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Abstract In this paper we concentrate on the second item. Main

notations and preliminaries are introduced in Section 2. It
We present an informal introduction to the theory of is recommended to skip this section at first and go directly
toric surfaces from the viewpoint of geometric model- to examples, which are quite elementary. We describe the
ing. Beézier surfaces and many well-known low-degree simplest cases of quadric and cubic toric surfaces in Sec-
rational surfaces are found to be torice#r like con-  tion 3. Section 4 is devoted to quartic surfaces. Itis shown
trol point schemes for toric surfaces are defined via mixedthat all quartic Dupin cyclides and all surfaces of revo-
trigonometric—polynomial parametrizations. Examples of |ution with conic generatrix are toric. In Section 5 one
a wide shape variety are considered: all quadrics, cubiomodeling example of a “pear shape” using a sextic toric
Maobius strip, quartic ‘cross-cap’, ‘pillow’ and Dupin cy- surface is considered. Finally in Section 6 conclusions are
clides, sextic ‘pear’ etc. discussed.

Keywords: Geometric modeling, Shape, Bezier surfaces,
Toric surfaces

2 Background

1 Introduction 2.1 Notations

, - . . - Recall that a reah-dimensional projective spadP™ is
Toric varieties were introduced in the early 1970’s in alge- '~ .
y g defined as a space of all lines k! that go through

braic geometry. Since that time their abstract theory hasthe origin(0 0). We are mostly interested in the case
n rapidl vel nd many new important resul Jo
been rapidly developed and many ne portant resu tSn = 3. Points inRP™ usually are represented by coor-

are achieved. This theory appeared to be tightly related to

combinatorics of convex polytopes. This makes the the—d'r?e?tnes(_?ﬁ’ e ’rm”) ﬁf johmfn pomnt on a Imerd(ier)](c;apt trfn
ory of toric varieties very attractive for different kind of origin. cy are cafled homogeneous coordinates. y

applications (e.g. [2]). prc:;mrﬂo:::\l <_:r(:1llerct|ior(txn0,t. r 7|tx?)', t t;ﬂ;ﬁohmea%sptse
There are several reasons why toric surfaces are impor\—?vahici pnga s ane € (;natl t(‘;" E[Jh: c‘:)ocr)::g ondin _>Iine We
tant to geometric modeling. P y P P g '

will identify the affine spac&®™ with the subset iIlRP™:

1. They are natural generalizations oé#%r surfaces  (71,...,2n) = (1,71,...,2,). So infinite points lie
which are widely used in free-form modeling. A sim- on the hyperplane, = 0. Similarly complex projective
ilar control point system of toric surfaces allows to spacesCP™ are defined: just change &ito C (complex
model multisided surface patches (see [10], [13]).  humbers) in the previous definition.

It will be convenientto use homogeneous control points,

2. Non-standard real structures on complex toric sur-including control vectors. Hence we write all parametr-
faces leads to a wide shape possibilities. Many well- jzation formulas in homogeneous setting. LettBrsi =
known surfaces of low implicit degree are found tobe (... », will denote the standard basislit*+! . Bernstein

toric. polynomials are defined as usugf (t) = (¥)(1—t)* it

3. All rational parametrizations of toric surfaces have a
constructive description via universal parametrization 2.2 Complex toric varieties
(see [4], [12], [9]). This is important for data con- L . ) ) .
version from traditional solid modeling systems that A projective toric variety can be briefly defined as a mono-

deal with simplest surfaces (which appear to be toric) Mially parametrized subset in the projective space.
to NURBS based systems. At first consider a simple 1-dimensional case. The map

R — RP?, u; ~ [1,u1,u}], defines a parametrization of
4. Recent works [1], [3], [15] show that an implicitiza- a conic (an affine parabola) but its infinite po[6t0, 1]
tion problem for toric surfaces can be solved effec- is missed. Using the mapy > [u3,uo, 1] we cover
tively using variants ofd-resultants at least in some this point but ther1,0, 0] is missed. Hence it is neces-
important cases. sary to use both variables at the same tifng, u;) —



To appear in the SCCG conference proceedings

[u3, upu1,u?]. In @ more general control point setting we
have
(Ug,ul) — Pgt(z) + Piugu; + qu;.

)

Substitutingug andu; by 1 — ¢ andt¢ a Bézier curve is
obtained (with control point®y, P, /2, P).

Let us turn to a general case ofdedimensional vari-
ety. The most important particular cases willde- 1, 2.
Consider ad-dimensionalattice M = 72 of points with
integer coordinates in spa&¥. Define alattice polytope
A C R? as the convex hull of some finite subsefiih Let
dim A = d, i.e. A is not contained in a hyperplane. Then
facets (i.e. (d — 1)-dimensional facesp; of A are inter-
sections with hyperplands;(t) = 0,7 = 1,...,r. Here
we suppose the affine linear forms(t) = (n;, t) + a; to
be normalized: vectors; are primitive (i.e. the shortest
vectors in this direction with integer coordinates) and in-
ward oriented. We denote h¥ = A N M a set of lattice
points ofA.

Definition 21 A complex projective toric  vari-
ety Th associated with a lattice polytope A,
A {mg,m1,...,mn}, is a subset in CPY
parametrized by the following formula

GA(Ul,...

7ur) = [uh(mg)’ uh(ml), s ,uh(mN)] ) (2)

where yh(m) = ot (m)y he(m) . The variables

u; € C,i=1,...,r, arecalled facet variable$2].

ulr (m)

The parametrizatio&¥ A is undefined on the exceptional
subsetG 1" (0), which is contained in a union of intersec-
tions of some pairs of coordinate hyperplanes.

Remark 2.2 Itisnot difficult to check that it is not neces-
sary to use all facet variables if one wants to cover only
a part of the variety. One can start with any collection of
primitive vectors n;. Then one defines affine forms h; as-
sociated to the corresponding supporting hyperplanesand
use the same formula (2).

Let {ey,...,eq} be a basis in the lattic®/ and denote
by Conv A a convex hull of any subset ¢ R<.

Example2.3 (i) In case of an interval I
Conv{0, ke; } Ex(I;) = {0} and (2) looks like

k—1

Gy, (u1,us) = [ub, ugub=", . uk=!

7u1

®3)

This is exactly a homogeneous parametrization CP! —
CP* of arational normal curve.

(ii) Consider atriangle A, = Conv{0, key, ke> }. Then
Ex(Ar) = {0} and the homogeneous coordinates of T'a,,
coincide with a list of all monomials of total degree k.
Hence this is an image of the classical Veronese embed-
dingCP? — CPN, N = (*1?) —1,i.e,itisexactly the
Veronese surface

(iii) Consider arectangle

U2, u’f]

DkJ = COHV{O, keq,les, key + l62}.

Homogeneous coordinates of 7, , coincide with a list of
all monomials of total degree k (resp. [) in a pair of vari-
ables uy, uz (resp. uz, ug). Therefore the map G, |
can be factored through a product of two complex pro-
jective lines, and we get the classical Segre embedding
CP' x CP' — CPN, N =kl + k + . Hence Ty, , is
the Segre surface

(iv) Let A bethe standard d-dimensional simplex A4 =
Conv{0,eyq,...,eqs}. In this case it will be convenient
to use also zero indices. The linear forms hg(t) = 1 —
t1 — - —tg, hi(t) = t;, 1 = 1,...,d, define facets of
the simplex, and the identity map G a4 (ug, U1, - .., uq) =
[Ug, U1, ..., ug). Hence Tpha = CP?.

2.3 Real structures

Let us remind that formally a real variety is a pél¥, ¢),
where X is a complex variety and : X — X is some
anti-holomorphic involution. The real palR,. X of X is
just the fixed-point sefx € X | ¢(z) = z}. Thestan-
dard real structure is defined by the complex conjugation
z; — Z; for all coordinates:;. Hence the fixed-point set
coincides with all points with real coordinates € R.

In the toric case this leads to the following construc-
tion. Fix some lattice polytop& with involution ¢, i.e.
some transformatioa : M — M, such that? = id and
¢(A) = A. In generak permutes points of the polytope
A= {mo, . ,mN}, c(ml) = ma,(i).

Definition 2.4 A real projective toric varietiR.Ta asso-
ciated with a lattice polytope A with involution ¢, is the
real part of the complex toric variety T'a defined by (2)
withtheinvolutionc : [zo, ..., zN] = [Z(0)s - -, Ty ()]

SinceR. P" is isomorphic taRP™ (cf. (5)), we can treat
R.TA as a real subvariety ii®P~. The involutionc :

M — M permutes the facets; of A and also the facet
variablesu;. Hence we obtain a natural involution on the
global parametrization (2).

Therefore, according to our constructia 7 is con-
tained in higher-dimensional spa@®P”, where N is
equal to the number of lattice points in the polytope
Let us relax slightly Definition 2.1 and consider also pro-
jections of toric varieties to lower dimensional spaces, i.e.
more general mapsa : U — CP™

Galug,...,u.) = Z Pmuill(m),..u?r(m)’ (4)

meﬁ

where P,, € C**! are homogeneous complex control
points. We getia = Ga whenP,, are elements of stan-
dard basis irfCV*+! . We refer to this case agwarmal toric
variety.

Letd = 2 andn = 3 (this is the most interesting for
us). In case of a standard real structure facet variabjes
and control pointd?,,, are real. Substituting affine forms
h;(t) instead of facet variables; in the formula (2) we
get atoric surface patctVa (t) = Ga(hi(2),..., (1)),
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t € A, defined on the polygon (see details in [10]). In 2.4 Implicit degrees and singular points
particular, triangleg\ ;, and rectangleBl;, ; correspond to
Bézier triangular and tensor-product surfaces. From Ex-
ample 2.3(ii) and (iii) follows that they are just “shad-

ows” of real Veronese and Segre surfaces living in higher-. ) . " :
is easily seen thal is a composition of some translation

dimensional spaces. . . . .
P by a lattice vector and a linear transformation, which has

In case of non-standard real structures control points L . .
are arranged in complex conjugated pairs (others are real)a matrix with integer entries and the determinart The

which can be substituted by real pairs associated Withfransfo_rmatlorL preserves aredol,, which IS norn_1al|zed
trigonometric parametrizations. Indeed, consider of the 3SSumingvoly (A1) = 1. Note thatVol, A is an integer
conic curve (Example 2.3(i)) and take the reflection of number for evgr;glattlce polygad. Itis twice as large as
. h . standard area iiR”.

the associated segmeht = Conv{—ej,e;} with re- The followi Kabl i -k inth
spect to its central poind. The associated involutions € following remarkable property 1s wefll-known in the
in the parameter spadé;, and the projective plan€P? theory of toric varieties.
are as follows:ug +— @, u1 — U, andzo — Z>,  Theorem 2.5 The implicit degree of a normal toric sur-
z1 > @1, Tz — Ty. The corresponding fixed point sets face T, isequal to Voly(A).
are parametrized b* = C\ 0 — Up,, k : z = (2,2),
and the following isomorphism: RP2 — R. P2 c CP?, The implicit degree of an arbitrary real toric surface cannot

exceedVol,(A). We refer to [14] for a relatively elemen-

t: (zo, 1, 22) — (xo + ixe, 1,0 —ix2).  (B) tary proof.
Now we are going to consider singular points of toric

Using the inverse isomorphism we get a real part of conicsurfaces. As usual we call a point on a surface singular if

Here we consider only cage= 2. If an affine transfor-
mationL of a planeR? preserves the latticB(Z2) = Z2
then it is called araffine unimodular transformation. It

parametrized by non-zero complex numbers there is no tangent plane at this point. So it is similar to the
. i 5 . 5 vertex of a cone, or a corner point of a “pillow” in Fig 2.
17 oGLok:CT > RP, zw [Rez”,22,Imz27], Consider a toric surface parametrized by (4). It is easy to

o ) check that its control point®,, labeled by vertices of
Similarly to the standard case we restrict our parameter to, polygonA lie on the surface. We call thewertices of
the natural one dimensional domain—acirele=1ina 6 toric surface. For every vertexof the lattice polygon
plane of complex numberS. In a trigonometric formwe A e define dattice triangle O, with three verticesm
havez = cos ¢+isin ¢. Finally we getareal parametriza- 54 the two nearest lattice points on the adjacent boundary
tion: edges.

¢ — [cos2¢,1,sin 2¢].

Theorem 2.6 Sngular points on a normal toric surface
TA can occur only in vertices. A vertex associated with
a vertex point m € A is non-singular if and only if

Since it is a double covering of the conic by the circle, it
will be convenient to denote = 2¢, and use the interval

0<a<am _ | Voly(0,) = 1.

Similar formulas are valid for an arbitrary real rational
curve of even degre®: in control point setting. Lefy;, = The proof and more detailed classification of singular
Conv{—key, ke1 } with similar involutionc(e;) = —e;y. points can be found in [10]. Of course non-normal toric
Then same substitution af; by z € C* in (4) gives surfaces can have much more singular points, that appear

as double points of the projection from the corresponding

k b okt normal one. Therefore, Theorem 2.6 says that “intrinsicly
zZ= Z Pzm 0z, singular” points are only vertex control point,, which
j=—k can be easily detected from the polyghn

whereP; = P_;, i = 0,...,k, are conjugated pairs of . .
control points. Denoting®s = (P_; + P;)/2 andP; = 2.5 List of lattice polygons
(P_; — P;)/2i we get the trigonometric parametrization

We call lattice polygons\ andA’ equivalent if L(A) =
with real control points polyg eq (A)

A’ for some unimodular transformatioh. Equivalent
& polygons define the same toric surfaces (just different
c ; S i (s parametrizations).
oot ; (P cos(ja) + P sin(je)). Simple examples of lattice polygons haviligl, < 4

are shown in Fig. 1. Examples &f;, and;; are shown
These trigonometric notations are useful for many sur-as shaded triangles and rectangles in Fig. 1. They cor-
face examples, where we use mostly collections (see Rerespond to Bzier surfaces. The polygons are sorted by
mark 2.2) with three or four vectors. All conjugated pairs the area. In fact the full list for of such polygons: any
will give cos / sin functions and pairs of opposite real vec- other lattice polygon with this property will be unimodu-
tors will give Bernstein polynomials. lar equivalent to one of them. Also they are not equivalent
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l Figure 3: Lattice polygons with reflections.
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|
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P ‘: H: : e 7 i 4

: p Figure 4: Mobius strip.

1. Aplaney = {ey,es,e1 + €2},

. . Pftcos¢
Figure 1: Lattice polygons of area 4. 1
g Polg - + 5 + P/tsing
These are the polar coordinates if
Py=E,, Pf=E,, P’ =E,.
2. An oval quadricy = {e; + ey, —e; — e2,e1 —

€2, —€1 + e},

PfB?(t)cos¢ + P,B3(t)
+ PyB2(t) + P{B?(t)sin¢.

Figure 2: A “pillow”.

This is a sphere if, for example, the control points are

to each other, since they have different area or different Py=—-E;, Pf=E,, P’'=E,, P,=E;s.
number of singular vertices. The standard real structures i i

on toric surfaces associated to these polygons are as fol-  1he detailed theory of biangle patches on the oval
lows (see [10] for details). In the first row we see a trian- quadric with four control points is developed in [7].
gle, which means just a projective plane, and two cases of 3. A quadratic cones = {e;
guadrics: double ruled and a cone. On the second row we

can see four cubic surfaces: a kind of Hirzebruch surface Pi(1-1)

(H) (see [5] for a definition), a cone over rational cubic + (P§ cos a + P + Pgsina)t

(C) and a cubic with 3 singular points (N). Other polygons

correspond to different quartic surfaces. For example, the The cubic Hirzebruch surfadg (Fig. 1) can model the
square (D) means a quartic in the form of “pillow” Fig. 2 famous Witney umbrella [10]. It naturally lives iRP*

— €2, —€1 — €2,€3, —62}.

with 4 lines intersecting in 4 singular points. and has a topology of the Klein bottle. Therefore it is
In the following sections we will concentrate on non- MOt strange that one can find someliis strip onH,
standard real cases of these surfaces. which can be parametrized using a toric structure with

a reflection as in Fig. 4. Indeed, consider the collection
v = {e1,e2,—e; — ey} and the corresponding expression

3 Quadric and cubic surfaces Fgtcos¢ — + Fgtsing ,
+ Pfcos2¢ + P + Pfsin2¢
In Fig. 3 we can see three lattice polygons with reflec- with control points
tions (their axes are marked by dotted lines). Here we list
the associated toric surfaces, their collections of normals Py = Ey—-E; FPj=E;+E;,
v (Remark 2.2) and their control point expressions. P = Ey, Pf=E,, P’=E,.
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4

Figure 6: Cross cap.

W

Figure 7: Ring cyclide.

gives exactly the Cross cap from the book [6]!

.2 Dupin cyclides

Consider the Dupin cyclide Qo) defined by the quartic
equation in homogeneous coordinateR&f>

(23 +23+a3+ (> —d*)z]) 2= 473 ((az1 —cdwo)*+b%23),

herec? = a? — b2. It has the parametrization by two

pairs of homogeneous parametegs: u; andvg : vy (cf.

Restricting parameters to the doméin< ¢ < 2w, 0 <
t < 1/2, we obtain a nice Mbius strip (Fig. 4). Thisis a
patch of cubic surface—the most minimal representation
of the Mobius strip respectively to algebraic degree.

A reflection on a lattice triangle witiVol, = 3 (see
Fig. 5) corresponds to the parametrization of a special cu
bic with only one singular point (equal #,) as follows

Py B (t)

w

+ P$B3(t)cos¢  +
+

P, B3(t)
P§B3(t) sin ¢.

(11])

Q(UO, u1, Vo, Ul) - (d(u%

2
—uy

2
— ]

) = a(ug +ui)) Co

+(c(vg — v7) — d(vg +v7))C1,  (6)

hereCy, C; are 4-dimensional vectors

Co
Ch

(vg + v, a(vy — v7),2bvgur, 0),

( o i (U’% +U’%)7072bU0U1)-

Uy — U, C
In order to show that Q , ;) is toric we have to distin-

guish three different cases depending on the number of sin-

The collectionv = {e; +e3,e1 —ea, —e; —ea, —e1 +e2}
is used here.

gular points. All fans will be equal tée;, —e;, €2, —e2}.

Smooth case: ¢ < d < a (ring cyclide). We substitute

the variables in (6) by trigonometric functions

4 Quartic surfaces

4.1 Steiner surfaces

in & o B in B
sin § cos § cosy  sin g

Vat+d Va=d Jd=¢ Vd+e

o )

and obtain the expression

The normal toric surface associated with is in the well-
known Veronese surface P> isomorphic to a projective
planeRP2. All its real structures are equivalent. Never-
theless we show that it is worth considering the lattice tri-
angle/A, with a reflection and its associated parametriza-
tion. An interesting case of such surface is called a “Cross”/
cap” and its natural trigonometric parametrization is de-
scribed in [6] (see Fig. 6). Here we show that it is es-
sentially a toric surface associated witt,. Indeed, the
expression

P§B3(t) cos 2¢
+ PfB3(t) cos ¢ +PyB3(t)
+ PyB2(t) + P{B?(t)sing +PsB3(t)sin2¢

with the control points

Py =Py = Ey, P =0,Pf = Ey, P{ = E3, P = .

Pgcos g
Py
Pgsinf

+ Pfcosa + + Pisina

+

ith the following control points

P = 7a2_d2(aE0+ch1),
P} = b E
« T Va-&
b2
B @@ e Bk,
1
pP; = 7d2_c2(cE0+adE1),
b
s j—
PB — 7d2_c2E2.
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Figure 11: A part of 1-horn cyclide.

Figure 9: A biangle patch of 2-horn cyclide.

= PyB:(t)
+ PBi(t)
Hence this is a toric surface associated with a lattice square + (Pscose + P + Pisina)Bi(t)
(marked by (D) in Fig. 1) with a central symmetry, which jith the control points
is a composition of two reflections (marked by dotted lines .
in Fig. 7).
Csse v)vith two singular points. Let us consider the case Po = ﬁ(EO +ak),
of a 2-horn cyclide, whe < ¢ ( spindle cyclide case 1
a < dis sirr):ilar). Substituting(inp(G) theyappropriate A= ﬁ(EO Fab+bE),
trigonometric and linear functions P, = é (dFy +bEy) + S (Bo+aE).
sing  cosg 1—t t
Q<\/a +d Va—d Ve—d e+ d> The remaining two control point®¢, P2, have the same
. formulas as in the previous cases. In Fig. 10 we can see
we get the expression the corresponding lattice triangle with reflection and the
PyB2(t) full surface. A part of 1-horn cyclide parametrized®y

+ (Ptcosa + P + PSsina)B2(1) a<m0<t<1isshowninFig.11.

+ PB3(t),

: 4.3 Surfaces of revolution
where three control point8S, P$, P, have the same for-

mulas as in the previous case, afid i = 0,2, have the ~ Thering cyclide,Q, , 3) (S0c = Va® — % = 0) is a torus

form surface. If its control poinf’; goes down to the new posi-
1 (i —1)b tion_ P/ = P, —0.8E5 then Fhe surface is _slightly deformed

P, = ﬁ(c Ey +ad Ey) + ——— Es. as in Fig. 12. The resulting surface still has a rotational

¢t —d Vet —d symmetry but its plane section through the axis of rotation

In fact they are singular points of the surface. The geomet-deforms from a circle to some ellipse. It is easy to check
ric meaning of this parametrization is clear. The surface isthat this type of toric structure gives us all surfaces of rev-
swept by a BZzier curve with fixed endpoints. The middle olution with conic generatriX’, which does not intersect
point traces some conic (see Fig. 9). Moreover, this is awith the symmetry axis. Cases whéehintersects the axis
toric surfaces associated with the same lattice square as it two points or in one point (i.e., it is a touching point)
ring case but with only one reflection (marked by a dotted correspond to the same toric structures as 2-horn and 1-
line in Fig. 8). horn cyclides respectively.

Case with one singular point. We consider only 1-horn
cyclide cased = ¢ (cased = a is similar). As earlier

substituting in (6) we get 5 One shape modeling example
sing  cosg 1 t Finally let us consider a sextic toric surface associated with
Q Va+d Va—d V2d V2d the lattice hexagon with reflection as in Fig. 13. It has the
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Figure 13: A toric surface of degree 6.

parametrization = {+(e1 + e2), (e; — e2)})

PfB{(t) cos ¢ +Py B (t)
+ P§B3(t) cos ¢ +P>Bi(t) +P#Bi(t)sin ¢
+ PyBi(t) + P$ B3 (t) sin ¢.

If we put these seven control points into the following po-
sitions

Py = Eo-15E;, P{=15E, Pf=15E,

P, = 2(Ey—0.2E, +0.35E3), P§=0.5E,

P; 0.5E2, P2 - Eo + ]..5E3,

3.

denotePf = F;, i = 1,3, and add the vectorB?,
i = 1,3, with the same lengths and paralleht@xis;

. we already have all seven control points of a toric

surface associated with the lattice hexagon;

. itis easy to check that it is a surface of revolution, so

we can move the middle poiiit, slightly (in order to
achieve a nice incline of the “axis” as in Fig. 14 right
side).

We can make further improvements to the “pear shape”
moving control vectord’? andP#, ¢ = 1, 3, around. This
means that we work with two ellipsoids (see Fig. 14 left
side) that are associated with two subsquares of the lattice
hexagon.

6

Conclusions

We have shown that toric surfaces have many attractive
features.

1.
2.

we get a surface looking like a pear. How can one come to

this result in a natural way?
The modeling method has several simple steps:

1. model a flat quartic &ier curveC choosing finite
control pointsP;, i = 0, 2,4, on thez-axis and con-
trol vectorsP;, i = 1, 3, parallel toz-axis;

2. add the complementaryeBier curveC _ with the

same control points but the opposite control vectors

(therefore the unior®'. U C_ is the whole quartic
rational curve);

Figure 14: A “pear shape” modeling.

. The

They are natural generalizations af&¢r surfaces.

Arbitrary toric surfaces have more variety of implicit
degrees, allowing to parametrize without basepoints
a large class of rational surfaces.

. Many well-known surfaces of low implicit degree are

found to be toric, i.e. they have natural control point
structures.

. Considering also non-standard real structures one

gets additional possibilities for shape modeling. This
leads to trigonometric parametrizations.

natural mixed trigonometric—polynomial

parametrizations cover the geometry of many in-
teresting toric surfaces much better than traditional
rational—polynomial approach.
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