
27 Geometric Intersection 
------------------------------------------------------------- 
 
 

A natural problem that arises frequently in applications involving geometric data is: "Given a set of N objects, 
do any two intersect?" The "objects" involved may be lines, rectangles, circles, polygons, or other types of 
geometric objects.  For example, in a system for designing and processing integrated circuits or printed circuit 
boards, it is important to know that no two wires intersect to make a short circuit.  In an industrial system for 
designing layouts to be executed by a numerically controlled cutting tool, it is important to know that no two parts 
of the layout intersect.  In computer graphics, the problem of determining which of a set of objects is obscured 
from a particular viewpoint can be formulated as a geometric intersection problem on the projections of the objects 
onto the viewing plane.  And in operations research, the mathematical formulation of many important problems 
leads naturally to geometric intersection problems. 

The obvious solution to the intersection problem is to check each pair of objects to see if they intersect.  Since 
there are about N2/2 pairs of objects, the running time of this algorithm is proportional to N 2 . For a few 
applications, this may not be a problem because other factors limit the number of objects to be processed.  
However, for many other applications, is not uncommon to deal with hundreds of thousands or even millions of 
objects.  The brute-force N2 algorithm is obviously inadequate for such applications.  In this section, we'll study a 
general method for determining, in time proportional to N log N, whether any two out of a set of N objects 
intersect; this method is based on algorithms presented by M. Shamos and D. Hoey in a seminal 1976 paper. 

First, we'll consider an algorithm for returning all intersecting pairs among a set of lines that are constrained to 
be horizontal or vertical.  This makes the problem easier in one sense (horizontal and vertical lines are relatively 
simple geometric objects), more difficult in another sense (returning all intersecting pairs is more difficult than 
simply determining whether one such pair exists).  The implementation we'll develop applies binary search trees 
and the interval range-searching program of the previous chapter in a doubly recursive program. 

Next, we'll examine the problem of determining whether any two of a set of N lines intersect, with no 
constraints on the lines.  The same general strategy as used for the horizontal-vertical case can be applied.  In fact, 
the same basic idea works for detecting intersections among many other types of geometric objects.  However, for 
lines and other objects, the extension to return all intersecting pairs is somewhat more complicated than for the 
horizontal-vertical case. 
 
Horizontal and Vertical Lines 
----------------------------------------------------------------------------------------------------------------------------------------------
------- 

To begin, we'll assume that all lines are either horizontal or vertical: the two points defining each line have 
either equal x coordinates or equal y coordinates, as in the sample sets of lines shown in Figure 27.1. (This is 
sometimes called Manhattan geometry because, Broadway to the contrary notwithstanding, the Manhattan street 
map consists mostly of horizontal and vertical lines.) Constraining lines to be horizontal or vertical is certainly a 
severe restriction, but this is far from a "toy" problem.  Indeed, this restriction is often imposed in a particular 
application: for example, very large-scale integrated circuits are typically designed under this constraint.  In the 
figure on the right, the lines are relatively short, as is typical in many applications, though one can usually count on 
encountering a few very long lines. 
The general plan of the algorithm to find an intersection in such sets of lines is to imagine a horizontal scan line 
sweeping from bottom to top.  Projected onto this scan line, vertical lines are points, and horizontal lines are 
intervals: as the scan line proceeds from bottom to top, points (representing vertical lines) appear and disappear, 
and horizontal lines are encountered periodically.  An intersection is found when a horizontal line is encountered 
representing an interval on the scan line that contains a point representing a vertical line.  Meeting the point means 
that the vertical line intersects the scan line, and the horizontal line lies on the scan line, so the horizontal and 
vertical lines must intersect.  In this way, the two-dimensional problem of finding an intersecting pair of lines is 
reduced to the one-dimensional range-searching problem of the previous chapter. 
 Of course, it is not necessary actually to "sweep" a horizontal line all the way up through the set of lines; 
since we need to take action only when endpoints of the lines are encountered, we can begin by sorting the lines 
according to their y coordinate, then processing the lines in that order.  If the bottom endpoint of a vertical line is 
encountered, we add the x coordinate of that line to the binary search tree (here called the x-tree); it' the top 
endpoint of a vertical line is encountered, we delete that line from the tree; and if a horizontal line is encountered, 



we do an interval range search using its two x coordinates.  As we'll see, some care is required to handle equal 
coordinates among line endpoints (by now the reader should be accustomed to encountering such difficulties in 
geometric algorithms). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 27.1 Two line intersection problems (Manhattan) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.2 Scanning for intersections: initial steps. 
 
 Figure 27.2 shows the first few steps of scanning to find the intersections in the example on the left in 
Figure 27. 1. The scan starts at the point with the lowest y coordinate, the lower endpoint of C. Then E is 
encountered, then D. The rest of the process is shown in Figure 27.3: the next line encountered is the horizontal 
line G, which is tested for intersection with C, D, and E (the vertical lines that intersect the scan line). 
 To implement the scan, we need only sort the line endpoints by their y coordinates.  For our example, this 
gives the list 
 

C E D G I B F C H B A I E D H F 
 
Each vertical line appears twice in this list, each horizontal line appears once.  For the purposes of the line 
intersection algorithm, this sorted list can be thought of as a sequence of insert (vertical lines when the bottom 
endpoint is encountered), delete (vertical lines when the top endpoint is encountered), and range (for the endpoints 
of horizontal lines) commands.  All of these "commands" are simply calls on the standard binary tree routines from 
Chapters 14 and 26, using x coordinates as keys. 
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Figure 27.3 Scanning for intersections: compression of process. 
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Figure 27.4 Data structure during scan: constructing the x-tree 
 
Figure 27.4 shows the x -tree construction process during the scan.  Each node in the tree corresponds to a 

vertical line, but the key used during the construction of the tree is the x -coordinate.  Since E is to the right of C, it 
is in C's right subtree, etc.  The first line of Figure 27.4 corresponds to Figure 27.2 and the rest to Figure 27.3. 

When a horizontal line is encountered, it is used to make a range search in the tree: all vertical lines in the range 
represented by the horizontal line correspond to intersections.  In our example, the intersection between E and G is 
discovered, then 1, B, and F are inserted.  Then C is deleted, H inserted, and B deleted.  At this point, A is 
encountered, and a range search for the interval defined by A is performed.  This search discovers the intersections 
between A and D, E, and H. Next, the upper endpoints of 1, E, D, and F are encountered and deleted, leading back 
to the empty tree. 
 
Implementation 
---------------------------------------------------------------------------------------------------------------------------------------------- 
The first step in the implementation is to sort the line endpoints on their y coordinates.  But since binary trees will 
be used to maintain the status of vertical lines with respect to the horizontal scan line, they may as well be used for 
the initial y sort!  Specifically, we will use two "indirect" binary trees on the line set, one with header node hy and 
one with header node hx.  The y tree will contain all the line endpoints, to be processed in order one at a time; the x 
tree will contain the lines that intersect the current horizontal scan line.  We begin by initializing both hx and hy 
with 0 keys and pointers to a dummy external node z, as in treeinitialize in Chapter 14.  Then the hy tree is 
constructed by inserting both y coordinates from vertical lines and the y coordinate of horizontal lines into the 
binary search tree with header node hy, as follows: 
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--------------------------------------------------------------- 
procedure buildytree; 

var xl.yl , x2,y2: integer; 
begin 
hy:=bstinitialize; N:=0; 
repeat 
N:=N+l; 
 read(xl.yl,x2.y2); if eoln then readln;  
 lines[N].p1.x:=xl; lines[N].pl.y:=yl;  
 lines[N].p2.x:=x2; lines[N].p2.y:=y2; 
  bstinsert(N.yl,hy); 
  if y2 < >y 1 then bstinsert (N, y2,  hy);  
until eof; 

end; 
------------------------------------------------------------------------ 
 
This program reads in groups of four numbers that specify lines and puts them into the lines array and into the 
binary search tree on the y coordinate.  The standard bstinsert routine from Chapter 14 is used, with the y 
coordinates as keys, and indices into the array of lines as the info field.  For our example set of lines, the tree 
shown in Figure 27.5 is constructed. 
 Now, the sort on y is effected by a recursive inorder tree traversal routine (see Chapters 4 and 14).  We 
visit the nodes in increasing y order by visiting all the nodes in the left subtree of the hy tree, then visiting the root, 
then visiting all the nodes in the right subtree of the hy tree.  At the same time, we maintain a separate tree (rooted 
at hx) as described above, to simulate the operation of passing through a horizontal scan line: 
------------------------------------------------------------------------------------------------------------------------------------------ 

procedure scan (next: link); 
var t, xl, x2, yl, y2: integer; 

   int: internal; 
 begin 
 if next< >z then 
 begin 
 scan (next|.l); 

 
 
 
xl:=lines[next|.info].pl.x; yl:=lines[next|.info].pl.y;  
x2:=lines[next|.info].p2.x; y2:=lines[next|.info].p2.y; 
if x2<xl then begin t:=x2; x2:=xl; xl:=t end;  
if y2<yl then begin t:=y2; y2:=yl; yl:=t end;  
if next|.key=yl then bstinsert(next|.info, xl, hx); 
 if next|.key=y2 then 

      begin 
                                                    bstdelete (next|. info, x1, hx); 
  int.xl:=xl; int.x2:=x2;  
  bstrange (hx|.r. int); 
  end; 
                                              scan (next|. r) 
                                              end 
                                         end; 
 

From the description above, it is rather straightforward to put together the code at the point where each node is 
"visited".  First, the coordinates of the endpoint of the corresponding line are fetched from the lines array, indexed 
by the info field of the node.  Then the key field in the node is compared against these coordinates to determine 
whether this node corresponds to the upper or the lower endpoint of the line: if it is the lower endpoint, it is 
inserted into the hx tree, and if it is the upper endpoint, it is deleted from the hx tree and a range search is 
performed.  The implementation differs slightly from this description in that horizontal lines are actually inserted 
into the hx tree, then immediately deleted, and a range search for a one-point interval is performed for vertical 
lines.  This makes the code properly handle the case of overlapping vertical lines, which are considered to 
"intersect." 



This approach of intermixed application of recursive procedures operating on the x and y coordinates is quite 
important in geometric algorithms.  Another example of this is the 2D tree algorithm of the previous chapter, and 
we'll see yet another example in the next chapter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.5 Sorting for scan using the y-tree. 
 
Property 27.1 All i tei-sec-tions among N horizontal and veticalr lines can be found in time proportional to N log 
N +I, where I is the number of intersections. 
 

The tree manipulation operations take time proportional to logN on the average (if balanced trees were used, a 
logn worst case could be guaranteed), but the time spent in bstrange also depends on the total number of 
intersections.  In general, the number of intersections can be quite large.  For example, if we have N/2 horizontal 
lines and N12 vertical lines arranged in a crosshatch pattern, then the number of intersections is proportional to N2.  
 

As with range searching, if it is known in advance that the number of intersections is very large, then some 
brute-force approach should be used.  Typically, applications involve a "needle-in-haystack" kind of situation 
where a large set of lines is to be checked for a few possible intersections. 
 
General Line Intersection 
---------------------------------------------------------------------------------------------------------------------------------------------- 

When lines of arbitrary slope are allowed, the situation can become more complicated, as illustrated in Figure 
27.6. First, the various line orientations possible make it necessary to test explicitly whether certain pairs of lines 
intersect-we can't get by with a simple interval range test.  Second, the ordering relationship between lines for the 
binary tree is more complicated than before, since it depends on the current y range of interest.  Third, any 
intersections that do occur add new "interesting" y values that are likely to be different from the set of y values we 
get from the line endpoints. 

It turns out that these problems can be handled in an algorithm with the same basic structure as given above.  
To simplify the discussion, we'll consider an algorithm for detecting whether or not there exists an intersecting pair 
in a set of N lines, and then we'll discuss how it can be extended to return all intersections. 

As before, we first sort on y to divide the space into strips within which no line endpoints appear.  Just as 
before, we proceed through the sorted list of points, adding each line to a binary search tree when its bottom point 
is encountered and deleting it when its top point is encountered.  Just as before, the binary tree gives the order in 
which the lines appear in the horizontal "strip" between two consecutive y values.  For example, in the strip 
between the bottom endpoint of D and the top endpoint of B in Figure 27.6, the lines should appear in the order F 
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Figure 27.6 Two general line intersection problems. 
 
B D H G. We assume that there are no intersections within the current horizontal strip of interest: our goal is to 

maintain this tree structure and use it to help find the first intersection. 
To build the tree, we can't simply use x coordinates from line endpoints as keys (doing this would put B and D 

in the wrong order in the example above, for instance).  Instead, we use a more general ordering relationship: a line 
x is defined to be to the right of a line y if both endpoints of x are on the same side of y as a point infinitely far to 
the right, or if y is to the left of x, with "left" defined analogously.  Thus, in the diagram above, B is to the right of 
A and B is to the right of C (since C is to the left of B).  If x is neither to the left nor to the right of y, then they 
must intersect.  This generalized "line comparison" operation can be implemented using the ccw procedure of 
Chapter 24.  Except for the use of this function whenever a comparison is needed, the standard binary search tree 
procedures (even balanced trees, if desired) can be used.  Figure 27.7 shows the manipulation of the tree for our 
example between the time line C is encountered and the time line D is encountered.  Each "comparison" performed 
during the treemanipulation procedures is actually a line-intersection test: if the binary search tree procedure cah't 
decide to go right or left, then the two lines in question must intersect, and we're finished. 

But this is not the whole story, because this generalized comparison operation is not transitive.  In the example 
above, F is to the left of B (because B is to the right of F) and B is to the left of D, but F is not to the left of D. It is 
essential to note this, because the binary tree deletion procedure assumes that the comparison operation is 
transitive: when B is deleted from the last tree in the above sequence, the tree shown in Figure 27.7 is formed 
without any explicit comparison of F and D. For our intersection-testing algorithm to work correctly, we must test 
explicitly that comparisons are valid each time we change the tree structure.  Specifically, every time we make the 
left link of node x point to node y, we explicitly test that the line corresponding to x is to the left of the line 
corresponding to y, according to the above definition, and similarly for the right.  Of course, this comparison could 
result in the detection of an intersection, as it does in our example. 

In summary, to test for an intersection among a set of N lines, we use the program above, but we remove the 
call to range and extend the binary tree routines to use the generalized comparison as described above.  If there is 
no intersection, we'll start with a null tree and end with a null tree without finding any incomparable lines.  If there 
is an intersection, then the two lines that intersect must be compared against each other at some point during the 
scanning process and the intersection will be discovered. 

Once we've found an intersection, however, we can't simply press on and hope to find others, because the two 
lines that intersect should swap places in the ordering directly after the point of intersection.  One way to handle 
this issue would be to use a priority queue instead of a binary tree for the y sort: initially put lines on the priority 
queue according to the y coordinates of their endpoints, then work the scan line up by successively taking the 
smallest y coordinate from the priority queue and doing a binary tree insert or delete as above.  When an 
intersection is found, new entries are added to the priority queue for each line, using the intersection point as the 
lower endpoint for each. 

Another way to find all intersections, which is appropriate if not too many are expected, is simply to remove 
one of the intersecting lines when an intersection is found.  Then after the scan is completed, we know that all 
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intersecting pairs must involve one of those lines, and we can use a brute-force method to enumerate all the 
intersections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.7 Data structure (x-tree) for general problem. 
 

Property 27.2 All intersections among N lines can be found in time proportional to N log N + I, where I is the 
numbet- of intersections. 
 
This follows directly from the discussion above.  
 

An interesting feature of the above procedure is that it can be adapted just by changing the generalized 
comparison procedure to test for the existence of an intersecting pair among a set of more general geometric 
shapes.  For example, if we implement a procedure that compares two rectangles whose edges are horizontal and 
vertical according to the trivial rule that rectangle x is to the left of rectangle y if the right edge of x is to the left of 
the left edge of y, then we can use the above method to test for intersection among a set of such rectangles.  For 
circles, we can use the x coordinates of the centers for the ordering and explicitly test for intersection (for example, 
compare the distance between the centers to the sum of the radii).  Again, if this comparison procedure is used in 
the above method, we have an algorithm for testing for intersection among a set of circles.  The problem of 
returning all intersections in such cases is much more complicated, though the brute-force method mentioned in the 
previous paragraph will always work if few intersections are expected.  Another approach that will suffice for many 
applications is simply to consider complicated objects as sets of lines and use the line-intersection procedure. 
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