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Abstract

We present an informal introduction to the theory of
toric surfaces from the viewpoint of geometric model-
ing. Bézier surfaces and many well-known low-degree
rational surfaces are found to be toric. B´ezier like con-
trol point schemes for toric surfaces are defined via mixed
trigonometric–polynomial parametrizations. Examples of
a wide shape variety are considered: all quadrics, cubic
Möbius strip, quartic ‘cross-cap’, ‘pillow’ and Dupin cy-
clides, sextic ‘pear’ etc.

Keywords: Geometric modeling, Shape, Bezier surfaces,
Toric surfaces

1 Introduction

Toric varieties were introduced in the early 1970’s in alge-
braic geometry. Since that time their abstract theory has
been rapidly developed and many new important results
are achieved. This theory appeared to be tightly related to
combinatorics of convex polytopes. This makes the the-
ory of toric varieties very attractive for different kind of
applications (e.g. [2]).

There are several reasons why toric surfaces are impor-
tant to geometric modeling.

1. They are natural generalizations of B´ezier surfaces
which are widely used in free-form modeling. A sim-
ilar control point system of toric surfaces allows to
model multisided surface patches (see [10], [13]).

2. Non-standard real structures on complex toric sur-
faces leads to a wide shape possibilities. Many well-
known surfaces of low implicit degree are found to be
toric.

3. All rational parametrizations of toric surfaces have a
constructive description via universal parametrization
(see [4], [12], [9]). This is important for data con-
version from traditional solid modeling systems that
deal with simplest surfaces (which appear to be toric)
to NURBS based systems.

4. Recent works [1], [3], [15] show that an implicitiza-
tion problem for toric surfaces can be solved effec-
tively using variants ofA-resultants at least in some
important cases.

In this paper we concentrate on the second item. Main
notations and preliminaries are introduced in Section 2. It
is recommended to skip this section at first and go directly
to examples, which are quite elementary. We describe the
simplest cases of quadric and cubic toric surfaces in Sec-
tion 3. Section 4 is devoted to quartic surfaces. It is shown
that all quartic Dupin cyclides and all surfaces of revo-
lution with conic generatrix are toric. In Section 5 one
modeling example of a “pear shape” using a sextic toric
surface is considered. Finally in Section 6 conclusions are
discussed.

2 Background

2.1 Notations

Recall that a realn-dimensional projective spaceRP n is
defined as a space of all lines inRn+1 that go through
the origin(0; : : : ; 0). We are mostly interested in the case
n = 3. Points inRP n usually are represented by coor-
dinates(x0; : : : ; xn) of some point on a line except the
origin. They are called homogeneous coordinates. Any
proportional collection(tx0; : : : ; txn), t 6= 0, means the
same point. There is a natural projectionRn+1 ! RP

n

which maps any point to the corresponding line. We
will identify the affine spaceRn with the subset inRP n :
(x1; : : : ; xn) 7! (1; x1; : : : ; xn). So infinite points lie
on the hyperplanex0 = 0. Similarly complex projective
spacesCP n are defined: just change allR to C (complex
numbers) in the previous definition.

It will be convenient to use homogeneous control points,
including control vectors. Hence we write all parametr-
ization formulas in homogeneous setting. LettersE i, i =
0; : : : ; n, will denote the standard basis inRn+1 . Bernstein
polynomials are defined as usualB

k

i
(t) =

�
k

i

�
(1�t)k�iti.

2.2 Complex toric varieties

A projective toric variety can be briefly defined as a mono-
mially parametrized subset in the projective space.

At first consider a simple 1-dimensional case. The map
R ! RP

2 , u1 7! [1; u1; u
2
1], defines a parametrization of

a conic (an affine parabola) but its infinite point[0; 0; 1]
is missed. Using the mapu0 7! [u20; u0; 1] we cover
this point but then[1; 0; 0] is missed. Hence it is neces-
sary to use both variables at the same time(u0; u1) 7!
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[u20; u0u1; u
2
1]. In a more general control point setting we

have
(u0; u1) 7! P0t

2
0 + P1u0u1 + P2u

2
2: (1)

Substitutingu0 andu1 by 1 � t and t a Bézier curve is
obtained (with control pointsP0, P1=2, P2).

Let us turn to a general case of ad-dimensional vari-
ety. The most important particular cases will bed = 1; 2.
Consider ad-dimensionallattice M = Z

d of points with
integer coordinates in spaceRd . Define alattice polytope
� � R

d as the convex hull of some finite subset inM . Let
dim� = d, i.e.� is not contained in a hyperplane. Then
facets (i.e. (d � 1)-dimensional faces)�i of � are inter-
sections with hyperplaneshi(t) = 0, i = 1; : : : ; r. Here
we suppose the affine linear formshi(t) = hni; ti+ ai to
be normalized: vectorsni are primitive (i.e. the shortest
vectors in this direction with integer coordinates) and in-
ward oriented. We denote byb� = � \M a set of lattice
points of�.

Definition 2.1 A complex projective toric vari-
ety T� associated with a lattice polytope �,b� = fm0;m1; : : : ;mNg, is a subset in CP

N

parametrized by the following formula

G�(u1; : : : ; ur) =
�
u
h(m0); u

h(m1); : : : ; u
h(mN)

�
; (2)

where u
h(m) = u

h1(m)

1 u
h2(m)

2 � � �uhr(m)
r . The variables

ui 2 C , i = 1; : : : ; r, are called facet variables[2].

The parametrizationG� is undefined on the exceptional
subsetG�1

� (0), which is contained in a union of intersec-
tions of some pairs of coordinate hyperplanes.

Remark 2.2 It is not difficult to check that it is not neces-
sary to use all facet variables if one wants to cover only
a part of the variety. One can start with any collection of
primitive vectors ni. Then one defines affine forms hi as-
sociated to the corresponding supporting hyperplanes and
use the same formula (2).

Let fe1; : : : ; edg be a basis in the latticeM and denote
byConvA a convex hull of any subsetA � R

d .

Example 2.3 (i) In case of an interval Ik =
Convf0; ke1g Ex(Ik) = f0g and (2) looks like

GIk (u1; u2) = [uk2 ; u1u
k�1
2 ; : : : ; u

k�1
1 u2; u

k

1 ]: (3)

This is exactly a homogeneous parametrization CP 1 !
CP

k of a rational normal curve.
(ii) Consider a triangle4k = Convf0; ke1; ke2g. Then

Ex(4k) = f0g and the homogeneous coordinates of T
4k

coincide with a list of all monomials of total degree k.
Hence this is an image of the classical Veronese embed-
ding CP 2 ! CP

N , N =
�
k+2

2

� � 1, i.e., it is exactly the
Veronese surface.

(iii) Consider a rectangle

�k;l = Convf0; ke1; le2; ke1 + le2g:

Homogeneous coordinates of T�k;l
coincide with a list of

all monomials of total degree k (resp. l) in a pair of vari-
ables u1, u3 (resp. u2, u4). Therefore the map G�k;l

can be factored through a product of two complex pro-
jective lines, and we get the classical Segre embedding
CP

1 � CP
1 ! CP

N , N = kl + k + l. Hence T�k;l
is

the Segre surface.
(iv) Let � be the standard d-dimensional simplex 4d =

Convf0; e1; : : : ; edg. In this case it will be convenient
to use also zero indices. The linear forms h0(t) = 1 �
t1 � � � � � td, hi(t) = ti, i = 1; : : : ; d, define facets of
the simplex, and the identity map G

4
d(u0; u1; : : : ; ud) =

[u0; u1; : : : ; ud]. Hence T
4

d = CP
d .

2.3 Real structures

Let us remind that formally a real variety is a pair(X; c),
whereX is a complex variety andc : X ! X is some
anti-holomorphic involution. The real partR cX of X is
just the fixed-point setfx 2 X j c(x) = xg. The stan-
dard real structure is defined by the complex conjugation
xi 7! �xi for all coordinatesxi. Hence the fixed-point set
coincides with all points with real coordinatesxi 2 R.

In the toric case this leads to the following construc-
tion. Fix some lattice polytope� with involution c, i.e.
some transformationc : M ! M , such thatc2 = id and
c(�) = �. In generalc permutes points of the polytope
� = fm0; : : : ;mNg, c(mi) = m
(i).

Definition 2.4 A real projective toric varietyRcT� asso-
ciated with a lattice polytope � with involution c, is the
real part of the complex toric variety T� defined by (2)
with the involution c : [x0; : : : ; xN ] 7! [�x
(0); : : : ; �x
(N)].

SinceRcPN is isomorphic toRPN (cf. (5)), we can treat
RcT� as a real subvariety inRPN . The involutionc :
M ! M permutes the facets�i of � and also the facet
variablesui. Hence we obtain a natural involution on the
global parametrization (2).

Therefore, according to our constructionR cT� is con-
tained in higher-dimensional spaceRP N , whereN is
equal to the number of lattice points in the polytope�.
Let us relax slightly Definition 2.1 and consider also pro-
jections of toric varieties to lower dimensional spaces, i.e.
more general mapsG� : U� ! CP

n

G�(u1; : : : ; ur) =
X
m2b�

Pmu
h1(m)

1 � � �uhr(m)
r

; (4)

wherePm 2 C
n+1 are homogeneous complex control

points. We getG� = G� whenPm are elements of stan-
dard basis inC N+1 . We refer to this case as anormal toric
variety.

Let d = 2 andn = 3 (this is the most interesting for
us). In case of a standard real structure facet variablesu i

and control pointsPm are real. Substituting affine forms
hi(t) instead of facet variablesui in the formula (2) we
get atoric surface patchT�(t) = G�(h1(t); : : : ; hr(t)),

2
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t 2 �, defined on the polygon� (see details in [10]). In
particular, triangles4k and rectangles�k;l correspond to
Bézier triangular and tensor-product surfaces. From Ex-
ample 2.3(ii) and (iii) follows that they are just “shad-
ows” of real Veronese and Segre surfaces living in higher-
dimensional spaces.

In case of non-standard real structures control points
are arranged in complex conjugated pairs (others are real),
which can be substituted by real pairs associated with
trigonometric parametrizations. Indeed, consider of the
conic curve (Example 2.3(i)) and take the reflection of
the associated segmentI2 = Convf�e1; e1g with re-
spect to its central point0. The associated involutions
in the parameter spaceUI2 and the projective planeCP 2

are as follows:u0 7! �u1, u1 7! �u0, andx0 7! �x2,
x1 7! x1, x2 7! �x0. The corresponding fixed point sets
are parametrized byC � = C n 0 ! UI2 , � : z 7! (z; �z),
and the following isomorphism� : RP 2 ! RcP

2 � CP
2 ,

� : (x0; x1; x2) 7! (x0 + ix2; x1; x0 � ix2): (5)

Using the inverse isomorphism we get a real part of conic
parametrized by non-zero complex numbers

�
�1 ÆGI2 Æ � : C � ! RP

2
; z 7! [Re z2; z�z; Im z

2];

Similarly to the standard case we restrict our parameter to
the natural one dimensional domain—a circlejzj = 1 in a
plane of complex numbersC . In a trigonometric form we
havez = cos�+i sin�. Finally we get a real parametriza-
tion:

� 7! [cos 2�; 1; sin 2�]:

Since it is a double covering of the conic by the circle, it
will be convenient to denote� = 2�, and use the interval
0 � � < 2�.

Similar formulas are valid for an arbitrary real rational
curve of even degree2k in control point setting. LetI 2k =
Convf�ke1; ke1g with similar involutionc(e1) = �e1.
Then same substitution ofuj by z 2 C

� in (4) gives

z 7!
kX

j=�k

Pjz
k�j �z k+j

;

wherePj = �P
�j , i = 0; : : : ; k, are conjugated pairs of

control points. DenotingP c

j
= (P

�j + Pj)=2 andP s

j
=

(P
�j � Pj)=2i we get the trigonometric parametrization

with real control points

� 7! P0 +
kX

j=1

�
P
c

j
cos(j�) + P

s

j
sin(j�)

�
:

These trigonometric notations are useful for many sur-
face examples, where we use mostly collections (see Re-
mark 2.2) with three or four vectors. All conjugated pairs
will give cos = sin functions and pairs of opposite real vec-
tors will give Bernstein polynomials.

2.4 Implicit degrees and singular points

Here we consider only cased = 2. If an affine transfor-
mationL of a planeR2 preserves the latticeL(Z2) = Z

2

then it is called anaffine unimodular transformation. It
is easily seen thatL is a composition of some translation
by a lattice vector and a linear transformation, which has
a matrix with integer entries and the determinant�1. The
transformationL preserves areaVol2, which is normalized
assumingVol2(41) = 1. Note thatVol2� is an integer
number for every lattice polygon�. It is twice as large as
standard area inR2 .

The following remarkable property is well-known in the
theory of toric varieties.

Theorem 2.5 The implicit degree of a normal toric sur-
face T� is equal to Vol2(�).

The implicit degree of an arbitrary real toric surface cannot
exceedVol2(�). We refer to [14] for a relatively elemen-
tary proof.

Now we are going to consider singular points of toric
surfaces. As usual we call a point on a surface singular if
there is no tangent plane at this point. So it is similar to the
vertex of a cone, or a corner point of a “pillow” in Fig 2.
Consider a toric surface parametrized by (4). It is easy to
check that its control pointsPm labeled by verticesm of
the polygon� lie on the surface. We call themvertices of
the toric surface. For every vertexm of the lattice polygon
� we define alattice triangle �m with three vertices:m
and the two nearest lattice points on the adjacent boundary
edges.

Theorem 2.6 Singular points on a normal toric surface
T� can occur only in vertices. A vertex associated with
a vertex point m 2 � is non-singular if and only if
Vol2(�m) = 1.

The proof and more detailed classification of singular
points can be found in [10]. Of course non-normal toric
surfaces can have much more singular points, that appear
as double points of the projection from the corresponding
normal one. Therefore, Theorem 2.6 says that “intrinsicly
singular” points are only vertex control pointsPm which
can be easily detected from the polygon�.

2.5 List of lattice polygons

We call lattice polygons� and�0 equivalent if L(�) =
�0 for some unimodular transformationL. Equivalent
polygons define the same toric surfaces (just different
parametrizations).

Simple examples of lattice polygons havingVol2 � 4
are shown in Fig. 1. Examples of4k and�k;l are shown
as shaded triangles and rectangles in Fig. 1. They cor-
respond to B´ezier surfaces. The polygons are sorted by
the area. In fact the full list for of such polygons: any
other lattice polygon with this property will be unimodu-
lar equivalent to one of them. Also they are not equivalent

3
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Figure 1: Lattice polygons of area� 4.

Figure 2: A “pillow”.

to each other, since they have different area or different
number of singular vertices. The standard real structures
on toric surfaces associated to these polygons are as fol-
lows (see [10] for details). In the first row we see a trian-
gle, which means just a projective plane, and two cases of
quadrics: double ruled and a cone. On the second row we
can see four cubic surfaces: a kind of Hirzebruch surface
(H) (see [5] for a definition), a cone over rational cubic
(C) and a cubic with 3 singular points (N). Other polygons
correspond to different quartic surfaces. For example, the
square (D) means a quartic in the form of “pillow” Fig. 2
with 4 lines intersecting in 4 singular points.

In the following sections we will concentrate on non-
standard real cases of these surfaces.

3 Quadric and cubic surfaces

In Fig. 3 we can see three lattice polygons with reflec-
tions (their axes are marked by dotted lines). Here we list
the associated toric surfaces, their collections of normals
� (Remark 2.2) and their control point expressions.

Figure 3: Lattice polygons with reflections.

Figure 4: Möbius strip.

1. A plane,� = fe1; e2; e1 + e2g,

P
c

1 t cos�
+ P0 + P

s

1 t sin�

These are the polar coordinates if

P0 = E0; P
c

1 = E1; P
s

1 = E2:

2. An oval quadric,� = fe1 + e2;�e1 � e2; e1 �
e2;�e1 + e2g,

P
c

1B
2
1(t) cos� + P2B

2
2(t)

+ P0B
2
0(t) + P

s

1B
2
1(t) sin�:

This is a sphere if, for example, the control points are

P0 = �E3; P
c

1 = E1; P
s

1 = E2; P2 = E3:

The detailed theory of biangle patches on the oval
quadric with four control points is developed in [7].

3. A quadratic cone,� = fe1 � e2;�e1 � e2; e2;�e2g,

P1(1� t)
+ (P c

0 cos� + P0 + P
s

0 sin�)t

The cubic Hirzebruch surfaceH (Fig. 1) can model the
famous Witney umbrella [10]. It naturally lives inRP 4

and has a topology of the Klein bottle. Therefore it is
not strange that one can find some M¨obius strip onH ,
which can be parametrized using a toric structure with
a reflection as in Fig. 4. Indeed, consider the collection
� = fe1; e2;�e1 � e2g and the corresponding expression

P
c

0 t cos� + P
s

0 t sin�
+ P

c

1 cos 2� + P1 + P
s

1 sin 2�

with control points

P
c

0 = E2 �E3; P
s

0 = E2 +E3;

P1 = E0; P
c

1 = E1; P
s

1 = E2:

4
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Figure 5: A cubic of revolution.

Figure 6: Cross cap.

Restricting parameters to the domain0 � � < 2�, 0 �
t � 1=2, we obtain a nice M¨obius strip (Fig. 4). This is a
patch of cubic surface—the most minimal representation
of the Möbius strip respectively to algebraic degree.

A reflection on a lattice triangle withVol2 = 3 (see
Fig. 5) corresponds to the parametrization of a special cu-
bic with only one singular point (equal toP0) as follows

P0B
3
0(t)

+ P
c

3B
3
3(t) cos� + P2B

3
2(t)

+ P
s

3B
3
3(t) sin�:

The collection� = fe1+e2; e1�e2;�e1�e2;�e1+e2g
is used here.

4 Quartic surfaces

4.1 Steiner surfaces

The normal toric surface associated with42 is in the well-
known Veronese surface inRP 5 isomorphic to a projective
planeRP 2 . All its real structures are equivalent. Never-
theless we show that it is worth considering the lattice tri-
angle42 with a reflection and its associated parametriza-
tion. An interesting case of such surface is called a “Cross
cap” and its natural trigonometric parametrization is de-
scribed in [6] (see Fig. 6). Here we show that it is es-
sentially a toric surface associated with42. Indeed, the
expression

P
c

2B
2
2(t) cos 2�

+ P
c

1B
2
1(t) cos� +P2B

2
2(t)

+ P0B
2
0(t) + P

s

1B
2
1(t) sin� +P s

2B
2
2(t) sin 2�

with the control points

P0 = P2 = E0; P
c

1 = 0; P s

1 = E1; P
c

2 = E3; P
s

2 = E2:

Figure 7: Ring cyclide.

gives exactly the Cross cap from the book [6]!

4.2 Dupin cyclides

Consider the Dupin cyclide Q¸ (a;b;d) defined by the quartic
equation in homogeneous coordinates ofRP

3

�
x
2
1+x

2
2+x

2
3+(b

2�d2)x20
�2

= 4x20
�
(ax1�cdx0)2+b2x22

�
;

wherec2 = a
2 � b

2. It has the parametrization by two
pairs of homogeneous parametersu0 : u1 andv0 : v1 (cf.
[11])

Q̧(u0; u1; v0; v1) =
�
d(u20 � u

2
1)� a(u20 + u

2
1)
�
C0

+
�
c(v20 � v

2
1)� d(v20 + v

2
1)
�
C1; (6)

whereC0, C1 are 4-dimensional vectors

C0 =
�
v
2
0 + v

2
1 ; a(v

2
0 � v

2
1); 2bv0v1; 0

�
;

C1 =
�
u
2
0 � u

2
1; c(u

2
0 + u

2
1); 0; 2bu0u1

�
:

In order to show that Q¸ (a;b;d) is toric we have to distin-
guish three different cases depending on the number of sin-
gular points. All fans will be equal tofe1;�e1; e2;�e2g.

Smooth case: c < d < a (ring cyclide). We substitute
the variables in (6) by trigonometric functions

Q̧

�
sin �

2p
a+ d

;
cos �

2p
a� d

;
cos �

2p
d� c

;
sin �

2p
d+ c

�

and obtain the expression

P
c

�
cos�

+ P
c

�
cos� + P1 + P

s

�
sin�

+ P
s

�
sin�

with the following control points

P
c

�
=

1

a2 � d2
(aE0 + cdE1);

P
s

�
=

bp
a2 � d2

E3;

P1 =
b
2

(a2 � d2)(d2 � c2)
(dE0 + acE1);

P
c

�
=

1

d2 � c2
(cE0 + adE1);

P
s

�
=

bp
d2 � c2

E2:

5
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Figure 8: 2-horn cyclide.

Figure 9: A biangle patch of 2-horn cyclide.

Hence this is a toric surface associated with a lattice square
(marked by (D) in Fig. 1) with a central symmetry, which
is a composition of two reflections (marked by dotted lines
in Fig. 7).

Case with two singular points. Let us consider the case
of a 2-horn cyclide, whend < c ( spindle cyclide case
a < d is similar). Substituting in (6) the appropriate
trigonometric and linear functions

Q̧

�
sin �

2p
a+ d

;
cos �

2p
a� d

;
1� tp
c� d

;
tp
c+ d

�

we get the expression

P0B
2
0(t)

+ (P c

�
cos� + P1 + P

s

�
sin�)B2

1(t)
+ P2B

2
2(t);

where three control pointsP c

�
, P s

�
, P1 have the same for-

mulas as in the previous case, andPi, i = 0; 2, have the
form

Pi =
1

c2 � d2
(cE0 + adE1) +

(i� 1)bp
c2 � d2

E2:

In fact they are singular points of the surface. The geomet-
ric meaning of this parametrization is clear. The surface is
swept by a B´ezier curve with fixed endpoints. The middle
point traces some conic (see Fig. 9). Moreover, this is a
toric surfaces associated with the same lattice square as in
ring case but with only one reflection (marked by a dotted
line in Fig. 8).

Case with one singular point. We consider only 1-horn
cyclide cased = c (cased = a is similar). As earlier
substituting in (6) we get

Q̧

�
sin �

2p
a+ d

;
cos �

2p
a� d

;
1p
2d
;

tp
2d

�

Figure 10: 1-horn cyclide.

Figure 11: A part of 1-horn cyclide.

= P0B
2
0(t)

+ P1B
2
1(t)

+ (P c

�
cos� + P1 + P

s

�
sin�)B2

2(t)

with the control points

P0 =
1

2d
(E0 + aE1);

P1 =
1

2d
(E0 + aE1 + bE2);

P2 =
1

d
(dE0 + bE2) +

d

a2 � d2
(E0 + aE1):

The remaining two control pointsP c

�
, P s

�
, have the same

formulas as in the previous cases. In Fig. 10 we can see
the corresponding lattice triangle with reflection and the
full surface. A part of 1-horn cyclide parametrized by0 �
� < �, 0 � t � 1 is shown in Fig. 11.

4.3 Surfaces of revolution

The ring cyclide Q̧(4;4;3) (soc =
p
a2 � b2 = 0) is a torus

surface. If its control pointP1 goes down to the new posi-
tionP 0

1 = P1�0:8E3 then the surface is slightly deformed
as in Fig. 12. The resulting surface still has a rotational
symmetry but its plane section through the axis of rotation
deforms from a circle to some ellipse. It is easy to check
that this type of toric structure gives us all surfaces of rev-
olution with conic generatrixC, which does not intersect
with the symmetry axis. Cases whenC intersects the axis
in two points or in one point (i.e., it is a touching point)
correspond to the same toric structures as 2-horn and 1-
horn cyclides respectively.

5 One shape modeling example

Finally let us consider a sextic toric surface associated with
the lattice hexagon with reflection as in Fig. 13. It has the

6
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Figure 12: Torus and its deformation.

Figure 13: A toric surface of degree 6.

parametrization (� = f�(e1 + e2);�(e1 � e2)g)

P
c

1B
4
1(t) cos� +P0B

4
0(t)

+ P
c

3B
4
3(t) cos� +P2B

4
2(t) +P s

1B
4
1(t) sin�

+ P4B
4
4(t) + P

s

3B
3
4(t) sin�:

If we put these seven control points into the following po-
sitions

P0 = E0 � 1:5E3; P
c

1 = 1:5E1; P
s

1 = 1:5E2;

P2 = 2(E0 � 0:2E1 + 0:35E3); P
c

3 = 0:5E1;

P
s

3 = 0:5E2; P2 = E0 + 1:5E3;

we get a surface looking like a pear. How can one come to
this result in a natural way?

The modeling method has several simple steps:

1. model a flat quartic B´ezier curveC+ choosing finite
control pointsPi, i = 0; 2; 4, on thez-axis and con-
trol vectorsPi, i = 1; 3, parallel tox-axis;

2. add the complementary B´ezier curveC
�

with the
same control points but the opposite control vectors
(therefore the unionC+ [ C

�
is the whole quartic

rational curve);

Figure 14: A “pear shape” modeling.

3. denoteP c

i
= Pi, i = 1; 3, and add the vectorsP s

i
,

i = 1; 3, with the same lengths and parallel toy-axis;

4. we already have all seven control points of a toric
surface associated with the lattice hexagon;

5. it is easy to check that it is a surface of revolution, so
we can move the middle pointP2 slightly (in order to
achieve a nice incline of the “axis” as in Fig. 14 right
side).

We can make further improvements to the “pear shape”
moving control vectorsP c

i
andP s

i
, i = 1; 3, around. This

means that we work with two ellipsoids (see Fig. 14 left
side) that are associated with two subsquares of the lattice
hexagon.

6 Conclusions

We have shown that toric surfaces have many attractive
features.

1. They are natural generalizations of B´ezier surfaces.

2. Arbitrary toric surfaces have more variety of implicit
degrees, allowing to parametrize without basepoints
a large class of rational surfaces.

3. Many well-known surfaces of low implicit degree are
found to be toric, i.e. they have natural control point
structures.

4. Considering also non-standard real structures one
gets additional possibilities for shape modeling. This
leads to trigonometric parametrizations.

5. The natural mixed trigonometric–polynomial
parametrizations cover the geometry of many in-
teresting toric surfaces much better than traditional
rational–polynomial approach.
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