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Data structures and indices are well-known in traditional (textual or 
numerical) database systems, as well as in information systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The logical scheme of indices in a database 
 
Data structures (or abstract data types) are used to design algorithms for 
data manipulation like sorting, searching, editing of structured data etc. 
Data structure is a set of data together with a set of well-defined operations 
and constrains. 
 
The indices correspond to dictionaries and catalogs in traditional 
databases. The dictionaries are used to: 
 
• provide a quick and easy access to data; 
• save time and operations while editing, searching, inserting, deleting of 

data; 
• provide additional services while designing queries, analyzing the 

content of data, etc. 
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These properties play different roles in databases either in information 
systems. For instance, the last property is essential in spatial or multimedia 
IS. 
 
The indices in recent information systems are used to reflect two major 
aspects of information: 
 
• to organize data in computer memory (especially in secondary and 

ternary memory) in a efficient way; 
• to reflect the most important concepts of information (so-called content-

based indices). 
 
There are many data structures serving dictionaries or catalogs, as well as 
operations on them (the data structure of dynamic set that supports search, 
insert, and delete operations is called the DICTIONARY ADT). For 
instance, the 2-3-4 trees are often used (they are not suitable for operations 
with data in secondary memory): 

 
2-3-4 tree for “A S E A R C H I N G E X A M P L E” 
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Another data structure often implemented in many DBMS and well-suited 
for the manipulations with data in secondary (hard-disk) memory is 
represented by so-called B-trees. A B-tree of order M = 5 is shown below: 
 

 
 
The B-trees are very efficient: 
 
• for search operations (to index a list of 5 millions of items (words) with a 

B-tree of order M = 100, the height of the tree would be equal just to 5); 
• adjustable to the size of page of hard-disk memory. 
 
Unfortunately, all such data structures have an essential drawback: they 
work quite well only with linearly ordered data. 
 
The situation has been changed very much with the introduction or 
invention of hypermedia and multimedia data, as well as with spatial and 
temporal database systems. 
 
The hypermedia (nonlinear text), multimedia (integration of text, images, 
graphics, sound and video recordings), spatial and temporal data have been 
changing the notions of data structures and indices drastically. 
 
There were many new data structures suggested, especially for 
multidimensional, spatial and temporal data – data that can’t be considered 
as a totally sorted set. 
 
Indices influenced and forced major changes also: 
 
• many nonlinear search strategies appeared; 
• indexing techniques have to be applied to graphical, audio, visual data. 
 

Indexing of Spatial Information 
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The subject of spatial indexing in a database context is perhaps the most 
difficult problem in spatial information systems. The majority of books and 
commercial products on spatial information systems say little about the 
topic of indexing, even though data retrieval performances are directly 
linked to spatial indices. 
 
An indexed file provides a way to organize data as opposed to a “simple” 
list, that is an unordered (except for chronology of creation) arrangement of 
records. Ordering using alphabetical sequence or numerical identifier 
sequence, is an improvement over an unordered list for searching quickly 
using hierarchical binary search techniques: 

 
Full index access method 

 
Even so the indexed files may provide more effective access to data 
because information other than the key identifier is used. However, indexed 
files are generally more awkward to deal with if a database is changed 
frequently, for the index itself as well as the data file must be modified, and 
this operation can be very costly. 
 
At the beginning of computer era there were many attemps to improve or 
modify file indexing methods. These methods illustrate issues involved in 
accessing particular pieces of information in a computerized information 
system, enabling us to understand them. 
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Accessing by block index 

 

 
Accessing by block index with overflow zone 

 
The issues essential for accessing particular items of information are: 
 
• the way in which the computer physical encoding is undertaken; 
• the design of data structures to facilitate index building; 
• the provision of tools by the software systems used for storing and 

managing data; 
• the attributes that are used for building an index. 
 
Attributing disk addresses to keys can be performed according to several 
possibilities, like sequentially or indexed sequentially, so the former case 
necessitating the creation of a primary index (the master index) pointing 
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towards several secondary indices. For huge indices, more than two 
hierarchical levels usually are necessary: 
 

 
Hierarchy of indices 

 
There may be often random access imployed, which is a direct access via a 
special key-to-address transformation, called a hashing function.  
 

Indexing in relational databases 
 
In relational database commercial software products, the user has two 
options for indexing: 
 
1. to do nothing, in which case a product-specific tuple-to-address 

procedure is provided in order to place the tuples arriving at the physical 
storage; 

2. to create special indices based not only on identifiers (keys) but also on 
some carefully chosen attributes. 

 
In the SQL type databases, the index creation using attributes is realized by 
a CREATE INDEX statement (to create an index for Country-name for the 
relation of POP(Country_name, Population, Capital_city): 
 
CREATE INDEX COUNTRY-INDEX ON POP (Country-name) 
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The combined index such as: 
 

CREATE INDEX DOUBLE-INDEX ON POP (Population, Capital-city 
DESC) 

 
can be created. Notice that in this statement a single index with 
concatenated keys was created. Whenever to have two different indices, 
two statements should be used: 
 

CREATE INDEX FIRST-INDEX ON POP (Population) 
CREATE INDEX SECOND-INDEX ON POP (Capital_city DESC) 

 
This process provides means to accelerate retrieval although prior 
knowledge is needed in choosing the best attributes: 
 
• there is no reason for building an index using Capital_city if we never 

need the information for capital city; 
• the process will proceed faster if the attribute that discriminates 

sufficiently well to pick out the smallest number of cases is used as the 
first index level. 

 
Data retrieval performance depends not only on the technical aspects of the 
indexing process, but upon the choice of the attribute(s) for making the 
index. How well this choice is made clearly depends on knowledge of the 
phenomena. 
 
Moreover, the attributes chosen for building indices may need to vary 
depending on purpose, and will almost certainly vary with differing views 
of a database contents by different users. In this regard it is an important 
technique to separate the index from the items being indexed. 
 
So, there must be a sensitivity to both selection of data items to be used for 
building an index and to the physical organization of them. 
 

Spatial Indexing 
 
The role of spatial indexing is to accelerate the retrieval of information 
based on location, especially for large databases. An access mechanism can 
be as basic as a geographic name or as involved as a concatenated 
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numerical code made up of several parts. However, a spatial index should 
provide an access path to a location or a block of earth space, not 
necessarily directly to a particular object. 
 
A first possibility is to superimpose a grid, having squares or rectangles and 
to use the coordinates for an object as a spatial access for that object (in 
ORACLE: fixed-size tile and variable-size tile) as shown in figure: 
 

 
Double indexation: (a) fixed-grid indexing, (b) variable-grid indexing 

 
But the necessity for creating two distinct indices, for the x and y 
orientations, is a substantial disadvantage. That is to say, there is a need to 
search into those two indices and then combine the results. 
 
Similarly, at three dimensions, there are disadvantages in working with the 
three necessary indices. 
 
The locators like (x, y) or (x, y, z) coordinates, expressed with two or three 
dimensions, cannot be treated in the classical way directly. Indeed, even if 
the problem of multidimensionality can be solved by composite indices, 
there still remains the most important problem to deal with an infinite 
number of keys. 
 
The next example is to consider the territory encompassing three point 
objects A, B and G, two line objects C and D, and one area F. It’s possible 
to imagine a spatial index built with Peano keys with the runlength 
encoding scheme in the object index, that is giving the beginning and 
ending Peano keys as shown in figure: 
 



A. Juozapavicius 

9 

 
Spatial indexing: (a) map, (b) spatial index, (c) object index 
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Several ways are possible for producing the desirable spatial indices: 
 
1. to consider points as fractal and to order them by a space-filling curve, 

determining a specific level of resolution with fractal geometry. 
2. to construct extents, like minimum bounding rectangles, circles and so 

on, and classify them into a hierarchy via a valid splitting rule, selecting 
privileged points in the Euclidean spirit. 

3. to use a quadtree mixing Euclidean and fractal geometry. 
 

Indexing by space-filling curves 
 
Space-filling curves, such as the Peano (N order) or Hilbert (Π order), can 
order all points within the cover by means of the one-dimensional keys, but 
may not be the preference for all situations. 
 
Moreover, different curves have different properties of ordering, stability or 
computational simplicity. Selection can thus be made on the basis of several 
factors: 
 
• A first criterion for evaluating the different types of curve is the ability to 

provide a spatial reference for every entity. There is no problem here for 
both curves, although for the Hilbert order, we need to know a priori the 
cover in order to prevent instability. 

 
• A second criterion is the facility for passing from one point to its 

neighbours. Since two neighbouring points in the Hilbert curves are 
adjacent in the space, this implies that the n order is a good candidate; 
this aspect is not always guaranteed in the N order. 

 
• A third criterion is the rapidity of computing keys from coordinates and 

vice versa. Due to the bit-interleaving procedure, the N order is the 
quicker ordering out of the Peano and Hilbert curves, and, it is much 
easier to create keys for the Peano curve then for the Hilbert. 

 
• Another criterion is the utility of spatial indexing in conjunction with 

quadtrees in order to get hierarchical spatial indexing. In addition, a 
spatial index must be able to organize punctual, areal and possibly 
volumic objects. 
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For points, Peano keys are fine and they can easily be extended to areas in 
connection with quadtrees. However, for long lines or curve portions, this 
space-filling curve kind of spatial indexing is not sufficient. 
 
As an illustration of the general process, there can be a first and second 
level indices for point objects using Peano keys: 
 

 
Spatial indexing with Peano keys 

 
The index is a hierarchical directory allowing more efficient retrieval than a 
sequential index, especially when a large number of objects are dealt with. 
The keys are shown here in decimal form, in practice they are, of course, 
binary digits. 
 
A spatial index for areal objects can be similarly constructed, although in 
this case, it is necessary to mention the low and high values for the range of 
space covered because areal objects are likely to be located in several 
portions of the curves. So the secondary index shows the low and high 
value Peano keys. 
 
However, the Peano ordering is not necessarily the most efficient. Recent 
comparative studies of orderings based on space-filling curves has been 
undertaken by Abel and Mark (1990), and Faloutsos and Roseman (1989), 
including a comparison of Peano keys and Hilbert keys. The numerical 
results of this latter study show that Hilbert indexing is the best for the 
rapidity of spatial retrieval. 
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Recall, though, that the creation of the Hilbert keys is difficult, and that 
they are not stable when the space has to be extended. 
 
The main drawbacks of this space-filling curve approach is that the keys 
are sensitive to orientation and to the position of the Cartesian space origin. 
 

Indexing by quadtrees 
 
The use of quadtrees is an interesting possibility for spatially indexing 
objects: 
 

 
Spatial index encoding with Peano and Hilbert keys 

 
In order to organize several objects in a quadtree, it is taken for each of 
them its minimum quadrant, that is the smallest entire square bounding the 
object. 
 
Because the use of space-filling curves for indexing will imply a large 
number of indices, in contrast a nice possibility is to regroup fractal points 
into quadrants in order to use quadtrees. The latter are also valuable 
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because they provide the ability to store objects with different sizes. 
Consequently, geographical objects of large areal extents will be located 
near the root of the tree and small objects in the terminal leaves. 
 

 
Spatial index with linear quadtree 

 

 
Spatial index with hierarchical quadtree 

 
Indexing by R- and R+-trees 

 
The other possibility for spatial indexing is to use extents bounding spatial 
objects. One alternative is to use minimum-bounding rectangles, organized 
either in R-trees or in R+-trees: 
 

 
R-tree (nonoverlapping rectangles and hierarchical structure) 
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R+-tree (rectangle split by higher level rectangle and hierarchical structure) 
 
The basic intent behind range trees is to create rectangles aligned with the 
orthogonal axes of the coordinate spaces, in order to: 
 
1. embrace as many objects as possible; and 
2. have as little overlap as possible between rectangles, but 
3. allow for subdivision to get smaller boxes within each existing 

rectangle. 
 
The spatial index is determined as the rectangle in which the object is 
contained, with a level in a tree conveying information about resolution. 
Each object is associated with an R-tree node, just as for a quadtree. 
Precision of location may be determined for coordinate data contained in 
the relation. 
 
With the relational model, it is very easy to encode an R-tree. In relational 
forniat, the rectangle description is: 
 

RECT (Rectangle-ID, Type, Min-X, Max-X, Min-Y, Max-Y) 
 
for which Rectangle-ID means any rectangle number so that Min-X, Min-Y, 
Max-X and Max-Y correspond to the coordinates of its vertices, and Type 
is the rectangle type, whether real or pseudo.  And, for overlappings, 
pseudo-rectangles can have the same kinds of numbering as the real 
bounding rectangles. 
 
There is also a need for a relation for the assignment of rectangles to higher 
order units: 



A. Juozapavicius 

15 

 
PS (Higher-Level-ps-rectangle-ID, Lower-level-ps-rectangle-ID) 

 
The relation DECOMP (Initial-rectangle-ID, Rectanglel-ID, Rectangle2-ID) 
can be useful for identifying the assignment of the pieces. 
 

Indexing by other kinds of trees 
 
The main drawbacks of minimum-bounding rectangles is that this way of 
spatial indexing is very sensitive to orientation. Recently some other 
methods have been proposed based on spheres and polygons: 
 

 
Indexing with sphere trees 

 

 
Indexing with a cell tree 
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Instead of using a bounding rectangle, Van Oosterom and Classen (1990) 
have proposed enclosing objects by circles (or spheres at three dimensions). 
Even though it is often not easy to compute the circle, it is obvious that the 
extent of this geometric figure is not orientation sensitive. 
 
Moreover, this kind of spatial indexing is insensitive to orientation if the 
axes are rotated. Perhaps the main challenge is to find a method to 
determine automatically the bounding circle or sphere for any object; 
afterwards the addition or deletion of objects is not a problem. 
 
Another possibility is to index using polygons, called cell trees (Giinther, 
1990). In this case, each object is bounded by a convex polygon. The main 
challenge is to determine rapidly the convex polygon for bounding the 
objects, especially the number of sides. 
 
Also, Faloutsos and Rong (1989) have combined the R-tree and fractals by 
a so-called double transformation. Rectangles, defined by minimum and 
maximum x and y, can be represented by a point in a four-dimensional 
space (the min-X, min-Y, max-X and max-Y); this represents the first 
transformation. 
 
Then, all 4D points representing rectangles are ordered by four-dimensional 
Hilbert or Peano keys, being the second transformation. Their results show 
that 4D Hilbert keys give the better performance for their criteria. 
 

Some practical aspects of spatial indexing 
 
As a practical matter, only a few commercial spatial information systems 

today provide spatial indexing capabilities. Some systems allow access to 
database objects via mouse or other graphic cursor input for points or boxes 
or other shapes. Otherwise there is access via names or numerical identifiers 
in the attribute data tables. Sometimes topological neighbourhoods provide 
a means of access, by following line segment or graph links for a specified 
polygon or line. Indexing capabilities are much rarer. For one commercial 
system in which indexing tools are made available, the user manuals for the 
ARC/INFO system (ESRI) indicate that indices for both attributes and the 
spatial domain can be created. The latter indexing process uses adaptive 
grid-cells, the former use a binary searching mechanism, operating on data 
stored as modified binary (B-) trees. 
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The task of spatial indexing is very challenging. At present there are several 
techniques but none emerges as the best; although some form of 
hierarchical organization is generally advantageous. Moreover, two main 
secondary issues must also be solved: multi-layer indexing, and taking the 
physical disk structure into account. In several practical situations, spatial 
databases are split into several layers, each of them concerning a particular 
theme, for instance, a layer for streets, a layer for gas networks, a layer for 
sewerage, and so on. For this type of database it is interesting to create as 
many indices as there are layers and, for practical reasons, different indices 
may be established for different types of spatial unit. But when it is 
desirable to work with several thematic layers within one cover area, then 
the layers must be combined adequately. With a structure such as Peano 
keys it is simple to merge two indices, but for Rtrees and cell trees, the tree 
branches must be redetermined, a time consuming task. 
 

Other Multidimensional Access Methods 
 
Running example: 
 

 
 

K – D – Tree 
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k-d-tree is a binary search tree that represents the recursive subdivision of 
the universe into subspaces by means of    (d-1)-dimensional hyperplanes. 
 

Adaptive k-d-tree 
 

 
 
Adaptive k-d-tree choose a split such that one finds about the same number 
of elements on both sides. While the splitting hyperplanes are still parallel 
to the axes, they do not have to contain a data point and their directions do 
not have to be strictly alternating anymore. As a result, the split points are 
not part of the input data; all data points are stored in the leaves. Interior 
nodes contain the dimension (e.g. x or y) and the coordinate of the 
corresponding split. Splitting is continued recursively until each subspace 
contains only a single point. The adaptive k-d-tree is not a very dynamic 
structure; it is obviously difficult to keep the tree balanced in the presence 
of frequent insertions and deletions. The structure works best if all the data 
is known a priori and if updates are rare. 
 

BSP Tree 
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Splitting the universe only along iso-oriented hyperplanes is a severe 
restriction. Allowing arbitrary orientations gives more flexibility to find a 
hyperplane that is well-suited for the split. The binary space partitioning 
(BSP) tree are binary trees that represent a recursive subdivision of the 
universe into subspaces by means of (d - 1)- dimensional hyperplanes. 
 
Each subspace is subdivided independently of its history and of the other 
subspaces. The choice of the partitioning hyperplanes depends on the 
distribution of the data points in a given subspace. The decomposition 
usually continues until the number of points in each subspace is below a 
given threshold. 
 
The resulting partition of the universe can be represented by a BSP tree, 
where each hyperplane corresponds to an interior node of the tree and each 
subspace corresponds to a leaf. Each leaf stores references to those data 
points that are contained in the corresponding subspace. Figure shows a 
BSP tree for the running example with no more than two data points per 
subspace. 

The Quadtree 
 
Point quadtree 
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Region tree 
 

 
 

Point Access Methods 
 

Grid File 
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BANG File 
 

 
 

Two-Level Grid File 
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Twin Grid File 

 
 

Buddy Tree 
 

 
 
The buddy tree is a dynamic hashing scheme with a tree-like directory. The 
universe is cutted recursively into two parts of equal size with iso-oriented 
hyperplanes, and each interior node corresponds to a partition together with 
interval. The interval corresponds to MBB, covering points below of given 
node. Also: 
• Each directory node contains at least two entries; 
• Whenever a node is split, the MBB and subnodes are recomputed, to fit 

situation; 
• Except for the root of the directory, there is exactly one pointer referring 

to each directory page. 
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K-D-B-Tree 
 

 
 
The k-d-B-tree combines properties of the adaptive k-d-tree and the B-tree. 
 

hB-tree 
 

 
 
The hB-tree (holey brick tree) is similar to k-d-B-tree, except that splitting 
of the node is done based on multiple attributes, the result is somewhat 
fractal structure, with external enclosing regions and several cavities called 
extracted regions. 
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LSD Tree 
 

 
 

Space-filling curves 
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Z-ordering 
 

 
 

 
 

Basic properties of spatial data: 
 
1. spatial data has a complex structure (a spatial data object may be 

composed of a single point or several thousands of point sets, arbitrarily 
distributed across space. It is usually not possible to store collections of 
such objects in a single relational table with a fixed tuple size) 

2. spatial data is often dynamic (insertions and deletions are interleaved 
with updates, and data structures used in this context have to support this 
dynamic behavior) 



A. Juozapavicius 

26 

3. spatial databases tend to be large (the seamless integration of secondary 
and tertiary memory is therefore essential for efficient processing) 

4. there is no standard algebra defined on spatial data (no standardized set 
of base operators. The set of operators heavily depends on the given 
application domain) 

5. many spatial operators are not closed (the intersection of two polygons, 
for example, might return any number of single points, dangling edges, 
or disjoint polygons) 

6. although the computational costs vary between operators, spatial 
database operators are generally more expensive than standard relational 
operators 

 
History of Multidimensional Access Methods 

 

 
 


