
25 Finding the Convex Hull 
-------------------------------------------------------------- 

 
Often, when we have a large number of points to process, we're interested in the boundaries of the point set.  

People looking at a diagram of a set of points plotted in the plane, have little trouble distinguishing those on the 
"inside" of the point set from those lying on the edge.  This distinction is a fundamental property of point sets; in 
this chapter we'll see how it can be precisely characterized by looking at algorithms for separating out the "natural 
boundary" points. 

The mathematical way to describe the natural boundary of a point set depends on a geometric property called 
convexity.  This is a simple concept that the reader may have encountered before: a convex polygon has the 
property that any line connecting any two points inside the polygon must itself lie entirely inside the polygon.  For 
example, the "simple closed polygon" that we computed in the previous chapter is decidedly nonconvex; on the 
other hand, any triangle or rectangle is convex. 

Now, the mathematical name for the natural boundary of a point set is the convex hull.  The convex hull of a set 
of points in the plane is defined to be the smallest convex polygon containing them all.  Equivalently, the convex 
hull is the shortest path surrounding the points.  An obvious property of the convex hull that is easy to prove is that 
the vertices of the convex polygon defining the hull are points from the original point set.  Given N points, some of 
them form a convex polygon within which all the others are contained.  The problem is to find those points.  Many 
algorithms have been developed to find the convex hull; in this chapter we'll examine some of the important ones. 

Figure 25.1 shows our sample sets of points for Figure 24.1 and their convex hulls.  There are 8 points on the 
hull of the small set and 15 points on the hull of the large set.  In general, the convex hull can contain as few as 
three points (if the three points form a large triangle containing all the others) or as many as all the points (if they 
fall on a convex polygon, then the points comprise their own convex hull).  The number of points on the convex 
hull of a "random" point set 
 
falls somewhere in between these extremes, as we will see below.  Some algorithms work well when there are 
many points on the convex hull; others work better when there are only a few. 
 
A fundamental property of the convex hull is that any line outside the hull, when moved in any direction towards 
the hull, hits it at one of its vertex points. (This is an alternate way to define the hull: it is the subset of points from 
the point set that could be hit by a line moving in at some angle from infinity.) In particular, it's easy to find a few 
points guaranteed to be on the hull by applying this rule for horizontal and vertical lines: the points with the 
smallest and largest x and y coordinates are all on the convex hull.  This fact is used as the starting point for the 
algorithms we consider. 
 
Rules of the Game 
 

The input to an algorithm for finding the convex hull is of course an array of points; we can use the point type 
defined in the previous chapter.  The output is a polygon, also represented as an array of points with the property 
that tracing through the points in the order in which they appear in the array traces the outline of the polygon.  On 
reflection, this might appear to require an extra ordering condition on the computation of the convex hull (why not 
just return the points on the hull in any order?), but output in the ordered form is obviously more useful, and it has 
been shown that the unordered computation is no easier to do.  For all of the algorithms that we consider, it is 
convenient to do the computation in  place: the array used for the original point set is also used to hold the output.  
The algorithms simply rearrange the points in the original array so that the convex hull appears in the first M 
positions, in order. 

From the description above, it may be clear that computing the convex hull is closely related to sorting.  In fact, 
a convex hull algorithm can be used to sort, in the following way.  Given N numbers to sort, turn them into points 
(in polar coordinates) by treating the numbers as angles (suitably normalized) with a fixed radius for each point.  
The convex hull of this point set is an N-gon containing all of the points.  Now, since the output must be ordered in 
the order in which the points appear on this polygon, it can be used to find the sorted order of the original values 
(remember that the input was unordered).  This is not a formal proof that computing the convex hull is no easier 
than sorting, because, for example, the cost of the trigonometric functions required to convert the numbers into 
points on the polygon must be considered.  Comparing convex hull algorithms (which involve trigonometric 
operations) to sorting algorithms (which involve comparisons between keys) is a bit like comparing apples to 
oranges, but even so it has been shown that any convex hull algorithm must require about N log N operations, the 
same as sorting (even though the operations allowed are likely to be quite different).  It is helpful to view finding 



the convex hull of a set of points as a kind of "twodimentional sort," since frequent parallels to sorting algorithms 
arise in the study of algorithms for finding the convex hull. 

In fact, the algorithms we'll study show that finding the convex hull is no harder than sorting either: there are 
several algorithms that run in time proportional to N log N in the worst case.  Many of the algorithms tend to use 
even less time on actual point sets, because their running time depends on how the points are distributed and on the 
number of points on the hull. 

As with all geometric algorithms, we have to pay some attention to degenerate cases that are likely to occur in 
the input.  For example, what is the convex hull of a set of points all of which fall on the same line segment?  
Depending upon the application, this could be all the points or just the two extreme points, or perhaps any set 
including the two extreme points would do.  Though this seems an extreme example, it would not be unusual for 
more than two points to fall on one of the line 
 
segments defining the hull of a set of points.  In the algorithms below, we won't insist that points failing on a hull 
edge be included, since this generally involves more work (though we will indicate how this could be done when 
appropriate).  On the other hand, we won't insist that they be omitted either, since this condition could be tested 
afterwards if desired. 
 
Package-Wrapping 
 
The most natural convex hull algorithm, which parallels how a human would draw the convex hull of a set of 
points, is a systematic way to "wrap up" the set of points.  Starting with some point guaranteed to be on the convex 
hull (say the one with the smallest y coordinate), take a horizontal ray in the positive direction and 
 

"sweep" it upward until hitting another point; this point must be on the hull.  Then anchor at that point and 
continue "sweeping" until hitting another point, etc., until the "package" is fully "wrapped" (the beginning point is 
included again).  Figure 25.2 shows how the hull is discovered in this way for our sample set of points.  Point B has 
the minimum y coordinate and is the starting point.  Then M is the first point hit by the sweeping ray, then L, etc. 

Of course, we don't actually need to sweep through all possible angles; we just do a standard find-the-minimum 
computation to find the point that would be hit next.  For each point to be included on the hull, we need to examine 
each point not yet included on the hull.  Thus, the method is quite similar to selection sorting we successively 
choose the "best" of the points not yet chosen, using a brute-force search for the minimum.  The actual data 
movement involved is depicted in Figure 25.3: the Mth line of the table shows the situation after the M th point is 
added to the hull. 

The following program finds the convex hull of an array p [I..N] of points, represented as described at the 
beginning of Chapter 24.  The basis for this implementation is the function theta (p l,p2: point) developed in the 
previous chapter, which can be thought of as returning the angle between pl, p2 and the horizontal (though it 
actually returns a more easily computed number with the same ordering properties).  Otherwise, the 
implementation follows directly from the discussion above.  The array position p [N+1 ] is used to hold a sentinel. 
 

function wrap: integer; 
 

var I, min, M: integer; 
minangle, v: real; 
t: point; 

begin 
min:=l; 
for i:=2 to N do 

 
if p[i].y<p[min].y then min:=i; 

M:=O; p[N+l]:=p[min]; minangle:=O.O; repeat 
 

M:=M+l; t:=p[M]; p[M]:=p[min]; p[min]:=t; min:=N+I; v:=minangie; minangle:=360.0; for i:=M+l 
to N+l do 

  if theta (p[M],p[i])>v then 
 

if theta(p[M].p[i])<minangle then 
 

begin min:=i; minangle:=theta(p[M],p[min]) end; 
until min=N+l; 



wrap:=M; 
end; 

 
 
First, the point with the smallest y coordinate is found and copied into p [N+1] in order to stop the loop, as 
described below.  The variable M is maintained as the number of points so far included on the hull, and v is the 
current value of the "sweep" angle (the angle from the horizontal to the line between p[M-1] and p[M]).  The 
repeat loop puts the last point found into the hull by exchanging it with the Mth point, and uses the theta function 
from the previous chapter to compute the angle from the horizontal made by the line between that point and each of 
the points not yet included on the hull, searching for the one whose angle is smallest among those with angles 
greater than v. The loop stops when the first point (actually the copy of the first point put into p[N+l]) is 
encountered again. 

This program may or may not return points which fall on a convex hull edge.  This situation is encountered 
when more than one point has the same theta value with p [M] during the execution of the algorithm; the 
implementation above returns the point first encountered among such points, even though there may be others 
closer to p[M].  When it is important to find points falling on convex hull edges, we can achieve this by changing 
theta to take into account the distance between the points given as its arguments and assign the closer point a 
smaller value when two points have the same angle. 
 

The major disadvantage of package-wrapping is that in the worst case, when all the points fall on the convex 
hull, the running time is proportional to N 2 (like that of selection sort).  On the other hand, the method has the 
attractive feature that it generalizes to three (or more) dimensions.  The convex hull of a set of points in 
 
k-dimensional space is the minimal convex polytope containing them all, where a convex polytope is defined by 
the property that any line connecting two points inside must itself lie inside.  For example, the convex hull of a set 
of points in 3-space is a convex three-dimensional object with flat faces.  It can be found by "sweeping" a plane 
until the hull is hit, then "folding" faces of the plane, anchoring on different lines on the boundary of the hull, until 
the "package" is "wrapped." (Like many geometric algorithms, it is rather easier to explain this generalization than 
to implement it!) 
 
The Graham Scan 
 
The next method we'll examine, invented by R. L. Graham in 1972, is interesting because most of the computation 
involved is for sorting: the algorithm includes a sort followed by a relatively inexpensive (though not immediately 
obvious) computation.  The algorithm starts by constructing a simple closed polygon from the points using the 
method of the previous chapter: sort the points using as keys the theta function values corresponding to the angle 
from the horizontal made from the line connecting each point with an 'anchor' point p[1] (the one with the lowest y 
coordinate), so that tracing p [1 ], p [2], ..., p [N], p [1 ] gives a closed polygon.  For our example set of points, we 
get the simple closed polygon of the previous chapter.  Note that p [N], p [1 ], and p [2 ] are consecutive points on 
the hull; by sorting, we've essentially run the first iteration of the package-wrapping procedure (in both directions). 
Computation of the convex hull is completed by proceeding around, trying to place each point on the hull and 
eliminating previously placed points that couldn't possibly be on the hull.  For our example, we consider the points 
in the order B M J L N P K F I E C 0 A H G D; the first few steps are shown in Figure 25.4. At the beginning, we 
know because of the sort that B and M are on the hull.  When J is encountered, the algorithm includes it on the trial 
hull for the first three points. 
 

Then, when L is encountered, the algorithm finds out that J couldn't be on the hull (since, for example, it falls 
inside the triangle BML). 
 

In general, testing which points to eliminate is not difficult.  After each point has been added, we assume that 
we have eliminated enough points that what we have traced out so far could be part of the convex hull on the basis 
of the points so far seen.  As we trace around, we expect to turn left at each hull vertex.  If a new point causes us to 
turn right, then the point just added must be eliminated, since there exists a convex polygon containing it.  
Specifically, the test for eliminating a point uses the ccw procedure of the previous chapter, as follows.  Suppose 
we have determined that p [l..M] are on the partial hull determined on the basis of examining p [I.. i - I ]. When we 
come to examine a new point p [i ], we eliminate p [M] from the hull if ccw (p [M],p [M- 1 ]p [i ]) is nonnegative.  
Otherwise, p [M] could still be on the hull, so we don't eliminate it. 

Figure 25.5 shows the completion of this process on our sample set of points.  The situation as each new point 
is encountered is diagrammed: each new point is added to the partial hull so far constructed and is then used as a 



"witness" for the elimination of (zero or more) points previously considered.  After L, N, and P are added to the 
hull, P is eliminated when K is considered (since NPK is a right turn), then F and I are added, leading to the 
consideration of E. At this point, I must be eliminated because FIE is a right turn, then F and K must be eliminated 
because KFE and NKE are right turns.. Thus more than one point can be eliminated during the "backup" 
procedure, perhaps several.  Continuing in this way, the algorithm finally arrives back at B. 

The initial sort guarantees that each point is considered in turn as a possible hull point, because all points 
considered earlier have a smaller theta value.  Each line that survives the "eliminations" has the property that all 
points so far considered are on the same side of it, so that when we get back to p [N], which also must be on the 
hull because of the sort, we have the complete convex hull of all the points. 

As with the package-wrapping method, points on a hull edge may or may not be included, though there are two 
distinct situations that can arise with collinear points.  First, if there are two points collinear with p [1], then, as 
above, the sort using theta may or may not get them in order along their common line.  Points out of order in this 
situation will be eliminated during the scan.  Second, collinear points along the trial hull can arise (and not be 
eliminated). 

Once the basic method is understood, the implementation is straightforward, though there are a number of 
details to attend to.  First, the point with the maximum x value among all points with minimum y value is 
exchanged with p [1 ]. Next, shellsort is used to rearrange the points (any comparison-based sorting routine would 
do), modified as necessary to compare two points using their theta values with p [l ]. After the sort, p [N] is copied 
into p[O] to serve as a sentinel in case p[3] is not on the hull.  Finally, the scan described above is performed.  The 
following program finds the convex hull of the point set p[1..N] 
 

function grahamscan: integer; 
var i, j, min, M: integer; 

1: line; t: point; 
begin 
min:=l; 
for i:=2 to N do 
if p [i ].y <p [min ].y then min:=i; 
for i:=l to N do 

if (p [i ].y=p [min ].y) and (p [i ].x>p [min ].x) then min:=i; t:=p [1 ]; p [1 ]:=p [min ]; p [min ]:=t; 
shellsort; 
p [0]:=p [N]; 
M:=3; 
for i:=4 to N do 

begin 
while ccw(p[M],p[M-1],p[I])>=O do M:=M-1; M:=M+l; 
t:=p[M]; p[M]:=p[i]; p[i]:=t; 
end; 

grahamscan:=M; 
end; 

 
The loop maintains a partial hull in p[l..M], as described above.  For each new i value considered, M is 
decremented if necessary to eliminate points from the partial hull and thenp[i] is exchanged with p[M+l] to 
(tentatively) add it to the partial hull.  Figure 25.6 shows the contents of the p array each time a new point is 
considered for our example. 
The reader may wish to check why it is necessary for the min computation to find the point with the lowest x 
coordinate among all points with the lowest y coordinate, the canonical form described in Chapter 24.  As 
discussed above, another subtle point is to consider the effect of the fact that collinear points lead to equal theta 
values, and may not be sorted in the order in which they appear on the line, as one might have hoped. 
One reason that this method is interesting to study is that it is a simple form of backtracking, the algorithm design 
technique of "try something, and if it doesn't work then try something else" that we'll revisit in Chapter 44. 
 
Interior Elimination 
 
Almost any convex hull method can be vastly improved by a simple techique which quickly disposes of most 
points.  The general idea is simple: pick four points known to be on the hull, then throw out everything inside the 
quadrilateral 
 



formed by those four points.  This leaves many fewer points to be considered by, say, the Graham scan or the 
package wrapping technique. 
 

The four points known to be on the hull should be chosen with an eye towards any information available about 
the input points.  Generally, it is best to adapt the choice of points to the distribution of the input.  For example, if 
all x and y values within certain ranges are equally likely (a rectangular distribution), then choosing four points by 
scanning in from the corners (find the four points with the largest and smallest sum and difference of the two 
coordinates) turns out to eliminate nearly all the points.  Figure 25.7 shows that this technique eliminates most 
points not on the hull in our two example point sets. 

In an implementation of the interior elimination method, the "inner loop" for random point sets is the test of 
whether or not a given point falls within the test quadrilateral.  This can be speeded up somewhat by using a 
rectangle with edges parallel to the x and y axes.  The largest such rectangle which fits in the quadrilateral 
described above is easy to find from the coordinates of the four points defining the quadrilateral.  Using this 
rectangle will eliminate fewer points from the interior, but the speed of the test more than offsets this loss. 
 
Performance Issues 
 
As mentioned in the previous chapter, geometric algorithms are somewhat harder to analyze than algorithms in 
some of the other areas we've studied because the input (and the output) is more difficult to characterize.  It often 
doesn't make sense to speak of "random" point sets: for example, as N gets large, the convex hull of points drawn 
from a rectangular distribution is extremely likely to be very close to the rectangle defining the distribution.  The 
algorithms we've looked at depend on different properties of the point set distribution and are thus incomparable in 
practice, because to compare them analytically would require an understanding of very complicated interactions 
between little-understood properties of point sets.  On the other hand, we can say some things about the 
performance of the algorithms that will help choosing one for a particular application. 
 
Property 25.1 After the sort, the Graham scan is a linear-time process. 
 
A moment's reflection is necessary to convince oneself that this is true, since there is a "loop-within-a-loop" in the 
program.  However, it is easy to see that no point is "eliminated" more than once, so the code within that double 
loop is iterated fewer than N times.  The total time required to find the convex hull using this method is O(N logN), 
but the "inner loop" of the method is the sort itself, which can be made efficient using techniques of Chapters 8-12.  
 
Property 25.2 If there are M vertices on the hull, then the "package-wrapping" technique requires about MN 
steps. 
 
First, we must compute N - 1 angles to find the minimum, then N - 2 to find the next, then N - 3, etc., so the total 
number of angle computations is (N - 1) + (N -2) + …+ (N- M + 1), which is exactly equal to MN - M (M - 1)/2.  
To compare this analytically with the Graham scan would require a formula for M in terms of N, a difficult problem 
in stochastic geometry.  For a circular distribution (and some others) the answer is that M is O(N 1/3 ), and for 
values of N which are not large N 1/3 is comparable to log N (which is the expected value for a rectangular 
distribution), so this method will compete very favorably with the Graham scan.  Of course, the N 2 worst case 
should always be taken into consideration. 
 
Property 25.3 The interior elimination method is linear, on the average. 
 
Full mathematical analysis of this method would require even more sophisticated stochastic geometry than above, 
but the general result is the same as that given by intuition: almost all the points fall inside the quadrilateral and are 
discarded-the number of points left over is O(VN-).  This is true even if the rectangle is used as described above.  
This makes the average running time of the whole convex hull algorithm proportional to N, since most points are 
examined only once (when they are thrown out).  On the average, it doesn't matter much which method is 
afterwards, since so few points are likely to be left.  However, to protect against the worst case (when all points are 
on the hull), it is prudent to use the Graham scan.  This gives an algorithm which is almost sure to run in linear time 
in practice and is guaranteed to run in time proportional to N logN. 
 
The average-case result of Property 25.3 holds only for randomly distributed points in a rectangle, and in the worst 
case nothing is eliminated by the interior elimination method.  However, for other distributions or for point sets 
with unknown properties, this method is still recommended because the cost is low (a linear scan through the 



points, with a few simple tests) and the possible savings is high (most of the points can be easily eliminated).  The 
method also extends to higher dimensions. 
 
It is possible to devise a recursive version of the interior elimination method: find extreme points and remove 
points on the interior of the defined quadrilateral as above, but then consider the remaining points as partitioned 
into subproblems which can be solved independently, using the same method.  This recursive technique is similar 
to the Quicksort-like select procedure for selection discussed in Chapter 12. Like that procedure, it is vulnerable to 
an N 2 worst-case running time.  For example, if all the original points are on the convex hull, then no points are 
thrown out in the recursive step.  Like select, the running time is linear on the average (though it is not easy to 
prove this).  But because so many points are eliminated in the first step, it is not likely to be worth the trouble to do 
further recursive decomposition in any practical application. 
 


