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Abstract. Di�erent constructions of multisided surface patches (due to
Sabin, Hosaka-Kimura, Warren, Loop-DeRose, etc.) are studied via con-
sidering base points of their parametrizations. This analysis shows hidden
interrelations between various cases and enables to �nd new e�cient con-
trol point schemes in more general situations. In particular, toric patches
are introduced.

x1. Introduction
The problem of smooth �lling of m-sided holes arises in many modeling sit-

uations. It is solved using various methods: recursive subdivision, surface

splitting, data blending and control point schemes. We consider here only

the cases when a m-sided patch is de�ned via control points as a single piece

bounded by B�ezier curves of degree n. M. Sabin [11] introduced 3- and 5-sided

patches bounded by conics (n = 2) and suitable for an inclusion in B-spline

surface. Hosaka and Kimura [2] proposed the same type of patches with

n = 3. Zheng and Ball [15] extended the previous constructions to arbitrary

degree n. In the same fashion 6-sided patches were constructed (see [2, 12,

15]). Unfortunately, these 6-sided patches seems to be nonrational. Loop and

DeRose [9] introduced rational S-patches, and used them in [10] for building

Sabin and Hosaka{Kimura-like patches (n = 2; 3) with arbitrary number of

sides m. As far as we know Warren was the �rst to introduce the method

of blowing up base points (well-known in algebraic geometry) to the CAGD

community. He used it in [14] for creating 5-, 6-sided patches. Analysis of

mentioned approaches and the convex combination method (cf. Gregory [1])

shows that m-sided patches for m > 4 should be rational. Hence it is natural

to use theoretical results from algebraic geometry concerning rational surfaces.

The method of base points enabled Kar�ciauskas [3] to build well structured

rational 5-sided patch with actually the same properties as the original War-

ren hexagon. In [4] these patches are used for creating 5- and 6-sided Sabin
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and Hosaka{Kimura-like surface patches with boundary curves of arbitrary

degree n. Similar patches over a regular m-gon for any m (except 4) and

for arbitrary n are obtained in [5] also using the base point method. The

patches in [4, 5] have lower degree parametrization than previous ones. We

call them T -patches. Moreover, the base points method is good for building

bridges between various approaches, especially in pentagonal case. In 6-sided

case the relations are more complicated. On the other hand, it appeared

that this hexagonal patch belongs to a special class of so-called toric surfaces,

which were studied in detail in algebraic geometry. First applications of toric

varieties in CAGD were demonstrated by Warren [14] and Krasauskas [7].

In this paper we describe initially hidden interrelations between pentago-

nal Sabin, Hosaka{Kimura and Loop{DeRose patches via the T-patch concept.

Six-sided patches are considered using both base points and toric methods.

Five- and six-sided cases are actually most important (beside triangular and

rectangular patches) in geometric modeling and at the same time most conve-

nient from the algebraic geometry point of view. Here we only outline results.

Full proofs can be found in papers [4, 5, 8] of the authors. Relations between

triangular Sabin, Hosaka{Kimura and Loop{DeRose patches are described in

[5]. Algebraic version of convex combination patches is presented in [6].

x2. Notations and De�nitions

In order to consider several variants of multisided patches de�ned via control

points, we recall the most general concept of a rational patch.

De�nition 1. A rational surface patch is a mapping F : D ! IRk de�ned on
a domain D � IR2 by the formula

F (ttttttttt) =

P
q2I wqpppppppppqfq(ttttttttt)P
q2I wqfq(ttttttttt)

; (1)

where polynomial functions fq labeled by some set I are called basis functions,

the points pppppppppq 2 IRk are control points and the numbers wq are their weights.

The Sabin and Hosaka{Kimura-like patches (see [2, 4, 5, 10, 11, 15]) be-

have like tensor product surfaces along their boundaries, and can be connected

smoothly with surrounding rectangular patches. We denote a patch of this

type by SHKn
m, where m is a number of boundary curves and n is their degree.

Let wwwwwwwww0; wwwwwwwww1; : : : ; wwwwwwwwwm�1 be the vertices of a regular m-gon with a center

wwwwwwwww and let n be a �xed natural number. For each triangle with the vertices

wwwwwwwww;wwwwwwwwws; wwwwwwwwws+1, 0 � s � m� 1, the points

wwwwwwwww
s
ij =

i

n
wwwwwwwww +

j

n
wwwwwwwwws+1 +

n� i� j

n
wwwwwwwwws; i; j � 0; i+ j � n; (2)

linked together form a triangulation of an m-gon (see Fig. 1). The set of all its

vertices is denoted by Ln
m. It is convenient to enumerate them by the triples

(s; i; j); 0 � s � m� 1; 0 � i � n; 0 � j � n� i;
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m=6 , n=3m=5 , n=2

Fig. 1. Control point schemes of T -patches.

where triples (s; i; n�i) and (s+1; i; 0) are identi�ed (the �rst index s is treated
in a cyclic fashion). Indices s; i; j correspond to labeling in the formula (2).

The graphs Ln
m de�ne a combinatorial structure on the control point nets of

T -patches.

The domain of some patches is a regular m-gon. In this case we assume

linear functions have inward-oriented normal vectors. For 0 � s � m � 1, we

write l̂s for the function de�ning a line wwwwwwwwwswwwwwwwwws+1. An intersection of the lines

wwwwwwwwws�1wwwwwwwwws and wwwwwwwwws+1wwwwwwwwws+2 is denoted by bbbbbbbbbs. By ls we denote a function de�ning

a line bbbbbbbbbs�1bbbbbbbbbs.

Using the blowing up method (see [3, 13]) a 5-sided patch is de�ned

via basis functions vanishing simultaneously at the two vertices vvvvvvvvv1, vvvvvvvvv2 of

the domain triangle �vvvvvvvvv0vvvvvvvvv1vvvvvvvvv2. A 6-sided patch is de�ned via basis functions

vanishing simultaneously at all three vertices. In these cases we denote by l0,

l1, l2 the barycentric coordinates of a point with respect to the triple vvvvvvvvv0, vvvvvvvvv1,

vvvvvvvvv2. The in�nite points corresponding to the lines vvvvvvvvv0vvvvvvvvv1 and vvvvvvvvv0vvvvvvvvv2 are denoted

by eeeeeeeee1, eeeeeeeee2 respectively.

De�nition 2. A function f has a zero of multiplicity � at a point ppppppppp if it
vanishes at ppppppppp together with all partial derivatives up to the order � � 1. A
point ppppppppp is a base point of multiplicity � of a rational map (1) if all basis
functions fq have a zero of multiplicity � at ppppppppp.

For a set of planar points X = fppppppppp0; : : : ; pppppppppsg, we denote by P(k; �;X ) the

linear space of polynomials of degree k which have zero of multiplicity � at

all points ppppppppp0; : : : ; ppppppppps.

x3. T -patches
De�ning 5- and 6-sided T -patches, we set I = Ln

5 and I = Ln
6 respectively.

Various type of basis functions for 5- and 6-sided patches are de�ned using

the following scheme. Assume there are m + 1 functions h0; h1; : : : ; hm�1; h

(m = 5; 6) and positive numbers knij , 0 � i � n, 0 � j � n� i, satisfying the

symmetry conditions knij = k
n
i;n�i�j . For q = (s; i; j) 2 Ln

m, the functions fq



4 K. Karciauskas and R. Krasauskas

are de�ned by the formula

fq = k
n
ijh

n�i�j
s h

j
s+1h

i
: (3)

Now we specify the functions hs; h.

De�nition 3. Five-sided T
n
5 -patch and six-sided T

n
6 -patch are de�ned over

a triangle via the formulas

T
n
5 :

(
h0 = l

2
0; h1 = l0l1(l0 + l1); h2 = l

2
1l2; h3 = l1l

2
2;

h4 = l0l2(l0 + l2); h = l0l1l2;
(4)

T
n
6 :

(
h0 = l

2
0l1; h1 = l0l

2
1; h2 = l

2
1l2; h3 = l1l

2
2;

h4 = l0l
2
2; h5 = l

2
0l2; h = l0l1l2;

A �ve-sided eTn
5 -patch and six-sided eTn

6 -patch are de�ned over a regular pen-

tagon and hexagon, respectively, via

eTn
5 : hs = l̂s+1l̂

2
s+2l̂s+3ls; s = 0; 1; : : : ; 4; h =

4Y
s=0

l̂s; (5)

eTn
6 : hs = l̂s+1 l̂

2
s+2l̂

2
s+3l̂s+4; s = 0; 1; : : : ; 5; h =

5Y
s=0

l̂s:

If kn0j =
�
n

j

�
, the boundary curves are B�ezier curves of degree n. So the

boundary curves are integral if their weights are equal to 1, though the patches

are rational for any choice of the other weights.

From the designers point of view, it is convenient when a cyclic change

of the input data does not change a patch as an image in IR3. The eTn
5 -

and eTn
6 -patches are symmetric by de�nition. The T

n
5 - and T

n
6 -patches are

also symmetric (see [4, 5]). Their cyclic reparametrizations are given by the

birational transformations of the domain triangle (Cremona transformations)

of order 5 and 6 respectively.

Remark 4. It is shown in [4] that Tn
5 - and T

n
6 -patches give the same class

of the surfaces as eTn
5 - and eTn

6 -patches. So we actually have two kinds of

parametrizations of 5- and 6-sided surfaces. The eTn
5 - and

eTn
6 -patches can be

easier handled using standard methods, since they are de�ned over traditional
symmetric domain. The T

n
5 - and T

n
6 -patches are more convenient from the

algebraic geometry point of view. For example, the latter approach gives the
third type of parametrization of T -patches, which is suitable for an e�cient

plotting: Tn
5 -patch can be represented as a collection of three B�ezier patches

of bidegree (2n; 2n); Tn
6 -patch can be represented as a collection of six B�ezier

patches of the same bidegree.

The principles of blowing up and plotting Tn
5 -patches are shown in Fig. 2.
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Fig. 2. Blowing up and plotting Tn
5 -patches.

Lemma 5. The basis functions of all T -patches are linearly independent.
Moreover, the spaces P(3n; n; fvvvvvvvvv1; vvvvvvvvv2; eeeeeeeee1; eeeeeeeee2g), P(3n; n; fvvvvvvvvv0; vvvvvvvvv1; vvvvvvvvv2g), P(5n;
2n; fbbbbbbbbbs; s = 0; : : : ; 4g) are generated by the basis functions of the T

n
5 -, T

n
6 -

and eTn
5 -patches respectively.

Lemma 5 enables us to establish algebraic relations between di�erent

surfaces.

x4. Interrelations Between Pentagonal Patches

We denote by U5 a surface in IR5 de�ned via equations xs�1+xs+2xs+3 = 0,

s = 1; : : : ; 5 (the index s is treated in a cyclic fashion). This surface was

introduced by Sabin [11]. A domain D for the pentagonal patches from [2, 11,

15] is a region in U5 with xs � 0, s = 1; : : : ; 5.

The interrelation mappings are de�ned via formula (1) assuming, that

I = L15, k100 = 1 and all weights are equal to 1. We set for a simplicity

ppppppppps = ppppppppps00, ppppppppp = ppppppppp000, and denote rrrrrrrrr0 = (0; 1; 1; 1; 0), rrrrrrrrr1 = (0; 0; 1; 1; 1),: : :,

rrrrrrrrr4 = (1; 1; 1; 0; 0), rrrrrrrrr = (2=3; : : : ; 2=3) (rrrrrrrrrs are the corner points of the Sabin

domain). By ccccccccc is denoted a barycenter of the triangle �vvvvvvvvv0vvvvvvvvv1vvvvvvvvv2.

De�nition 6. De�ne rational mappings H5;
eH5 : IR2 ! IR2 and G5;

eG5 :

IR2 ! IR5 as follows. H5 and G5 are de�ned �xing basis functions (4) with
k
1
10 = 5(

p
5 � 1)=2 and taking control points ppppppppps = wwwwwwwwws, ppppppppp = wwwwwwwww and ppppppppps = rrrrrrrrrs,

ppppppppp = rrrrrrrrr respectively. eH5 and eG5 are de�ned �xing functions (5) with k
1
10 =

3(
p
5 + 1)=2 and taking control points ppppppppp0 = vvvvvvvvv0, ppppppppp1 = vvvvvvvvv1, ppppppppp2 = vvvvvvvvv1, ppppppppp3 = vvvvvvvvv2,

ppppppppp4 = vvvvvvvvv2, ppppppppp = ccccccccc and ppppppppps = rrrrrrrrrs, ppppppppp = rrrrrrrrr respectively.

Theorem 7. The mappings G5 and eG5 de�ne parametrizations of the surface
U5. They map triangular and regular pentagonal domains respectively onto
the Sabin domain. Moreover, G5 � eH5 = eG5, eH5 �H5 = id, H5 � eH5 = id.
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Corollary 8. Five-sided Sabin [11] and Hosaka-Kimura [2] patches can be
represented as T 3

5 - and T
4
5 -patches respectively.

Proof: The basis functions of the Sabin and Hosaka{Kimura patches are

special polynomials of degree 12 and 20 respectively, which sum to 1 on U5.

Calculations (with MAPLE) give that their compositions with G5 have the

form Agr and Bg
0
p respectively, where A, B are some rational functions, gr 2

P(9; 3; fvvvvvvvvv1; vvvvvvvvv2; eeeeeeeee1; eeeeeeeee2g), g0p 2 P(12; 4; fvvvvvvvvv1; vvvvvvvvv2; eeeeeeeee1; eeeeeeeee2g). Now the proof follows

from Lemma 5.

Notice, SHKn
5 -patches in [4] can be represented as Tn

5 -patches.

Let I = f1; 2; 3; 4; 5g, fs = l̂sl̂s+1l̂s+2, s 2 I, ppppppppp1 = (1; 0; 0; 0; 0),: : :, ppppppppp5 =

(0; 0; 0; 0; 1). If all weights are equal to 1, the formula (1) de�nes a map

L : IR2 ! IR5. An image of the map L is denoted by U
0
5. The surface U 0

5 is

used in [9] for a de�nition of 5-sided S-patches. A domain of 5-sided S-patch

is a regular pentagon.

Proposition 9. A �ve-sided S-patch of depth n over regular pentagon can

be represented as eTn
5 -patch.

Proof: The basis functions of an S-patch of depth n (see [9]) are the compo-

sitions of the map L with the homogeneous polynomials of degree n. They are

polynomials in P(3n; n; fbbbbbbbbbs; s = 0; : : : ; 4g). Multiplication of the basis func-

tions by C
n, where C = 0 de�nes a circle going through the points bbbbbbbbbs, does

not change the patch. New polynomials are in P(5n; 2n; fbbbbbbbbbs; s = 0; : : : ; 4g).
Hence the original S-patch can be represented as eTn

5 -patch.

We have seen, that Sabin and Hosaka{Kimura patches can be considered

as the patches over a regular domain or over the Sabin domain in U5. Simi-

larly, an S-patch can be considered over the domain in U
0
5 with nonnegative

coordinates. We call it a Loop{DeRose domain.

Proposition 10. There exists a mapping p : U5 ! U
0
5, which maps the Sabin

domain on to the Loop{DeRose domain and L = p � eG5.

Proof: De�ne p as a composition of the projective transformation

yi = xi + xi+2 + xi+4 � a(xi+1 + xi+3) + a� 2 i = 1; : : : ; 5;

y0 = (3� 2a)(x1 + x2 + x3 + x4 + x5 + 2a):

(a = (
p
5 + 1)=2) with the projection from a point on U5: p : (y0; : : : ; y5) 7!

(y1=y0; : : : ; y5=y0).

From the algebraic geometry point of view, the surface U5 is more univer-

sal in the algebraic constructions than U
0
5. As a con�rmation of this property,

we have that SHK2
5- and SHK3

5-patches in [10] can be represented only as T 5
5 -

and T
6
5 -patches, respectively.

Remark 11. The surface U5 plays a key role in the theory of 5-sided patches.
It would be interesting to investigate deeper geometric properties of U5. Here
are two of them: 1) as a surface in IRP 5 it contains 10 lines; 2) exactly 5

conics go through a generic point of U5.
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L

~
5G

~
5H

5H

5G
p

5U’

5U

Fig. 2. Interrelations of 5-sided patches.

A schematic of the interrelations between 5-sided patches is shown in

Fig. 3.

x5. Toric Patches
Here we present several results about toric patches obtained in [8]. Some

details can be found also in [16].

Consider a lattice ZZ2 of points with integer coordinates in the real a�ne

plane IR2. We call a convex polygon � � IR2 a lattice polygon if its vertices

are in the lattice ZZ2. Edges �i of � de�ne lines hi(ttttttttt) = hnnnnnnnnni; ttttttttti+ ai = 0, with

inward oriented normal vectors nnnnnnnnni, i = 1; : : : ; r. We choose nnnnnnnnni to be primitive

lattice vectors, i.e. the shortest vectors with integer coordinates in the given

direction.

Denote by b� = �\ZZk a set of lattice points of the polygon �. It is easy

to see that hi(mmmmmmmmm) is a non-negative integer for all i = 1; : : : ; r and mmmmmmmmm 2 b�.

De�nition 12. A toric patch associated with a lattice polygon � is a rational

patch T� with a domain D = � and basis functions

fmmmmmmmmm = cmmmmmmmmmh
h1(mmmmmmmmm)
1 h

h2(mmmmmmmmm)
2 � � �hhr(mmmmmmmmm)

r (6)

indexed by lattice points mmmmmmmmm 2 b�. Here cm > 0 are some coe�cients which
may vary from case to case.

Example 13. B�ezier surfaces and the Warren hexagon [13] are toric:
1) If � is a triangle with vertices (0; 0), (d; 0) and (0; d), then T� with

c(i;j) = d!=(i!j!(d� i� j)!) is exactly a rational B�ezier triangle of degree
d, which parameter domain is scaled d times.

2) If � is a rectangle with four vertices (0; 0), (d1; 0), (d1; d2) and (0; d2),

then T� with coe�cients c(i;j) =
�
d1
i

��
d2
j

�
is a tensor product surface of

bidegree (d1; d2) with a scaled parameter domain [0; d1]� [0; d2].
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3) Let � be a hexagon �6 (see Fig. 4) then T� with appropriate coe�cients

cmmmmmmmmm is the Warren 6-sided patch denoted by eT 1
6 in Section 3.

Toric patches have similar properties as B�ezier surfaces. They are a�ne

invariant, and have convex hull property. Every edge �i of the lattice polygon

� corresponds to a boundary rational B�ezier curve with control points mmmmmmmmm 2b�i = �i \ZZ. In particular, its degree is equal to an `integer length' of the edge

�i.

The following property is in some sense similar to the a�ne invariance of

the domain for B�ezier surfaces.

Lemma 14. (Unimodular invariance of the domain.) Let two lattice poly-
gons be related via some a�ne unimodular transformation L(�) = �0 (i.e. L

preserves the lattice ZZ2). Then toric patches T� and T�0 with the same con-
trol points and weights are just reparametrizations of each other: T� = T�0�L.

Fig. 4. Examples of lattice polygons.

In Fig. 4 we see a lattice hexagon �6 and an octagon �8. Since they have
6- and 4-sided symmetry, corresponding toric patches T� for � = �6;�8 have
the same symmetry.

Corollary 15. For m = 3; : : : ; 8, the only symmetric (in the sense of Sec-
tion 3) toric patches may be 3-, 4- and 6-sided, for example, B�ezier triangles,

tensor product surfaces of degree (d; d) and the Warren hexagon T�6
= T

1
6 .

In particular, the 5-sided T
n
5 -patch cannot be toric.

Proof: These numbers correspond to cyclic subgroups in the group SL2(ZZ)

of unimodular linear transformations of the lattice ZZ.

It is clear that an a�ne unimodular transformation L preserves area,

since detL = �1. It is convenient to use so-called normalized area which is

twice as large as the usual area in IR2, since then area(�) is always integer for

lattice polygons �. The following result is well-known in the theory of toric

varieties (see [14] for an elementary proof).
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Theorem 16. The implicit degree deg T� of a toric patch T� does not exceed
area(�). It is equal to area(�) when the control points are in general position.

For example, deg T�6
= 6 and deg T�8

= 14 (see Fig. 4).

Consider now the more general parametrization of a toric patch F
0 :

IRr
�0 ! IRk de�ned as in (1) via basis functions

f
0
mmmmmmmmm(u1; u2; : : : ; ur) = cmmmmmmmmmu

h1(mmmmmmmmm)
1 u

h2(mmmmmmmmm)
2 � � �uhr(mmmmmmmmm)

r ; mmmmmmmmm 2 �:

De�nition 12 is obtained substituting variables ui by a�ne forms hi. Although

the domain IRr
�0 has dimension r, the image of F 0 is 2-dimensional in all cases

(cf. [8]). Hence, using various substitutions, one can get di�erent interesting

parametrizations of the same patch. The simplest piecewise substitution

�i(u; v) = F
0(1; : : : ; 1| {z }

i�1

; u; v; 1; : : : ; 1); i = 1; : : : ; r � 1

�r(u; v) = F
0(v; 1; : : : ; 1; u); 0 � u; v � 1;

de�nes a subdivision of the toric patch into r tensor product pieces. This

directly generalizes the Warren hexagon subdivision [13].
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