameter M depends upon the implementation. The value choosen for M
need not be the best possible: the algorithm works the same for the value about 5 - 25.
The improvement in the running time is on the order of 20% for most applications.

The third improvement: Partitioning

There are several possibilities to use a better partitioning element. The safest
choice to avoid the worst case would be a random element from the array for a
partitioning element. Then the worst case will happen with negligibly small
probability. This is a simple example of a "probabilistic algorithm" one which uses
randomness to achieve good performance almost always, regardless of the
arrangement of the input.

Another useful improvement is to take three elements from the file, then use the
median of the three for the partitioning element. If the three elements chosen are from
the left, middle, and right of the array, then the use of sentinels can be avoided as
follows: sort the three elements, then exchange the one in the middle with a[r-1], and
then run the partitioning algorithm on a[l+1 … r-2]. This improvement is called the
median-of'-three partitioning method.

The median-of-three method helps Quicksort in three ways. First, it makes the
worst case much more unlikely to occur in any actual sort. In order for the sort to take
N2 time, two out of the three elements examined must be among the largest or among
the smallest elements in the file, and this must happen consistently through most of the
partitions. Second, it eliminates the need for a sentinel key for partitioning, since this
function is served by the three elements examined before partitioning. Third, it
actually reduces the total average running time of the algorithm by about 5%.



The combination of a nonrecursive implementation of the median-of-three
method with a cutoff for small subfiles can improve the running time of Quicksort
over the naive recursive implementation by 25% to 30%.

Further algorithmic improvements are possible (for example, the median of five
or more elements could be used), but the amount of time gained will be marginal.
More significant time savings can be realized (with less effort) by coding the inner
loops (or the whole program) in assembly or machine language. Neither path is
recommended except for experts with serious sorting applications.

Order Statistics

Sorting programs are often used for applications in which a full sort is not
necessary. For example, suppose one wanted to find the median of a set of numbers.
One way to proceed would be to sort the numbers and look at the middle one, but we
can do better.

The operation of finding the median is a special case of the operation of
selection:

find the kth smallest of a set of numbers.

Since an algorithm cannot guarantee that a particular item is the kth smallest
without having examined and identified the k - 1 elements which are smaller and the N
- k elements which are larger, most selection algorithms can return all of the k smallest
elements of a file without a great deal of extra calculation.

Selection has many applications in the processing of experimental and other
data. The use of the median and other order statistics to divide a file up into smaller
groups is very common. Often only a small part of a large file is to be saved for further
processing; in such cases, a program which can select, say, the top ten percent of the
elements of the file might be more appropriate than a full sort.

An algorithm which can be directly adapted to selection (if k is very small) -
selection sort will work very well, requiring time proportional to Nk:

first find the smallest element, then find the second smallest by finding the smallest
of the remaining items, etc.

For slightly larger k, priority queues can be immediately adapted to run in time
proportional to N log k.

An interesting method which adapts well to all values of k and runs in linear
time on the average can be formulated from the partitioning procedure. The
partitioning method rearranges an array a[1..N] and returns an integer i such that a[1],
. . ., a [i-1] are less than or equal to a[i] and a[i+1], . . ., a[N] are greater than or equal



to a[i]. If the kth smal lest element in the file is sought and we have k=i, then we're
done. Otherwise, if k < i then we need to look for the kth smallest element in the left
subfile, and if k > i then we need to look for the (k-i)th smallest element in the right
subfile. Adjusting this argument to apply to finding the kth smallest element in an array
a[l.. r] leads immediately to the following recursive formulation.

procedure select(l.r,k: integer);
var i: integer;

begin
if r>l then

begin
i:=partition(l,r);
if i>l+k-1 then select(l,i-l,k);
if i<l+k-1 then select (i+l, r, k - i);
end

end;

This procedure rearranges the array so that a[1] … a[k - l] are less than or equal
to a[k] and a[k+1], …, a [r] are greater than or equal to a [k]. For example, the call
select(1, N, (N+1)div 2) partitions the array on its median value.

Since the select procedure always ends with only one call on itself, it is not
really recursive in that no stack is needed to remove the recursion: when the time
comes for the recursive call, we can simply reset the parameters and go back to the
beginning, since there is nothing more to do. Also, we can eliminate the simple
calculations involving k, as in the following implementation.

procedure select(k: integer);
var v, t, i, j, l, r: integer;
begin
l:=1; r:=N;
while r>l do
begin

v:=a[r]; i:=l-1; j:=r;
repeat
repeat i:=i+l until a[i]>=v;
repeat j:=j-1 until a[j]<=v;
t:=a[i]; a[i]:=a[j]; a[j]:=t;
until j< =i;
a[j]:=a[i]; a[i]:=a[r]; a[r]:=t;
if i>=k then r:=i-1;
if i<=k then l:=i+l;

end;
end



We can (very roughly) argue that, on a very large file, each partition should
roughly split the array in half, so the whole process should require about

N +N/2 +N/4 +N/8 +... = 2N
Comparisons, and this rough argument is not too far from the truth.

Property: Quicksort-based selection is linear--time on the average.

A significantly more complex analysis leads to the result that the average
number of comparisons is about

2N + 2k ln(N/k) + 2(N - k) ln(N/(N - k),
which is linear for any allowed value of k. For k = N/2 (finding the median), this
evaluates to about (2 + 2 ln 2)N comparisons.

Radix Sorting

The "keys" used to define the order of the records for files for many sorting
applications can be very complicated. For many applications, however, it is possible to
take advantage of the fact that the keys can be thought of as numbers from some
restricted range. Sorting methods which take advantage of the digital properties of
these numbers are called radix sorts. These methods do not just compare keys: they
process and compare pieces of keys.

Radix-sorting algorithms treat the keys as numbers represented in a base-M
number system, for different values of M (the radix), and work with individual digits
of the numbers. Of course, with most computers it's more convenient to work with M
= 2 (or some power of 2).

Anything that's represented inside a digital computer can be treated as a binary
number, so many sorting applications can be recast to make feasible the use of radix
sorts operating on keys which are binary numbers. Unfortunately, Pascal and many
other languages intentionally make it difficult to write a program that depends on the
binary representation of numbers.

Fortunately, it's not too difficult to use arithmetic operations to simulate the
operations needed, and so here we'll be able to write (inefficient) Pascal programs to
describe the algorithms that can be easily translaled to efficient programs in
programming languages that support bit operations on binary numbers.

Bits

Given a (key represented as a) binary number, the fundamental operation
needed for radix sorts is extracting a contiguous set of bits from the number. Suppose
we are to process keys which we know to be integers between 0 and 1000.

We may assume that these are represented by ten-bit binary numbers. In
machine language, bits are extracted from binary numbers by using bitwise "and"



operations and shifts. For example, the leading two bits of a ten-bit number are
extracted by shifting right eight bit positions, then doing a bitwise "and" with the mask
0000000011. In Pascal, these operations can be simulated with div and mod. For
example, two bits of a ten-bitnumber x are given by (x div 256) mod 4.

In general, "shift x right k bit positions" can be simulated by computing x div 2k

and "zero all but the j rightmost bits of x" can be simulated by computing x mod 2j. In
our description of the radix-sort algorithms, we'll assume the existence of a

function bits (x, k, j: integer): integer

which combines these operations to return the j bits which appear k bits from the right
in x by computing (x div 2k) mod 2j. This function can be made efficient by
precomputing (or defining as constants) the powers of 2. Many Pascal
implementations have extensions to the language which allow these operations to be
specified somewhat more directly.

Armed with this basic tool, we'll consider two types of radix sorts which differ
in the order in which they examine the bits of the keys. We assume that the keys are
not short, so that it is worthwhile to go to the effort of extracting their bits. If the keys
are short, then the distribution-counting method can be used. Recall that this method
can sort N keys known to be integers between 0 and M - 1 in linear time, using one
auxiliary table of size M for counts and another of size N for rearranging records.
Thus, if we can afford a table of size 2b, then b-bit keys can easily be sorted in linear
time. Radix sorting comes into play if the keys are sufficiently long (say b = 32) that
this is not possible.

The first basic method for radix sorting that we'll consider examines the bits in
the keys from left to right. It is based on the fact that the outcome of "comparisons"
between two keys depends only on the value of the bits in the first position at which
they differ (reading from left to right). Thus, all keys with leading bit 0 appear before
all keys with leading bit 1 in the sorted file; among the keys with leading bit 1, all keys
with second bit 0 appear before all keys with second bit 1, and so forth. The left-to-
right radix sort, which is called radix exchange sort, sorts by systematically dividing
up the keys in this way.

The second basic method is called straight radix sort, and examines the bits in
the keys from right to left. It is based on an interesting principle that reduces a sort on
b-bit keys to b sorts on 1-bit keys. This can be combined with distribution counting to
produce a sort that runs in linear time under quite generous assumptions.

Radix Exchange Sort

Suppose we can rearrange the records of a file so that all those whose keys
begin with a 0 bit come before all those whose keys begin with a 1 bit. This



immediately defines a recursive sorting method: if the two subfiles are sorted
independently, then the whole file is sorted:

procedure radixexchange (l, r, b: integer);
var t, i, j: integer;
begin
if (r>l) and (b>=0) then

begin
i:=l; j:=r;
repeat

while (bits(a[i], b, 1)=0) and (i<j) do i:=i+l;
while (bits (a[j], b, 1)=1) and (i <j) do j:=j - 1;
t:=a[i]; a[i]:=aU]; all]:=t;

until j=i;
if bits (a[r], b, 1)=0 then j:=j+l;
radixexchange (l, j-1, b - 1);
radixexchange (j, r, b - 1)
end

end;

For simplicity, assume that a[1 … N] contains positive integers less than 232 (so
that they can be represented as 31-bit binary numbers). Then radixexchange (1, N, 30)
will sort the array. The variable b keeps track of the bit being examined, ranging from
30 (leftmost) down to 0 (rightmost).

One serious potential problem for radix sort is that degenerate partitions
(partitions with all keys having the same value for the bit being used) can happen
frequently. This situation arises commonly in real files when small numbers (with
many leading zeros) are being sorted. It also occurs for characters: for example,
suppose that 32-bit keys are made up from four characters by encoding each in a
standard eight-bit code and then putting them together. Then degenerate partitions are
likely to occur at the beginning of each character position, since for example, lower-
case letters all begin with the same bits in most character codes. Many other similar
effects are obviously of concern when sorting encoded data.

It can be seen from the analysis of the algorithm, that once a key is
distinguished from all the other keys by its left bits, no further bits are examined. This
is a distinct advantage in some situations, a disadvantage in others. When the keys are
truly random bits, each key should differ from the others after about lgN bits, which
could be many fewer than the number of bits in the keys.

On the other hand, notice that all the bits of equal keys are examined. Radix
sorting simply does not work well on files which contain many equal keys. Radix-
exchange sort is actually slightly faster than Quicksort if the keys to be sorted are
comprised of truly random bits, but Quicksort adapts better to less random situations.



Figure below gives the tree that represents the partitioning process for radix
exchange sort, and this tree may be compared with tree for Quicksort (above):

The basic recursive implementation given above can be improved by removing
recursion and treating small subfiles differently.

Straight Radix Sort

An alternative radix-sorting method is to examine the bits from right to left.
This is the method used by old computer-card-sorting machines: a deck of cards was
run through the machine 80 times, once for each column, proceeding from right to left.
Figure below shows how a right-to-left bit-by-bit radix sort works on the file of
sample keys:

It's not easy to be convinced that the method works; in fact it doesn't work at all
unless the one-bit partitioning process is stable. Once stability has been identified as
being important, a trivial proof that the method works can be found: after putting keys
with ith bit 0 before those with ith bit I (in a stable manner), we know that any two keys
appear in proper order (on the basis of the bits so far examined) in the file either
because their ith bits are different, in which case partitioning puts them in the proper
order, or because their ith bits are the same, in which case they're in proper order
because of stability.

The requirement of stability means, for example, that the partitioning method
used in the radix-exchange sort can't be used for this right-to-left sort. The partitioning
is like sorting a file with only two values, and the distribution counting sort is entirely



appropriate for this. If M = 2 in the distribution counting program and replace a[i] by
bits(a[i], k, 1), then that program becomes a method for sorting the elements of the
array a on the bit k positions from the right and putting the result in a temporary array
t. But there's no reason to use M = 2, in fact, we should make M as large as possible,
realizing that we need a table of M counts. This corresponds to using m bits at a time
during the sort, with M = 2m. Thus, straight radix sort becomes little more than a
generalization of distribution-counting sort:

procedure straightradix;
var i, j, pass: integer;
count: array [0..M] of integer;
begin
for pass:=0 to (w div m) - 1 do

begin
for j:=0 to M-1 do count [j]:=0;
for i:=l to N do

count[bits(a[i], pass*m, m)]:=count[bits(a[i], pass*m, m)]+1;
for j:=l to M-1 do

count [j]:=count [j-1] + count [j];
for i:=N downto 1 do

begin
b[count[bits(a[i], pass*m, m)]]:=a[i];
count[bits(a[i], pass*m, m)]:=count[bits(a [i], pass*m, m)] -1;
end;

for i:=l to N do a[i]:=b[i];
end;

end;

For clarity, this procedure uses two calls on bits to increment and decrement
count when one would suffice. Also, the correspondence M = 2m has been preserved in
the variable names.

The procedure above works properly only if w is a multiple of m. Normally, this
is not a particularly restrictive assumption for radix sort: it simply corresponds to
dividing the keys to be sorted into an integral number of equal-size pieces. When m=w
we have distribution counting sort; when m=l we have straight radix sort, the right-to-
left bit-by-bit radix sort described in the example above.

Performance Characteristics of Radix Sorts

The running times of both basic radix sorts for sorting N records with b-bit keys are
essentially Nb. On the one hand, one can think of this running time as being essentially
the same as N log n, since if the numbers are all different, b must be at least log N. On
the other hand, both methods usually use many fewer than Nb operations: the left-to-



right method because it can stop once differences between keys have been found, and
the right-to-left method because it can process many bits at once.

Property 1: Radix-exchange sort uses on the average about N lg N bit comparisons.

Property 2: Both radix sorts use less than Nb bit comparisons to sort N b -bit keys.

Property 3: Straight radix sort can sort N records with b-bit keys in b/m passes, using
extra space for 2m counters (and a buffer for rearranging the file).

A Linear Sort

The straight radix sort implementation makes b/m passes through the file. By
making m large, we get a very efficient sorting method, as long as we have M = 2m

words of memory available. A reasonable choice is to make m about one quarter the
word-size (b/4), so that the radix sort is four distribution counting passes.

The keys are treated as base-M numbers, and each (base-M) digit of each key is
examined, but there are only four digits per key. (This corresponds directly to the
architectural organization of many computers: one typical organization has 32-bit
words, each consisting of four 8-bit bytes. The bits procedure then winds up extracting
particular bytes from words in this case, which obviously can be done very efficiently
on such computers.) Now, each distribution-counting pass is linear, and since there are
only four of them, the entire sort is linear, certainly the best performance we could
hope for in a sort.

In fact, it turns out that we can get by with only two distribution counting
passes. (Even a careful reader is likely to have difficulty telling right from left by this
time, so some effort may be necessary to understand this method.) We do this by
taking advantage of the fact that the file will be almost sorted if only the leading b/2
bits of the b-bit keys are used.

The sort can be completed efficiently by using insertion sort on the whole file
afterwards. This method is obviously a trivial modification to the implementation
above: to do a right-to-left sort using the leading half of the keys, we simply start the
outer loop at pass=b div (2*m) rather than pass=l. Then a conventional insertion sort
can be used on the nearly ordered file that results.

Using two distribution counting passes (with m about one-fourth the word size)
and then using insertion sort to finish the job will yield a sorting method that is likely
to run faster than any of the others we've seen for large files whose keys are random
bits. Its main disadvantage is that it requires an extra array of the same size as the
array being sorted. It is possible to eliminate the extra array using linked-list
techniques, but extra space proportional to N (for the links) is still required.



A linear sort is obviously desirable for many applications, but there are reasons
why it is not the panacea that it might seem:

§ First, its efficiency really does depend on the keys being random bits, randomly
ordered. If this condition is not satisfied, severely degraded performance is
likely.

§ Second, it requires extra space proportional to the size of the array being sorted.
§ Third, the "inner loop" of the program actually contains quite a few instructions,

so even though it's linear, it won't be as much faster than Quicksort (say) as one
might expect, except for quite large files (at which point the extra array becomes
a real liability).

The choice between Quicksort and radix sort is a difficult one that is likely to
depend not only on features of the application, such as key, record, and file size, but
also on features of the programming and machine environment that relate to the
efficiency of access and use of individual bits. Again, such tradeoffs need to be studied
by an expert and this type of study is likely to be worthwhile only for serious sorting
applications.

Mergesort

The merge sort algorithm is closely following the divide-and-conquer
paradigm. Intuitively, it operates as follows:

• Divide: Divide the n-element sequence to be sorted into two subsequences of (n/2)
elements each.

• Conquer: Sort the two subsequences recursively using mergesort.
• Combine: Merge the two sorted subsequences to produce the sorted answer.

Suppose we have two sorted arrays a[1…N], b[1…M], and we need to merge
them into one. The mergesort algorithm is based on a merge procedure, which can be
presented as follows:

procedure merge (a, b);
var a,b,c: array [1..M + N)] of integer;
begin
i:=1; j:=1;
a[M+1]:=maxint; b[N+1]:=maxint;
for k:=1 to M+N do

if a[i]<b[j]
then begin c[k]:=a[i]; i:=i+1 end
else begin c[k]:=b[j]; j:=j+1 end;

end;



The above procedure works with arrays as an input data. If the input data are
lists, then the output can be a list too:

type link=^node;
node=record key: integer; next: link end;
var t,z:link; N: integer;
function merge(a,b:link):link;
var c:link;
begin c:=z;

repeat
if a^.key=<b^.key
then begin c^.next:=a; c:=a; a:=a^.next end
else begin c^.next:=b; c:=b; b:=b^.next end
until c^.key=maxint;
merge:=z^.next; z^.next:=z;

end;

To perform the mergesort, the algorithm for arrays can be as follows:

procedure mergesort(l,r: integer);
var i,j,k,m: integer;
begin if r-l>0 then

begin m:=(r+l) div 2;
mergesort(l,m); mergesort(m+1,r);
for i:=m downto l do b[i]:=a[i];
for j:=m+1 to r do b[r+m+1-j]:=a[j];
for k:=l to r do if b[i]<b[j]
then begin a[k]:=b[i]; i:=i+1 end
else begin a[k]:=b[j]; j:=j-1 end;
end;

end;

or for lists:

function mergesort(c:link):link;
var a,b:link;
begin if c^.next=z then mergesort:=c else

begin
a:=c; b:=c^.next; b:=b^.next; b:=b^.next;
while b<>z do begin c:=c^.next; b:=b^.next; b:=b^.next end;
b:=c^.next; c^.next:=z;
mergesort:=merge(mergesort(a),mergesort(b));
end;

end;



Property 1: Mergesort requires about N lg N comparisons to sort any file of N
elements.

Property 2: Mergesort is stable.

Property 3: Mergesort is insensible to the initial order of its input.

External Sorting

Many important sorting applications involve processing very large files, much
too large to fit into the primary memory of any computer. Methods appropriate for
such applications are called external methods, since they involve a large amount of
processing external to the central processing unit.

There are two major factors which make external algorithms quite different:
§ First, the cost of accessing an item is orders of magnitude greater than any

bookkeeping or calculating costs.
§ Second, over and above with this higher cost, there are severe restrictions on

access, depending on the external storage medium used: for example, items on a
magnetic tape can be accessed only in a sequential manner.

The wide variety of external storage device types and costs makes the
development of external sorting methods very dependent on current technology. These
methods can be complicated, and many parameters affect their performance: that a
clever method might go unappreciated or unused because of a simple change in the
technology is a definite possibility in external sorting. For this reason, only general
methods will be considered rather than specific implementations.

For external sorting, the "systems" aspect of the problem is certainly as
important as the "algorithms" aspect. Both areas must be carefully considered if an
effective external sort is to be developed. The primary costs in external sorting are for
input-output. A good exercise for someone planning to implement an efficient
program to sort a very large file is first to implement an efficient program to copy a
large file, then (if that was too easy) implement an efficient program to reverse the
order of the elements in a large file. The systems problems that arise in trying to solve
these problems efficiently are similar to those that arise in external sorts.

Permuting a large external file in any non-trivial way is about as difficult as
sorting it, even though no key comparisons, etc. are required. In external sorting, we
are concerned mainly with limiting the number of times each piece of data is moved
between the external storage medium and the primary memory, and being sure that
such transfers are done as efficiently as allowed by the available hardware.

External sorting methods have been developed which are suitable for the
punched cards and paper tape of the past, the magnetic tapes and disks of the present,



and emerging technologies such as bubble memories and videodisks. The essential
differences among the various devices are the relative size and speed of available
storage and the types of data access restrictions.

We'll concentrate on basic methods for sorting on magnetic tape and disk because
these devices are in widespread use and illustrate the two fundamentally different
modes of access that characterize many external storage systems. Often, modern
computer systems have a "storage hierarchy" of several progressively slower, cheaper,
and larger memories. Many of the algorithms can be adapted to run well in such an
environment, but we'll deal exclusively with "two-level" memory hierarchies
consisting of main memory and disk or tape.

Sort-Merge

Most external sorting methods use the following general strategy: make a first
pass through the file to be sorted, breaking it up into blocks about the size of the
internal memory, and sort these blocks. Then merge the sorted blocks together by
making several passes through the file, creating successively larger sorted blocks until
the whole file is sorted. The data is most often accessed in a sequential manner, a
property which makes this method appropriate for most external devices. Algorithms
for external sorting strive to reduce the number of passes through the file and to reduce
the cost of a single pass to be as close to the cost of a copy as possible.

Since most of the cost of an external sorting method is for input-output, we can
get a rough measure of the cost of a sort-merge by counting the number of times each
word in the file is read or written (the number of passes over all the data). For many
applications, the methods involve on the order of ten or fewer such passes. Note that
this implies that we're interested in methods that can eliminate even a single pass.
Also, the running time of the whole external sort can be easily estimated from the
running time of something like the "reverse file copy" exercise.

Balanced Multiway Merging

To begin, we'll trace through the various steps of the simplest sort-merge
procedure for a small example. Suppose that we have records with the keys

A S 0 R T I N G A N D M E R G I N G E X A M P L E

on an input tape; these are to be sorted and put onto an output tape. Using a "tape"
simply means that we're restricted to reading the records sequentially: the second
record can't be read until the first is read, and so on. Assume further that we have only
enough room for three records in our computer memory but that we have plenty of
tapes available.



The first step is to read in the file three records at a time, sort them to make
three-record blocks, and output the sorted blocks. Thus, first we read in A S 0 and
output the block A 0 S, next we read in R T I and output the block I R T, and so forth.
Now, in order for these blocks to be merged together, they must be on different tapes.
If we want to do a three-way merge, then we would use three tapes, ending up after the
sorting pass with the configuration shown in figure:

Now we're ready to merge the sorted blocks of size three. We read the first
record off each input tape (there's just enough room in the memory) and output the one
with the smallest key. Then the next record from the same tape as the record just
output is read in and, again, the record in memory with the smallest key is output.
When the end of a three-word block in the input is encountered, that tape is ignored
until the blocks from the other two tapes have been processed and nine records have
been output. Then the process is repeated to merge the second three-word block on
each tape into a nine-word block (which is output on a different tape, to get ready for
the next merge). By continuing in this way, we get three long blocks configured as
shown in figure next:

Now one more three-way merge completes the sort. If we had a much longer
file with many blocks of size 9 on each tape, then we would finish the second pass
with blocks of size 27 on tapes 1, 2, and 3, then a third pass would produce blocks of
size 81 on tapes 4, 5, and 6, and so forth. We need six tapes to sort an arbitrarily large
file: three for the input and three for the output of each three-way merge. (Actually, we
could get by with just four tapes: the output could be put on just one tape, and then the
blocks from that tape distributed to the three input tapes in between merging passes.)

This method is called the balanced multiway erge: it is a reasonable algorithm
for external sorting and a good starting point for the implementation of an external
sort. The more sophisticated algorithms below can make the sort run a little faster, but
not much. (However, when execution times are measured in hours, as is not



uncommon in external sorting, even a small percentage decrease in running time can
be quite significant.)

Suppose that we have N words to be manipulated by the sort and an internal
memory of size M. Then the "sort" pass produces about N/M sorted blocks. (This
estimate assumes one-word records: for larger records, the number of sorted blocks is
computed by multiplying further by the record size.) If we do P-way merges on each
subsequent pass, then the number of subsequent passes is about logp (N/M), since each
pass reduces the number of sorted blocks by a factor of P.

For example, the formula above says that using a four-way merge to sort a 200
million-word file on a computer with a million words of memory should take a total of
about five passes. A very rough estimate of the running time can be found by
multiplying by five the running time for the reverse file copy implementation
suggested above.

Replacement Selection

It turns out that the details of the implementation can be developed in an elegant
and efficient way using priority queues. First, we'll see that priority queues provide a
natural way to implement a multiway merge. More important, it turns out that we can
use priority queues for the initial sorting pass in such a way that they can produce
sorted blocks much longer than could fit into internal memory.

The basic operation needed to do P-way merging is repeatedly to output the
smallest of the smallest elements not yet output from each of the P blocks to be
merged. That smallest element should be replaced with the next element from the
block from which it came. The replace operation on a priority queue of size P is
exactly what is needed. Specifically, to do a P-way merge we begin by filling up a
priority queue of size P with the smallest element from each of the P inputs. Then we
output the smallest element and replace it in the priority queue with the next element
from its block.

The process of merging A 0 S with I R T and A G N (the first merge from our
example above), using a heap of size three in the merging process is shown in figure:



The "keys" in these heaps are the smallest (first) key in each node. For clarity,
we show entire blocks in the nodes of the heap; of course, an actual implementation
would be an indirect heap of pointers into the blocks. First, the A is output so that the
O (the next key in its block) becomes the "key" of the root. This violates the heap
condition, so that node is exchanged with the node containing A, G, and N. Then that
A is output and replaced with the next key in its block, the G. This does not violate the
heap condition, so no further change is necessary.

Continuing in this way, we produce the sorted file (read the smallest key in the
root node of the trees in figure above to see the keys in the order in which they appear
in the first heap position and are output). When a block is exhausted, a sentinel is put
on the heap and considered to be larger than all the other keys. When the heap consists
of all sentinels, the merge is completed. This way of using priority queues is
sometimes called replacement selection.

Thus to do a P-way merge, we can use replacement selection on a priority queue
of size P to find each element to be output in log P steps. This performance difference
has no particular practical relevance, since a brute-force implementation can find each
element to output in P steps and P is normally so small that this cost is dwarfed by the
cost of actually outputting the element. The real importance of replacement selection
is the way that it can be used in the first part of the sort-merge process: to form the
initial sorted blocks which provide the basis for the merging passes.

The idea is to pass the (unordered) input through a large priority queue, always
writing out the smallest element on the priority queue as above, and always replacing
it with the next element from the input, with one additional proviso:

if the new element is smaller than the last one output, then, since it could
not possibly become part of the current sorted block, it should be marked
as a member of the next block and treated as greater than all elements in
the current block.

When L marked element makes it to the top of the priority queue, the old block
is ended and a new block started. Our example file clearly demonstrates the value of
replacement selection. With an internal memory capable of holding only three records,
we can produce sorted blocks of size 5, 3, 6, 4, 5, and 2, as illustrated in figure:



As before, the order in which the keys occupy the first position in the heap is the
order in which they are output. The shading indicates which keys in the heap belong to
which different blocks: an element marked the same way as the element at the root
belongs to the current sorted block and the others belong to the next sorted block. The
heap condition (first key less than the second and third) is maintained throughout, with
elements in the next sorted block considered to be greater than elements in the current
sorted block. The first run ends with I N G in the heap, since these keys all arrived
with larger keys at the root (so they couldn't be included in the first run), the second
run ends with A N D in the heap, etc.

The practical effect of this is to save one merging pass: rather than starting with
sorted runs about the size of the internal memory and then taking a merging pass to
produce runs about twice the size of the internal memory, we can start right off with
runs about twice the size of the internal memory, by using replacement selection with
a priority queue of size M. If there is some order in the keys, then the runs will be
much, much longer. For example, if no key has more than M larger keys before it in
the file, the file will be completely sorted by the replacement selection pass, and no
merging will be necessary! This is the most important practical reason to use the
method.

In summary, the replacement selection technique can be used for both the "sort"
and the "merge" steps of a balanced multiway merge.

Property: A file of N records can be sorted using an internal memory capable of
holding M records and (P + 1) tapes in about 1 + logP (N/2M) passes.

We first use replacement selection with a priority queue of size M to produce
initial runs of size about 2M (in a random situation) or more (if the file is partially
ordered), then use replacement selection with a priority queue of size P for about
logP (N/2M) (or fewer) merge passes.

Practical Considerations

To finish implementing the sorting method outlined above, it is necessary to
implement the input-output functions which actually transfer data between the
processor and the external devices. These functions are obviously the key to good
performance for the external sort, and they just as obviously require careful
consideration of some systems (as opposed to algorithm) issues. (Readers not
concerned with computers at the "systems" level may wish to skim the next few
paragraphs.)

A major goal in the implementation should be to overlap reading, writing, and
computing as much as possible. Most large computer systems have independent
processing units for controlling the large-scale input/output (I/O) devices which make



this overlapping possible. The efficiency to be achieved by an external sorting method
depends on the number of such devices available.

For each file being read or written, the standard systems programming
technique called double-buffering can be used to maximize the overlap of I/O with
computing. The idea is to maintain two "buffers," one for use by the main processor,
one for use by the I/O device (or the processor which controls the I/O device). For
input, the processor uses one buffer while the input device is filling the other. When
the processor has finished using its buffer, it waits until the input device has filled its
buffer, and then the buffers switch roles:

the processor uses the new data in the just-filled buffer while the input device
refills the buffer with the data already used by the processor.

The same technique works for output, with the roles of the processor and the
device reversed. Usually the I/O time is far greater than the processing time and so the
effect of double-buffering is to overlap the computation time entirely; thus the buffers
should be as large as possible.

A difficulty with double-buffering is that it really uses only about half the
available memory space. This can lead to inefficiency if many buffers are involved, as
is the case in P-way merging when P is not small. This problem can be dealt with
using a technique called forecasting, which requires the use of only one extra buffer
(not P) during the merging process.

Forecasting works as follows. Certainly the best way to overlap input with
computation during the replacement selection process is to overlap the input of the
buffer that needs to be filled next with the processing part of the algorithm. And it is
easy to determine which buffer this is: the next input buffer to be emptied is the one
whose last item is smallest.

For example, when merging A 0 S with I R T and A G N we know that the third
buffer will be the first to empty, then the first. A simple way to overlap processing
with input for multiway merging is therefore to keep one extra buffer which is filled
by the input device according to this rule. When the processor encounters an empty
buffer, it waits until the input buffer is filled (if it hasn't been filled already), then
switches to begin using that buffer and directs the input device to begin filling the
buffer just emptied according to the forecasting rule.

The most important decision to be made in the implementation of the multiway
merge is the choice of the value of P, the "order" of the merge. For tape sorting, when
only sequential access is allowed, this choice is easy:

P must be one less than the number of tape units available, since the
multiway merge uses P input tapes and one output tape.



Obviously, there should be at least two input tapes, so it doesn't make sense to
try to do tape sorting with less than three tapes.

For disk sorting, when access to arbitrary positions is allowed but is somewhat
more expensive than sequential access, it is also reasonable to choose P to be one less
than the number of disks available, to avoid the higher cost of nonsequential access
that would be involved, for example, if two different input files were on the same disk.
Another alternative commonly used is to pick P large enough that the sort will be
complete in two merging phases: it is usually unreasonable to try to do the sort in one
pass, but a two-pass sort can often be done with a reasonably small P.

Since replacement selection produces about N/2M runs and each merging pass
divides the number of runs by P, this means that P should be chosen to be the smallest
integer with P2 > N/2M. For our example of sorting a 200-million-word file on a
computer with a one-million-word memory, this implies that P = 11 would be a safe
choice to ensure a two-pass sort. The best choice between these two alternatives of the
lowest reasonable value of P and the highest reasonable value of P is very dependent
on many systems parameters: both alternatives (and some in between) should be
considered.

Polyphase Merging

One problem with balanced multiway merging for tape sorting is that it requires
either an excessive number of tape units or excessive copying. For P-way merging
either we must use 2P tapes (P for input and P for output) or we must copy almost all
of the file from a single output tape to P input tapes between merging passes, which
effectively doubles the number of passes to be about 2 logP (N/2M). Several clever
tape-sorting algorithms have been invented which eliminate virtually all of this
copying by changing the way in which the small sorted blocks are merged together.
The most prominent of these methods is called polyphase merging.

The basic idea behind polyphase merging is to distribute the sorted blocks
produced by replacement selection somewhat unevenly among the available tape units
(leaving one empty) and then to apply a "merge-until-empty" strategy, at which point
one of the output tapes and the input tape switch roles.

For example, suppose that we have just three tapes, and we start out with the
initial configuration of sorted blocks on the tapes shown at the top of figure:



(This comes from applying replacement selection to our example file with an
internal memory that can only hold two records.) Tape 3 is initially empty, the output
tape for the first merges. Now, after three two-way merges from tapes I and 2 to tape
3, the second tape becomes empty. Then, after two two-way merges from tapes I and 3
to tape 2, the first tape becomes empty. The sort is completed in two more steps. First,
a two-way merge from tapes 2 and 3 to tape I leaves one file on tape 2, one file on tape
1. Then a two-way merge from tapes I and 2 to tape 3 leaves the entire sorted file on
tape 3.

This merge-until-empty strategy can be extended to work for an arbitrary
number of tapes. Table below shows how six tapes might be used to sort 497 initial
runs:

Tape 1 61 0 31 15 7 3 1 0 1

Tape 2 0 61 30 14 6 2 0 1 0

Tape 3 120 59 28 12 4 0 2 1 0

Tape 4 116 55 24 8 0 4 2 1 0

Tape 5 108 47 16 0 8 4 2 1 0

Tape 6 92 31 0 16 8 4 2 1 0

If we start out as indicated in the first column of table, with Tape 2 being the
output tape, Tape I having 61 initial runs, Tape 3 having 120 initial runs, etc. as
indicated in the first column of table, then after running a five-way "merge until
empty," we have Tape I empty, Tape 2 with 61 (long) runs, Tape 3 with 59 runs, etc.,
as shown in the second column of table. At this point, we can rewind Tape 2 and make
it an input tape, and rewind Tape I and make it the output tape. Continuing in this way,
we eventually get the whole sorted file onto Tape 1. The merge is broken up into many
phases which don't involve all the data, but no direct copying is involved.



The main difficulty in implementing a polyphase merge is to determine how to
distribute the initial runs. It is not difficult to see how to build the table above by
working backwards:

take the largest number in each column, make it zero, and add it to each of
the other numbers to get the previous column.

This corresponds to defining the highest-order merge for the previous column
which could give the present column. This technique works for any number of tapes
(at least three):

the numbers which arise are "generalized Fibonacci numbers" which have
many interesting properties.

Of course, the number of initial runs may not be known in advance, and it
probably won't be exactly a generalized Fibonacci number. Thus a number of
"dummy" runs must be added to make the number of initial runs exactly what is
needed for the table.

The analysis of polyphase merging is complicated and interesting, and yields
surprising results. For example, it turns out that the very best method for distributing
dummy runs among the tapes involves using extra phases and more dummy runs than
would seem to be needed. The reason for this is that some runs are used in merges
much more often than others.

Many other factors must be taken into consideration in implementing a most
efficient tape-sorting method. A major factor which we have not considered at all is
the time that it takes to rewind a tape. This subject has been studied extensively, and
many fascinating methods have been defined. However, as mentioned above, the
savings achievable over the simple multiway balanced merge are quite limited. Even
polyphase merging is better than balanced merging only for small P, and then not
substantially. For P > 8, balanced merging is likely to run faster than polyphase, and
for smaller P the effect of polyphase is basically to save two tapes (a balanced merge
with two extra tapes will run faster).

An Easier Way

Many modern computer systems provide a large virtual memory capability
which should not be overlooked in implementing a method for sorting very large files.
In a good virtual-memory system, the programmer can address a very large amount of
data, leaving to the system the responsibility of making sure that the addressed data is
transferred from external to internal storage when needed. This strategy relies on the
fact that many programs have a relatively small "locality of reference":

each reference to memory is likely to be to an area of memory that is
relatively close to other recently referenced areas.



This implies that transfers from external to internal storage are needed
infrequently. An internal sorting method with a small locality of reference can work
very well on a virtual-memory system. (For example, Quicksort has two "localities":
most references are near one of the two partitioning pointers).

But a method such as radix sorting, which has no locality of reference
whatsoever, would be disastrous on a virtual memory system, and even Quicksort
could cause problems, depending on how well the available virtual memory system is
implemented.

On the other hand, the strategy of using a simple internal sorting method for
sorting disk files deserves serious consideration in a ood virtual-memory environment.


