
Document Object Model
Objectives
To understand what the Document Object Model is
To understand and be able to use the major DOM features
To use JavaScript to manipulate an XML document
To use Java to manipulate an XML document
To become familiar with DOM-based parsers

Introduction
DOMs are to manipulate the contents of an XML document.

XML documents, when parsed, are represented as a hierarchical tree structure in memory. This tree
structure contains the document's elements, attributes, content, etc. XML was designed to be a live,
dynamic technology - a programmer can modify the contents of the tree structure, which essentially
allows the programmer to add data, remove data, query for data, etc. in a manner similar to a
database.

The W3C provides a standard recommendation for building a tree structure in memory for XML
documents called the XML Document Object Model (DOM). Any parser that adheres to this
recommendation is called a DOM-based parser. Each element, attribute, CDATA section, etc., in
an XML document is represented by a node in the DOM tree. For example, the simple XML
document

<?xml version = "1.0"?>
<message from = "Paul" to = "Tem">
 <body>Hi, Tem!</body>
</message>
results in a DOM tree with several nodes. One node is created for the message element. This node
has a child node that corresponds to the body element. The body element also has a child node that
corresponds to the text Hi, Tem!. The from and to attributes of the message element also have
corresponding nodes in the DOM tree.

A DOM-based parser exposes (i.e., makes available) a programmatic library - called the DOM
Application Programming Interface (API) - that allows data in an XML document to be accessed
and modified by manipulating the nodes in a DOM tree.

Portability:

The DOM interfaces for creating and manipulating XML
documents are platform and language independent. DOM
parsers exist for many different languages, including Java,
C, C+ +, Python and Perl.
Another API - JDOM-provides a higher-level API than the W3C DOM for working with XML
documents in Java. Because JDOM is an API that is specific to the Java programming language, it
can take advantage of features in Java that make it easier to program. JDOM is still in the early
stages of development (visit www.jdom.org for more information on the JDOM API.

In order to use the DOM API, programming experience is required. Although the DOM API is
available in many languages (e.g., C, Java, VBScript, etc.), JavaScript and Java will be emphasized.

DOM Implementations
DOM-based parsers are written in a variety of programming languages and are usually available for
download at no charge. Many applications (such as Internet Explorer 5) have built-in parsers.
Example 1 lists six different DOM-based parsers that are available at no charge:

Parser Description
JAXP Sun Microsystem's Java API for XML Parsing: java.

Sun. com/xml
XML4J IBM's XML Parser for Java:

www.alphaworks.ibm.com/tech/xml4j
Xerces Apache's Xerces Java Parser: xml.apache.org/xerces
msxml Microsoft's XML parser (version 2.0) is built-into

Internet Explorer 5.5, version 3.0 is also available:
msdn.microsof t.com/xml

4DOM 4DOM is a parser for the Python programming language:
fourthought.com/4Suite/4DOM

XML::DOM XML::DOM is a Perl module:
Www-4.ibm.com/software/developer/library/xml-
perl2

DOM with JavaScript

To introduce document manipulation with the XML Document Object Model, a simple scripting
example that uses JavaScript and Microsoft's msxml parser is introduced. This example takes an
XML document (example 2) that marks up an article and uses the DOM API to display the
document's element names and values. Example 3 lists the JavaScript code that manipulates this
XML document and displays its content in an HTML page.

<?xml version = "1.0"?>
<article>
<title>Simple XML</title>
<date>December 6, 2000</date>
<author>
<fname>Tem</fname>
<lname>Nieto</lname>
</author>
<summary>XML is pretty easy.</summary>
<content>Once you have mastered HTML,
 XML is easily learned. You must remember
 that XML is not for displaying information but
 for managing information.
</content>
</article>

Example 2. Article marked up with XML tags.
Traversing the article of example 2 (file article.xml with Javascript:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>A DOM Example</title>

</head>
<body>
<script type = "text/javascript" language = "JavaScript">
var xmldocument = new ActiveXObject(
"Microsoft.XMLDOM");
xmldocument.load("article.xml");
var element = xmlDocument.documentElement;
document.writeln("<p>Here is the root node of the document:");
document.writeln(""+element.nodeName + ""
);
document.writeln("
The following are its child elements:");
document.writeln("</p>");
for (i = 0; i < element.childNodes.length; i++) {
var curnode = element.childNodes.item(I);
document.writeln("" + curNode.nodeName +

"");
}

document.writeln("");
var currentnode = element.firstchild;
document.writeln("<p>The first child of root node is:");
document.writeln("" + currentNode.nodeName +
"");
document.writeln("
whose next sibling is:");
var nextsib = currentNode.nextSibling;
document.writeln(""+nextSib.nodeName + "");
document.writeln("
Value of " + nextSib.nodeName
+ "" element is:");
var value = nextSib.firstChild;
document.writeln("" + value.nodevalue + "");
document.writeln("
Parent node of ");
document.writeln("<string>" + nextSib.nodeName + "
is:");
document.writeln("" + nextSib.parentNode.nodeName +
".</p>");

</script>
</body>
</html>

Example 3: Traversing article.xml with Javascript

The explanation of Javascript text:

<script type = "text/javascript" language = "JavaScript">

is the opening script tag, which allows the document author to include scripting code. Attribute type
indicates that the script element is of media type text:/javascript. JavaScript is the most popular
client-side (e.g., browser) scripting language used in industry. If the browser does not support
JavaScript, script's contents are treated as text. Attribute language indicates to the browser that the
script is written in the JavaScript: scripting language.

var xmlDocument = new ActiveXObject("Microsoft.XMLDOM");

instantiates a Microsoft XML Document Object Model object and assigns it to reference
xmlDocument. This object represents an XML document (in memory) and provides methods for
manipulating its data. The statement simply creates the object, which does not yet refer to any
specific XML document.

xmlDocument.load("article.xml");

calls method load to load article.xml into memory. This XML document is parsed by msxml and
stored in memory as a tree structure.

var element = xmlDocument.documentElement;

assigns the root element (i.e., article) to variable element. Property documentElement corresponds
to the document's root element. The root element is important because it is used as a reference point
for retrieving child elements, text, etc.

document.writeln(," + element.nodename + ,");
place the name of the root element in a strong element and write it to the browser where it is
rendered. Property nodename corresponds to the name of an attribute, element, etc. which are
collectively called nodes. In this particular case, element refers to the root node named article.

for (i = 0; i < element.childNodes.length; i++) {

uses a for loop to iterate through the root node's child nodes (accessed using property childNodes).
Property length is used to get the number of child nodes of the document element.

Individual child nodes are accessed using the item method. Each node is given an integer index
(starting at zero) based on the order in which they occur in the XML document. For example in
example 2 title is given the index 0, date is given the index 1, etc.

var curNode = element.childNodes.item(i);

calls method item to return the child node identified by the index i. This node is assigned to variable
curNode.

var currentnode = element.firstchild;

retrieves the root node's first child node (i.e., title) using property firstChild. This expression is a
more concise alternative to

var currentnode = element.childNodes.item(0);

Nodes at the same level in a document (i.e., that have the same parent node) are called siblings. For
example, title, date, author, sunmiary and content are all sibling nodes. Property nextSibling
returns a node's next sibling.

var nextSib = currentNode.nextSibling;

assigns currentNode's (i.e., title) next sibling (i.e., date) to nextSib.

In addition to elements and attributes, text (e.g., Simple XML) is also a node.

var value = nextSib.firstChild;

assigns nextSib's (i.e., date) first child node to value. In this case, the first child node is a text node.
The nodeValue method retrieves the value of this text node. The value of a text node's value is the
text it contains. Element nodes have a value of null (i.e., the absence of a value).

document.writeln("" + nextSib.parentNode.nodeName + ".</p>");

retrieve and display nextSib's (i.e., date) parent node (i.e., article). Property parentNode returns a
node's parent node.

Setup
In successive sections, Java applications to illustrate the DOM API will be used. The software
needed to run these Java applications are presented. To be able to compile and execute the
examples, it is needed to do the following:

• Download and install the Java 2 Standard Edition from
www.java.sun.com/j2se

For step-by-step installation instructions, visit

www.deitel.com/faq/java3install.htm

• Download and install JAXP from
java.sun.com/xml/download.html.

Installation instructions are provided at the Web site and HTML files are included with the
download. Examples are also available for download from

www.deitel.com
The steps outlined in this section must be followed before attempting to execute any example.

DOM Components
Java, JAXP and the XML-related Java packages described in example 4 will be used to manipulate
an XML document. Before discussing our first Java-based example, summary of several important
DOM classes, interfaces and methods will be given. Due to the number of DOM objects and
methods available, this is only a partial list of these objects and methods.

For a complete list of DOM classes and interfaces, browse the HTML documentation (index.html
in the api folder) included with JAXP.

Class/Interface Description
Document
interface

Represents the XML document's top-
level node, which provides access to all
the document's nodes-including the root
element.

Node interface Represents an XML document node.
NodeList
interface

Represents a read-only list of Node
objects.

Element
interface

Represents an element node. Derives
from Node.

Attr interface Represents an attribute node. Derives
from Node.

Character
Data interface

Represents character data. Derives from
Node.

Text interface Represents a text node. Derives from
CharacterData.

Comment
interface

Represents a comment node. Derives
from CharacterData.

Processing
Instruction
interface

Represents a processing instruction node.
Derives from Node.

CDATA
Section
interface

Represents a CDATA section. Derives
from Text.

Table 4: DOM classes and interfaces.

The Document interface represents the top-level node of an XML document in memory and
provides a means of creating nodes and retrieving nodes. Table 5 lists some Document methods.

Table 6 lists the methods of class XmlDocument, including the methods inherited from Document.
Class XmlDocument is part of the JAXP internal APIs and its methods are not part of the W3C
DOM recommendation.

Interface Node represents an XML document node. Table 7 lists the methods of interface Node.

Method Name Description
CreateElement Creates an element node.
CreateAttribute Creates an attribute node.
CreateTextNode Creates a text node.
CreateComment Creates a comment node.
CreateProcessingInstructio Creates a processing

n instruction node.
CreateCDATASection Creates a CDATA section

node.
GetDocumentElement Returns the document's

root element.
AppendChild Appends a child node.
GetChildNodes Returns the child nodes.

Table 5: Some Document methods.

CreateXmlDocument Parses an XML document.
Write Outputs the XML document.

Table 6: XmlDocument methods.

Appendchild Appends a child node.
Clonenode Duplicates the node.
Getattributes Returns the node's attributes.
GetChildNodes Returns the node's child nodes.
GetNodeName Returns the node's name.
GetNodeType Returns the node's type (e.g., element,

attribute, text, etc.)
GetNodeValue Returns the node's value.
GetParentNode Returns the node's parent.
HasChilciNode
s

Returns true if the node has child nodes.

Removechild Removes a child node from the node.
Replacechild Replaces a child node with another

node.
SetNodeValue Sets the node's value.
Insertbefore Appends a child node in front of a child

node.
Table 7 Node methods.

Table 8 lists some node types that may be returned by method getNodeType. Each type in table 8 is
a static f inal constant) member of class Node. Element represents an element node. Table 9 lists
some Element methods.

Node type Description
Node.ELEMENT NODE represents an element node
Node.ATTRIBUTE NODE represents an attribute node
Node.TEXT NODE represents a text node
Node.COMMENT-NODE represents a comment node
Node.PROCESSING-
INSTRUCTION NODE

represents a processing instruction
node

Node.CDATA SECTION NODE represents a CDATA section node
Table 8. Some node types.

Method name Descripton
getAttribute Returns an attribute's value.
getTagName Returns an element's name.
removeAttribute Removes an element's attribute.
setAttribute Sets an attribute's value.

Table 9: Element methods

Internet and World Wide Web Resources
www.w3.org/DOM
W3C DOM home page.

www.w3schools.com/dom
The W3Schools DOM introduction, tutorial and links site.

www.oasis-open.org/cover/dom.html
The Oasis-Open DOM page contains a comprehensive overview of the Document Object Model
with references and links.

dmoz.org/Computers/Progrananing/Internet/W3C_DOM
This is a useful set of DOM links to different locations and instructional matter.

www.w3.org/DOM/faq.html
Answers to Frequently Asked DOM Questions.

www.jdom.org
Home page for the JDOM XML API in Java.

Summary
• XML documents, when parsed, are represented as a hierarchal tree structure in memory. This

tree structure contains the document's elements, attributes, text, etc. XML was designed to be a
live, dynamic technology - the contents of the tree structure can be modified by a programmer.
This essentially allows the programmer to add data, remove data, query for data, etc., in a
manner similar to a database.

• The W3C provides a standard recommendation for building a tree structure in memory for XML
documents called the XML Document Object Model (DOM). Any parser that adheres to this
recommendation is called a DOM-based parser.

• A DOM-based parser exposes (i.e., makes available) a programmatic library-called the DOM
Application Programming Interface (API) that allows data in an XML document to be accessed
and manipulated. This API is available for many different programming languages.

• DOM-based parsers are written in a variety of programming languages and are usually available
for download at no charge. Many applications (such as Internet Explorer 5) have built-in parsers.

• A Microsoft XML Document Object Model object (i.e., Microsoft.XMLDOM) represents an
XML document (in memory) and provides methods for manipulating its data.

• Property documentelement returns a document's root element. The root element is important
because it is used as a reference point for retrieving child elements, text, etc.

• Property nodename returns the name of an attribute, element, etc.-which are collectively called
nodes.

• Property childnodes contains a node's child nodes. Property length returns the number of child
nodes.

• Individual child nodes are accessed using the item method. Each node is given an integer value
(starting at zero) based on the order in which they occur in the XML document.

• Property firstchild retrieves the root node's first child node.
• Nodes at the same level in a document (i.e., that have the same parent node) are called siblings.

Property nextsibling returns a node's next sibling.
• A text node's value is its text, an element node's value is null (which indicates the absence of a

value) and an attribute node's value is the attribute's value.
• Property parentnode returns a node's parent node.
• The Document object represents the top-level node of an XML document in memory and

provides a means of creating nodes and retrieving nodes.
• Interface Node represents Lin XML document node.
• Element represents an element node.
• Sun Microsystems, the creator of Java, provides several packages related to XML. Package

org.w3c.dom provides the DOM-API programmatic interface (i.e., classes, methods, etc.).
Package javax.xml.parsers provides classes related to parsing an XML document. Package
com.sun.xml.tree contains classes and interfaces from Sun Microsystem's internal API, which
provides features (e.g., saving an XML document) currently not available in the DOM
recommendation.

• A DOM-based parser may use an event-based implementation (i.e., as the document is parsed
events are raised when starting tags, attributes, etc. are encountered) to help create the tree
structure in memory. A popular event-based implementation is called the Simple API for XML
(SAX). Package org. xml. sax provides the SAX programmatic interface.

• Class DocumentBuilderFactory (package javax. xmi. parsers) obtains an instance of a parser.
• Method setvalidating specifies whether a parser is validating or nonvalidating.

• Method parse loads and parses XML documents. If parsing is successful, a Document object is
returned. Otherwise, a SAXException is thrown.

• Method getDocumentElement returns the Document's root node. The Document's root node
represents the entire document - not the root element node.

• Method getNodeType retrieves the node's type.
• Elements in the XML document are retrieved by calling method getElementsByTagName.

Each element is stored as an item (i.e. a Node in a NodeList. The first item added is stored at
index 0, the next at index 1, and so forth. This index is used to access an individual item in the
NodeList.

• Interface Text represents an element or attribute's character data.
• Method replacechild replaces a Node.
• Method write is a member of XmlDocument, which requires casting a Document to

XmlDocument. This internal API class is used because Document does not provide a method
for savin, an XML document.

• SAXParseException and SAXException contain information about errors and warnings
thrown by the parser. Class SAXParBeException is a subclass ol'SAXException and includes
methods for locating the location of the error.

• By default, JAXP does not throw any exceptions when a document fails to conform to a DTD.
The programmer must provide their own implementation, which is registered using method
setErrorHandler.

• Interface ErrorHandler provides methods fatalError, error and warning for fatal errors (i.e.,
errors that violate the XML 1.0 recommendations parsing is hafted), errors (e.g., such as validity
constraints that do not stop the parsing process) and warnings (i.e., not classified as fatal errors
or errors and that do not stop the parsing process), respectively.

• Method newDocument creates a new Document object, which can he used to build an XML
document in memory.

• Method createComment creates a comment.
• Method createProcessingInstruction creates a processing instruction and method

createCDATASection creates a CDATA section.

