
A. Juozapavicius

1

Indices in Information Systems

Algimantas Juozapavičius

algimantas.juozapavicius@maf.vu.lt

Data structures and indices are well-known in traditional (textual or
numerical) database systems, as well as in information systems.

The logical scheme of indices in a database

Data structures (or abstract data types) are used to design algorithms for
data manipulation like sorting, searching, editing of structured data etc.
Data structure is a set of data together with a set of well-defined operations
and constrains.

The indices correspond to dictionaries and catalogs in traditional
databases. The dictionaries are used to:

• provide a quick and easy access to data;
• save time and operations while editing, searching, inserting, deleting of

data;
• provide additional services while designing queries, analyzing the

content of data, etc.

duomenų bazės
dokumentai (kaip
nuoseklus failas)

autorių žodynas

nuorodos į dokumentus bazėje

žodžių pavadinimuose

kelių laukų

A. Juozapavicius

2

These properties play different roles in databases either in information
systems. For instance, the last property is essential in spatial or multimedia
IS.

The indices in recent information systems are used to reflect two major
aspects of information:

• to organize data in computer memory (especially in secondary and

ternary memory) in a efficient way;
• to reflect the most important concepts of information (so-called content-

based indices).

There are many data structures serving dictionaries or catalogs, as well as
operations on them (the data structure of dynamic set that supports search,
insert, and delete operations is called the DICTIONARY ADT). For
instance, the 2-3-4 trees are often used (they are not suitable for operations
with data in secondary memory):

2-3-4 tree for “A S E A R C H I N G E X A M P L E”

A. Juozapavicius

3

Another data structure often implemented in many DBMS and well-suited
for the manipulations with data in secondary (hard-disk) memory is
represented by so-called B-trees. A B-tree of order M = 5 is shown below:

The B-trees are very efficient:

• for search operations (to index a list of 5 millions of items (words) with a

B-tree of order M = 100, the height of the tree would be equal just to 5);
• adjustable to the size of page of hard-disk memory.

Unfortunately, all such data structures have an essential drawback: they
work quite well only with linearly ordered data.

The situation has been changed very much with the introduction or
invention of hypermedia and multimedia data, as well as with spatial and
temporal database systems.

The hypermedia (nonlinear text), multimedia (integration of text, images,
graphics, sound and video recordings), spatial and temporal data have been
changing the notions of data structures and indices drastically.

There were many new data structures suggested, especially for
multidimensional, spatial and temporal data – data that can’t be considered
as a totally sorted set.

Indices influenced and forced major changes also:

• many nonlinear search strategies appeared;
• indexing techniques have to be applied to graphical, audio, visual data.

Indexing of Spatial Information

A. Juozapavicius

4

The subject of spatial indexing in a database context is perhaps the most
difficult problem in spatial information systems. The majority of books and
commercial products on spatial information systems say little about the
topic of indexing, even though data retrieval performances are directly
linked to spatial indices.

An indexed file provides a way to organize data as opposed to a “simple”
list, that is an unordered (except for chronology of creation) arrangement of
records. Ordering using alphabetical sequence or numerical identifier
sequence, is an improvement over an unordered list for searching quickly
using hierarchical binary search techniques:

Full index access method

Even so the indexed files may provide more effective access to data
because information other than the key identifier is used. However, indexed
files are generally more awkward to deal with if a database is changed
frequently, for the index itself as well as the data file must be modified, and
this operation can be very costly.

At the beginning of computer era there were many attemps to improve or
modify file indexing methods. These methods illustrate issues involved in
accessing particular pieces of information in a computerized information
system, enabling us to understand them.

A. Juozapavicius

5

Accessing by block index

Accessing by block index with overflow zone

The issues essential for accessing particular items of information are:

• the way in which the computer physical encoding is undertaken;
• the design of data structures to facilitate index building;
• the provision of tools by the software systems used for storing and

managing data;
• the attributes that are used for building an index.

Attributing disk addresses to keys can be performed according to several
possibilities, like sequentially or indexed sequentially, so the former case
necessitating the creation of a primary index (the master index) pointing

A. Juozapavicius

6

towards several secondary indices. For huge indices, more than two
hierarchical levels usually are necessary:

Hierarchy of indices

There may be often random access imployed, which is a direct access via a
special key-to-address transformation, called a hashing function.

Indexing in relational databases

In relational database commercial software products, the user has two
options for indexing:

1. to do nothing, in which case a product-specific tuple-to-address

procedure is provided in order to place the tuples arriving at the physical
storage;

2. to create special indices based not only on identifiers (keys) but also on
some carefully chosen attributes.

In the SQL type databases, the index creation using attributes is realized by
a CREATE INDEX statement (to create an index for Country-name for the
relation of POP(Country_name, Population, Capital_city):

CREATE INDEX COUNTRY-INDEX ON POP (Country-name)

A. Juozapavicius

7

The combined index such as:

CREATE INDEX DOUBLE-INDEX ON POP (Population, Capital-city
DESC)

can be created. Notice that in this statement a single index with
concatenated keys was created. Whenever to have two different indices,
two statements should be used:

CREATE INDEX FIRST-INDEX ON POP (Population)
CREATE INDEX SECOND-INDEX ON POP (Capital_city DESC)

This process provides means to accelerate retrieval although prior
knowledge is needed in choosing the best attributes:

• there is no reason for building an index using Capital_city if we never

need the information for capital city;
• the process will proceed faster if the attribute that discriminates

sufficiently well to pick out the smallest number of cases is used as the
first index level.

Data retrieval performance depends not only on the technical aspects of the
indexing process, but upon the choice of the attribute(s) for making the
index. How well this choice is made clearly depends on knowledge of the
phenomena.

Moreover, the attributes chosen for building indices may need to vary
depending on purpose, and will almost certainly vary with differing views
of a database contents by different users. In this regard it is an important
technique to separate the index from the items being indexed.

So, there must be a sensitivity to both selection of data items to be used for
building an index and to the physical organization of them.

Spatial Indexing

The role of spatial indexing is to accelerate the retrieval of information
based on location, especially for large databases. An access mechanism can
be as basic as a geographic name or as involved as a concatenated

A. Juozapavicius

8

numerical code made up of several parts. However, a spatial index should
provide an access path to a location or a block of earth space, not
necessarily directly to a particular object.

A first possibility is to superimpose a grid, having squares or rectangles and
to use the coordinates for an object as a spatial access for that object (in
ORACLE: fixed-size tile and variable-size tile) as shown in figure:

Double indexation: (a) fixed-grid indexing, (b) variable-grid indexing

But the necessity for creating two distinct indices, for the x and y
orientations, is a substantial disadvantage. That is to say, there is a need to
search into those two indices and then combine the results.

Similarly, at three dimensions, there are disadvantages in working with the
three necessary indices.

The locators like (x, y) or (x, y, z) coordinates, expressed with two or three
dimensions, cannot be treated in the classical way directly. Indeed, even if
the problem of multidimensionality can be solved by composite indices,
there still remains the most important problem to deal with an infinite
number of keys.

The next example is to consider the territory encompassing three point
objects A, B and G, two line objects C and D, and one area F. It’s possible
to imagine a spatial index built with Peano keys with the runlength
encoding scheme in the object index, that is giving the beginning and
ending Peano keys as shown in figure:

A. Juozapavicius

9

Spatial indexing: (a) map, (b) spatial index, (c) object index

A. Juozapavicius

10

Several ways are possible for producing the desirable spatial indices:

1. to consider points as fractal and to order them by a space-filling curve,

determining a specific level of resolution with fractal geometry.
2. to construct extents, like minimum bounding rectangles, circles and so

on, and classify them into a hierarchy via a valid splitting rule, selecting
privileged points in the Euclidean spirit.

3. to use a quadtree mixing Euclidean and fractal geometry.

Indexing by space-filling curves

Space-filling curves, such as the Peano (N order) or Hilbert (Π order), can
order all points within the cover by means of the one-dimensional keys, but
may not be the preference for all situations.

Moreover, different curves have different properties of ordering, stability or
computational simplicity. Selection can thus be made on the basis of several
factors:

• A first criterion for evaluating the different types of curve is the ability to

provide a spatial reference for every entity. There is no problem here for
both curves, although for the Hilbert order, we need to know a priori the
cover in order to prevent instability.

• A second criterion is the facility for passing from one point to its

neighbours. Since two neighbouring points in the Hilbert curves are
adjacent in the space, this implies that the n order is a good candidate;
this aspect is not always guaranteed in the N order.

• A third criterion is the rapidity of computing keys from coordinates and

vice versa. Due to the bit-interleaving procedure, the N order is the
quicker ordering out of the Peano and Hilbert curves, and, it is much
easier to create keys for the Peano curve then for the Hilbert.

• Another criterion is the utility of spatial indexing in conjunction with

quadtrees in order to get hierarchical spatial indexing. In addition, a
spatial index must be able to organize punctual, areal and possibly
volumic objects.

A. Juozapavicius

11

For points, Peano keys are fine and they can easily be extended to areas in
connection with quadtrees. However, for long lines or curve portions, this
space-filling curve kind of spatial indexing is not sufficient.

As an illustration of the general process, there can be a first and second
level indices for point objects using Peano keys:

Spatial indexing with Peano keys

The index is a hierarchical directory allowing more efficient retrieval than a
sequential index, especially when a large number of objects are dealt with.
The keys are shown here in decimal form, in practice they are, of course,
binary digits.

A spatial index for areal objects can be similarly constructed, although in
this case, it is necessary to mention the low and high values for the range of
space covered because areal objects are likely to be located in several
portions of the curves. So the secondary index shows the low and high
value Peano keys.

However, the Peano ordering is not necessarily the most efficient. Recent
comparative studies of orderings based on space-filling curves has been
undertaken by Abel and Mark (1990), and Faloutsos and Roseman (1989),
including a comparison of Peano keys and Hilbert keys. The numerical
results of this latter study show that Hilbert indexing is the best for the
rapidity of spatial retrieval.

A. Juozapavicius

12

Recall, though, that the creation of the Hilbert keys is difficult, and that
they are not stable when the space has to be extended.

The main drawbacks of this space-filling curve approach is that the keys
are sensitive to orientation and to the position of the Cartesian space origin.

Indexing by quadtrees

The use of quadtrees is an interesting possibility for spatially indexing
objects:

Spatial index encoding with Peano and Hilbert keys

In order to organize several objects in a quadtree, it is taken for each of
them its minimum quadrant, that is the smallest entire square bounding the
object.

Because the use of space-filling curves for indexing will imply a large
number of indices, in contrast a nice possibility is to regroup fractal points
into quadrants in order to use quadtrees. The latter are also valuable

A. Juozapavicius

13

because they provide the ability to store objects with different sizes.
Consequently, geographical objects of large areal extents will be located
near the root of the tree and small objects in the terminal leaves.

Spatial index with linear quadtree

Spatial index with hierarchical quadtree

Indexing by R- and R+-trees

The other possibility for spatial indexing is to use extents bounding spatial
objects. One alternative is to use minimum-bounding rectangles, organized
either in R-trees or in R+-trees:

R-tree (nonoverlapping rectangles and hierarchical structure)

A. Juozapavicius

14

R+-tree (rectangle split by higher level rectangle and hierarchical structure)

The basic intent behind range trees is to create rectangles aligned with the
orthogonal axes of the coordinate spaces, in order to:

1. embrace as many objects as possible; and
2. have as little overlap as possible between rectangles, but
3. allow for subdivision to get smaller boxes within each existing

rectangle.

The spatial index is determined as the rectangle in which the object is
contained, with a level in a tree conveying information about resolution.
Each object is associated with an R-tree node, just as for a quadtree.
Precision of location may be determined for coordinate data contained in
the relation.

With the relational model, it is very easy to encode an R-tree. In relational
forniat, the rectangle description is:

RECT (Rectangle-ID, Type, Min-X, Max-X, Min-Y, Max-Y)

for which Rectangle-ID means any rectangle number so that Min-X, Min-Y,
Max-X and Max-Y correspond to the coordinates of its vertices, and Type
is the rectangle type, whether real or pseudo. And, for overlappings,
pseudo-rectangles can have the same kinds of numbering as the real
bounding rectangles.

There is also a need for a relation for the assignment of rectangles to higher
order units:

A. Juozapavicius

15

PS (Higher-Level-ps-rectangle-ID, Lower-level-ps-rectangle-ID)

The relation DECOMP (Initial-rectangle-ID, Rectanglel-ID, Rectangle2-ID)
can be useful for identifying the assignment of the pieces.

Indexing by other kinds of trees

The main drawbacks of minimum-bounding rectangles is that this way of
spatial indexing is very sensitive to orientation. Recently some other
methods have been proposed based on spheres and polygons:

Indexing with sphere trees

Indexing with a cell tree

A. Juozapavicius

16

Instead of using a bounding rectangle, Van Oosterom and Classen (1990)
have proposed enclosing objects by circles (or spheres at three dimensions).
Even though it is often not easy to compute the circle, it is obvious that the
extent of this geometric figure is not orientation sensitive.

Moreover, this kind of spatial indexing is insensitive to orientation if the
axes are rotated. Perhaps the main challenge is to find a method to
determine automatically the bounding circle or sphere for any object;
afterwards the addition or deletion of objects is not a problem.

Another possibility is to index using polygons, called cell trees (Giinther,
1990). In this case, each object is bounded by a convex polygon. The main
challenge is to determine rapidly the convex polygon for bounding the
objects, especially the number of sides.

Also, Faloutsos and Rong (1989) have combined the R-tree and fractals by
a so-called double transformation. Rectangles, defined by minimum and
maximum x and y, can be represented by a point in a four-dimensional
space (the min-X, min-Y, max-X and max-Y); this represents the first
transformation.

Then, all 4D points representing rectangles are ordered by four-dimensional
Hilbert or Peano keys, being the second transformation. Their results show
that 4D Hilbert keys give the better performance for their criteria.

Some practical aspects of spatial indexing

As a practical matter, only a few commercial spatial information systems

today provide spatial indexing capabilities. Some systems allow access to
database objects via mouse or other graphic cursor input for points or boxes
or other shapes. Otherwise there is access via names or numerical identifiers
in the attribute data tables. Sometimes topological neighbourhoods provide
a means of access, by following line segment or graph links for a specified
polygon or line. Indexing capabilities are much rarer. For one commercial
system in which indexing tools are made available, the user manuals for the
ARC/INFO system (ESRI) indicate that indices for both attributes and the
spatial domain can be created. The latter indexing process uses adaptive
grid-cells, the former use a binary searching mechanism, operating on data
stored as modified binary (B-) trees.

A. Juozapavicius

17

The task of spatial indexing is very challenging. At present there are several
techniques but none emerges as the best; although some form of
hierarchical organization is generally advantageous. Moreover, two main
secondary issues must also be solved: multi-layer indexing, and taking the
physical disk structure into account. In several practical situations, spatial
databases are split into several layers, each of them concerning a particular
theme, for instance, a layer for streets, a layer for gas networks, a layer for
sewerage, and so on. For this type of database it is interesting to create as
many indices as there are layers and, for practical reasons, different indices
may be established for different types of spatial unit. But when it is
desirable to work with several thematic layers within one cover area, then
the layers must be combined adequately. With a structure such as Peano
keys it is simple to merge two indices, but for Rtrees and cell trees, the tree
branches must be redetermined, a time consuming task.

Other Multidimensional Access Methods

Running example:

K – D – Tree

A. Juozapavicius

18

k-d-tree is a binary search tree that represents the recursive subdivision of
the universe into subspaces by means of (d-1)-dimensional hyperplanes.

Adaptive k-d-tree

Adaptive k-d-tree choose a split such that one finds about the same number
of elements on both sides. While the splitting hyperplanes are still parallel
to the axes, they do not have to contain a data point and their directions do
not have to be strictly alternating anymore. As a result, the split points are
not part of the input data; all data points are stored in the leaves. Interior
nodes contain the dimension (e.g. x or y) and the coordinate of the
corresponding split. Splitting is continued recursively until each subspace
contains only a single point. The adaptive k-d-tree is not a very dynamic
structure; it is obviously difficult to keep the tree balanced in the presence
of frequent insertions and deletions. The structure works best if all the data
is known a priori and if updates are rare.

BSP Tree

A. Juozapavicius

19

Splitting the universe only along iso-oriented hyperplanes is a severe
restriction. Allowing arbitrary orientations gives more flexibility to find a
hyperplane that is well-suited for the split. The binary space partitioning
(BSP) tree are binary trees that represent a recursive subdivision of the
universe into subspaces by means of (d - 1)- dimensional hyperplanes.

Each subspace is subdivided independently of its history and of the other
subspaces. The choice of the partitioning hyperplanes depends on the
distribution of the data points in a given subspace. The decomposition
usually continues until the number of points in each subspace is below a
given threshold.

The resulting partition of the universe can be represented by a BSP tree,
where each hyperplane corresponds to an interior node of the tree and each
subspace corresponds to a leaf. Each leaf stores references to those data
points that are contained in the corresponding subspace. Figure shows a
BSP tree for the running example with no more than two data points per
subspace.

The Quadtree

Point quadtree

A. Juozapavicius

20

Region tree

Point Access Methods

Grid File

A. Juozapavicius

21

BANG File

Two-Level Grid File

A. Juozapavicius

22

Twin Grid File

Buddy Tree

The buddy tree is a dynamic hashing scheme with a tree-like directory. The
universe is cutted recursively into two parts of equal size with iso-oriented
hyperplanes, and each interior node corresponds to a partition together with
interval. The interval corresponds to MBB, covering points below of given
node. Also:
• Each directory node contains at least two entries;
• Whenever a node is split, the MBB and subnodes are recomputed, to fit

situation;
• Except for the root of the directory, there is exactly one pointer referring

to each directory page.

A. Juozapavicius

23

K-D-B-Tree

The k-d-B-tree combines properties of the adaptive k-d-tree and the B-tree.

hB-tree

The hB-tree (holey brick tree) is similar to k-d-B-tree, except that splitting
of the node is done based on multiple attributes, the result is somewhat
fractal structure, with external enclosing regions and several cavities called
extracted regions.

A. Juozapavicius

24

LSD Tree

Space-filling curves

A. Juozapavicius

25

Z-ordering

Basic properties of spatial data:

1. spatial data has a complex structure (a spatial data object may be

composed of a single point or several thousands of point sets, arbitrarily
distributed across space. It is usually not possible to store collections of
such objects in a single relational table with a fixed tuple size)

2. spatial data is often dynamic (insertions and deletions are interleaved
with updates, and data structures used in this context have to support this
dynamic behavior)

A. Juozapavicius

26

3. spatial databases tend to be large (the seamless integration of secondary
and tertiary memory is therefore essential for efficient processing)

4. there is no standard algebra defined on spatial data (no standardized set
of base operators. The set of operators heavily depends on the given
application domain)

5. many spatial operators are not closed (the intersection of two polygons,
for example, might return any number of single points, dangling edges,
or disjoint polygons)

6. although the computational costs vary between operators, spatial
database operators are generally more expensive than standard relational
operators

History of Multidimensional Access Methods

