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Computers are being used more and more to solve large-scale problems that are inherently geometric.  
Geometric objects such as points, lines and polygons are the basis of a broad variety of important applications and 
give rise to an interesting set of problems and algorithms. 
 

Geometric algorithms are important in design and analysis systems modeling physical objects ranging from 
buildings and automobiles to very large-scale integrated circuits.  A designer working with a physical object has a 
geometric intuition that is difficult to support in a computer representation.  Many other applications directly 
involve processing geometric data.  For example, a political "gerrymandering" scheme to divide a district up into 
areas of equal population (and that satisfy other criteria such as putting most of the members of the other party in 
one area) is a sophisticated geometric algorithm.  Other applications abound in mathematics and statistics, fields in 
which many types of problems can be naturally set in a geometric representation. 
 

Most of the algorithms we've studied have involved text and numbers, which are represented and processed 
naturally in most programming environments.  Indeed, the primitive operations required are implemented in the 
hardware of most computer systems.  We'll see that the situation is different for geometric problems: even the most 
elementary operations on points and lines can be computationally challenging. 
 

Geometric problems are easy to visualize, but that can be a liability.  Many problems that can be solved 
instantly by a person looking at a piece of paper (example: is a given point inside a given polygon?) require non-
trivial computer programs.  For more complicated problems, as in many other applications, the method of solution 
appropriate for computer implementation may well be quite different from the method of solution appropriate for a 
person. 

One might suspect that geometric algorithms would have a long history because of the constructive nature of 
ancient geometry and because useful applications are so widespread, but actually much of the work in the field has 
been quite recent.  Nonetheless, the work of ancient mathematicians is often useful in the development of 
algorithms for modem computers.  The field of geometric algorithms is interesting to study because of its strong 
historical context, because new fundamental algorithms are still being developed, and because many important 
large-scale applications require these algorithms. 
 
Points, Lines, and Polygons 
--------------------------------------------------------------------------------------------------------------------------------------------------------- 
Most of the programs we'll study operate on simple geometric objects defined in a two-dimensional space, though 
we will consider a few algorithms for higher dimensions. The fundamental object is a point, which we consider to 
be a pair of integers-the "coordinates" of the point in the usual Cartesian system. A line is a pair of points, which 
we assume are connected together by a straight line segment. A polygon is a list of points: we assume that 
successive points are connected by lines and that the first point is connected to the last to make a closed figure. 
To work with these geometric objects, we need to decide how to represent them. Usually we use an array 
representation for polygons, though a linked list or some other representation can be used when appropriate. Most 
of our programs will use the straightforward representations 
------------------------------------------------------------ 

type point  =  record x.y: integer end; 
              line  =  record p1, p2: point end; 

var polygon:  array [O..Nmax ] of point; 
------------------------------------------------------------ 
 
Note that points are restricted to have integer coordinates.  A real representation could also be used.  Using integer 
coordinates leads to slightly simpler and more efficient algorithms, and is not as severe a restriction as it might 
seem.  As mentioned in Chapter 2, working with integers when possible can be a very significant timesaver in 
many computing environments, because integer calculations are typically much more efficient than floating-point 
calculations.  Thus, when we can get by with dealing only with integers without introducing much extra 
complication, we will do so. 
More complicated geometric objects will be represented in terms of these basic components.  For example, 
polygons will be represented as arrays of points. Note that using arrays of lines would result in each point on the 
polygon being included twice (though that still might be the natural representation for some algorithms).  Also, it is 



useful in some applications to include extra information associated with each point or line; we can do this by 
adding an info field to the records. 
We'll use the sets of points shown in Figure 24.1 to illustrate the operation of several geometric algorithms.  The 
sixteen points on the left are labeled with single letters for reference in explaining the examples, and have the 
integer coordinates 
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Figure  24.1   Sample point sets for geometric algorithms 
 
 

shown in Figure 24.2. (The labels we use are assigned in the order in which the points are assumed to appear in 
the input.) The programs usually have no reason to refer to points "by name"; they are simply stored in an array 
and are referred to by index. The order in which the points appear in the array may be important in some of the 
programs: indeed, it is the goal of some geometric algorithms to "sort" the points into some particular order. On 
the right in Figure 24.1 are 128 points, randomly generated with integer coordinates between 0 and 1000. 
A typical program maintains an array p [ 1..N] of points and simply reads in N pairs of integers, assigning the 
first pair to the x and y coordinates of p[1], the second pair to p [2], etc.  When p represents a polygon, it is 
sometimes convenient to maintain "sentinel" values p[0l=p[N] and p[N+1]=p[1]. 

 
Line Segment Intersection 

    ------------------------------------------------------------------------------------------------------------------------------------------------------ 
As our first elementary geometric problem, we'll consider determining whether or not two given line segments 
intersect.  Figure 24.3 illustrates some of the situations that can arise.  In the first case, the line segments 
intersect.  In the second, the endpoint of one segment is on the other segment: We'll consider this an intersection 
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         Figure 24.2 Coordinates of points in small sample set (on the left in Figure 24.1). 
 
 
 
 
 
 



 
 
 
 
 
      Figure 24.3  Testing whether line segments intersect: four cases 
 
by assuming the segments to be "closed" (endpoints are part of the segments); thus, line segments having a 
common endpoint intersect.  In both the last two cases in Figure 24.3, the segments do not intersect, but the cases 
differ when we consider the intersection point of the lines defined by the segments.  In the fourth case this 
intersection point falls on one of the segments; in the third it does not.  Or, the lines could be parallel (a special 
case of this that frequently turns up is when one or both of the segments is a single point). 

The straightforward way to solve this problem is to find the intersection point of the lines defined by the line 
segments and then check whether this intersection point falls between the endpoints of both of the segments.  
Another easy method is based on a tool that we'll find useful later, so we'll consider it in more detail.  Given three 
points, we want to know whether, in traveling from the first to the second to the third, we turn counterclockwise or 
clockwise.  For example, for points A, B, and C in Figure 24.1 the answer is yes, but for points A, B, and D the 
answer is no. This function is straightforward to compute from the equations for the lines as follows: 
 
----------------------------------------------------------------------------------------------------------------------------------- 

function ccw (pO,pl.p2: point): integer;  
        var dxl , dx2 , dyl dy2: integer;  
        begin 

          dxl := pl.x - p0.x;   dyl := pl.y – p0.y; 
          dx2:= p2.x – p0.x; dy2 := p2.y – p0.y; 
          if dxl * dy2 > dyl * dx2  then ccw := l; 
          if dxl * dy2 < dyl * dx2  then ccw := -l; 
          if dxl * dy2 = dyl * dx2  then 

     begin 
    if (dxl * dx2 < 0) or (dyl * dy2 < 0) then ccw := -l else 
    if (dxl * dxl + dyl * dyl) >= (dx2 * dx2 + dy2 * dy2) then ccw := O  else  ccw := 1; 
 end; 

end; 
----------------------------------------------------------------------------------------------------------------------------------- 
To understand how the program works, first suppose that all of the quantities dxl,. dx2, dyl, and dy2 are positive.  
Then note that the slope of the line connecting p0 and pl is dyl/dx1 and the slope of the line connecting p0 and p2 
is dy2ldx2. Now, if the slope of the second line is greater than the slope of the first, a "left" (counterclockwise) turn 
is required in the journey from p0 to pl to p2; if less, a "right" (clockwise) turn is required.  Comparing slopes in 
the program is slightly inconvenient because the lines could be vertical (dxl or dx2 could be 0): we multiply by 
dxl*dx2 to avoid this.  It turns out that the slopes need not be positive for this test to work properly; if, however, 
the slopes are the same (the three points are collinear), one can envision a variety of ways to define ccw.  Our 
choice is to make the function three-valued: rather than true and false we use 1 and -1, reserving the value 0 for 
the case where p2 is on the line segment between p0 and p1. If the points are collinear, and p0 is between p2 and 
pl, we take ccw to be -1; if p2 is between p0 and pl, we take ccw to be 0; and if pl is between p0 and p2, we take 
ccw to be 1. We'll see that this convention simplifies the coding for functions that use ccw in this and the next 
chapter. 
      This immediately gives an implementation of the intersect function.  If both endpoints of each line are on 
different "sides" (have different ccw values) of the other, then the lines must intersect: 
------------------------------------------------------------------------------------------------------------------------------------- 

function intersect(l1. l2: line): boolean; 
   begin 
   intersect := ((ccw(l1.pl, ll.p2. 12.pl) * ccw(Il.pl. 1l.p2, 12.p2)) <= 0) 
                 and ((ccw(12.pl, 12.p2. 1l.pl) * ccw(12.pl, 12.p2, 11.p2)) <= 0); 
end; 

-------------------------------------------------------------------------------------------------------------------------------------- 
This solution seems to involve a fair amount of computation for such a simple problem.  The reader is encouraged 
to try to find a simpler solution, but should be warned to be sure that the solution works on all cases.  For example, 
if all four points are collinear, there are six different cases (not counting situations where points coincide), only 



four of which are intersections.  Special cases like this are the bane of geometric algorithms: they cannot be 
avoided, but we can lessen their impact with primitives like ccw. 
       If many lines are involved, the situation becomes much more complicated. In Chapter 27, we'll see a 
sophisticated algorithm for determining whether any two of a set of  N lines intersect. 
 
Simple Closed Path 
-------------------------------------------------------------------------------------------------------------------------------------- 
To get the flavor of problems dealing with sets of points, let's consider the problem of finding a path through a set 
of N given points that doesn't intersect itself, visits all the points, and returns to the point at which it started.  Such a 
path is called a simple closed path.  One can imagine many applications for this: the points might represent homes 
and the path the route that a mailman might take to get to each of the homes without crossing his path.  Or we 
might simply want a reasonable way to draw the points using a mechanical plotter.  This problem is elementary 
because it asks only for any closed path connecting the points.  The problem of finding the best such path, called 
the traveling salesman problem, is much, much more difficult, and we'll look at it in some detail in the last few 
chapters of this book.  In the next chapter, we'll consider a related but much easier problem: finding the shortest 
path that surrounds a set of N given points.  In Chapter 31, we'll see how to find the best way to "connect" a set of 
points. 

An easy way to solve the elementary problem at hand is the following.  Pick one of the points to serve as an 
"anchor." Then compute the angle made by drawing a line from each of the points in the set to the anchor and then 
out in the positive horizontal direction (this is part of the polar coordinate of each point with the anchor point as 
origin).  Next, sort the points according to that angle.  Finally, connect adjacent points.  The result is a simple 
closed path connecting the points, as shown in Figure 24.4 for the points in Figure 24. 1. In the small set of points, 
B is used as the anchor: if the points are visited in the order 
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then a simple closed polygon will be traced Out. 
 

If dx and dy are the distances along the x and y axes from the anchor point to some other point, then the angle 
needed in this algorithm is tan-1 dy/dx.  Although the arctangent is a built-in function in Pascal (and some other 
programming environments). it is likely to be slow and leads to at least two annoying extra conditions to compute: 
whether dx is zero and which quadrant the point is in.  Since the angle 
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          Figure 24.4  Simple closed paths 
 
is used only for the sort in this algorithm, it makes sense to use a function that is much easier to compute but has 
the same ordering properties as the arctangent (so that when we sort, we get the same result).  A good candidate for 
such a function is simply dy / (dy + dx).  Testing for exceptional conditions is still necessary, but simpler.  The 
following program returns a number between 0 and 360 that is not the angle made by pl and p2 with the horizontal 
but which has the same order properties as that angle. 
 



     ---------------------------------------------------------------------- 
function theta(pl.  p2: point): real; 
     var dx, dy. ax. ay : integer; 

t: real; 
 begin 

dx := p2.x -  pl.x; ax := abs(dx); 
dy := p2.y - pl.y; ay := abs(dy); 
if (dx = 0) and (dy = 0) then t := 0 
   else t := dy/(ax + ay); 
if dx < 0 then t := 2 - t 
  else if dy < 0 then t := 4 + t; 
theta := t * 90.0; 
end; 

 ---------------------------------------------------------------------    
In some programming environments it may not be worthwhile to use such programs instead of standard 
trigonometric functions; in others it may lead to significant savings. (In some cases it may be worthwhile to change 
theta to have an integer value, to avoid using real numbers entirely.) 
 
Inclusion in a Polygon 
--------------------------------------------------------------------------------------------------------------------------- 
The next problem we'll consider is a natural one: given a point and polygon represented as an array of points, 
determine whether the point is inside or outside the polygon.  A straightforward solution to this problem 
immediately suggests itself: draw a long line segment from the point in any direction (long enough so that its other 
endpoint is guaranteed to be outside the polygon) and count the number of lines from the polygon that it crosses.  If 
the number is odd, the point must be inside; if it is even, the point is outside.  This is easily seen by tracing what 
happens as we come in from the endpoint on the outside: after the first line, we are inside, after the second we are 
outside, etc.  If we do this an even number of times, the point at which we end up (the original point) must be 
outside. 
 The situation is not quite so simple, however, because some intersections might occur right at the vertices 
of the input polygon.  Figure 24.5 shows some of the situations that must to be handled.  The first is a 
straightforward "outside" case; the second is a straightforward "inside" case; in the third, the test line leaves the 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 24.5  Cases to be handled by a point –in-polygon algorithm 
 

polygon at a vertex (after touching two other vertices; and in the fourth, the test line coincides with an edge of the 
polygon before leaving.  In some cases where the test line intersects a vertex it should count as one intersection 
with the polygon; in other cases it should count as none (or two).  The reader may be amused to try to find a 
simple test to distinguish these cases before reading further. 

 
The need to handle cases where polygon vertices fall on the test lines forces us to do more than just count the line 
segments in the polygon intersecting the test line.  Essentially, we want to travel around the polygon, 
incrementing an intersection counter whenever we go from one side of the test line to another.  One way to 
implement this is to simply ignore points that fall on the test line, as in the following program: 

 
 
 



------------------------------------------------------------------------------------------------------------------------- 
function inside (t: point): boolean; 

var count,  i, j: integer; 
lt. lp: line; 

begin 
count  i := O;  j:=O; 

 
p [0] := p[N]; p [N+l ] := p [1]; 
lt.pl := t; lt.p2 := t;  lt.p2.x:=maxint; 
for i:=l to N do 

begin 
lp.pl := p[i]; lp.p2 := p[i]; 
if not intersect(1p, lt) then 

begin 
lp.p2 := p[j];  j := i; 

        if intersect(lp, lt) then count := count + 1; 
        end; 
   end; 
inside := ((count mod 2)=1); 
end; 

------------------------------------------------------------------------------------------------------------------------------- 
 
This program uses a horizontal test line for ease of calculation (imagine the diagrams in Figure 24.5 as rotated 45 
degrees).  The variable j is maintained as the index of the last point on the polygon known not to lie on the test line.  
The program assumes that p [1 ] is the point with the smallest x coordinate among all the points with the smallest y 
coordinate, so that if p [1 ] is on the test line, then p [0] cannot be.  The same polygon can be represented by N 
different p arrays, but as this illustrates it is sometimes convenient to fix a standard rule for p[1]. (For example, this 
same rule is useful for p [1 ] as the "anchor" for the procedure suggested above for computing a simple closed 
polygon.) If the next point on the polygon that is not on the test line is on the same side of the test line as the jth 
point, then we need not increment the intersection counter (count); otherwise we have an intersection.  The reader 
may wish to check that this algorithm works properly for the cases in Figure 24.5. 

If the polygon has only three or four sides, as is true in many applications, then such a complex program is not 
called for: a simpler procedure based on calls to ccw will be adequate.  Another important special case is the 
convex polygon, to be studied in the next chapter, which has the property that no test line can have more than two 
intersections with the polygon.  In this case, a procedure like binary search can be used to determine in O(logN) 
steps whether or not a point is inside. 
 
Perspective 
--------------------------------------------------------------------------------- 

From the few examples given, it should be clear that it is easy to underestimate the difficulty of solving a 
particular geometric problem with a computer.  There are many other elementary geometric computations that we 
have not treated at all.  For example, a program to compute the area of a polygon makes an interesting exercise.  
However, the problems we've looked at have provided some basic tools that will be useful in later sections for 
solving the more difficult problems. 

Some of the algorithms we'll study involve building geometric structures from a given set of points.  The 
"simple closed polygon" is an elementary example of this.  We will need to decide upon appropriate 
representations for such structures, develop algorithms to build them, and investigate their use in particular 
applications.  As usual, these considerations are intertwined.  For example, the algorithm used in the inside 
procedure in this chapter depends in an essential way on the representation of the simple closed polygon as an 
ordered set of points (rather than as an unordered set of lines). 

Many of the algorithms we'll study involve geometric search: we want to know which points from a given set 
are close to a given point, or which points fall in a given rectangle, or which points are closest to one another.  
Many of the algorithms appropriate for such search problems are closely related to the search algorithms studied in 
Chapters 14-17.  The parallels will be quite evident. 

Few geometric algorithms have been analyzed to the point that precise statements can be made about their 
relative performance characteristics.  As we've already seen, the running time of a geometric algorithm can depend 
on many things. 
 



The distribution of the points themselves, the order in which they appear in the input, and whether trigonometric 
functions are used can all significantly affect the running time of geometric algorithms.  As usual in such situations, 
however, we do have empirical evidence that suggests good algorithms for particular applications.  Also, many of 
the algorithms are derived from complexity studies and are designed for good worst-case performance. 
 
                            


