
LMR lmr v.2004/01/22 Prn:14/11/2008; 10:12 F:ALE_NOR.tex; (RRR) p. 1

Liet. mat. rink.,49, 2008, 1–4

Proof-search in hybrid logic

Daiva ALEKNAVIČIŪTĖ, Stanislovas NORĠELA (VU)
e-mail: daiva.aleknaviciute@mif.vu.lt, stasys.norgela@mif.vu.lt

Abstract. This paper describes a new tactic for proof-search in Hybrid logicH(@), which always termi-
nates.

Keywords:hybrid logic, sequent calculus.

1. Introduction

Hybrid logicH(@) is decidable. However, a tableau method for Hybrid logicH(@,↓)

described in [2] does not always terminate even for formulae belonging toH(@).
Recently substantial interest has been shown in terminating proof-search methods for
decidable classes of Hybrid logic. T. Bolander and T. Braüner [3] give a tableau method
with loop checking. S. Cerrito and M. Cialdea Mayer [1] describe a tableau method
without loop-checking, which always terminates for formulae fromH(@).

This paper proves that a derivation tree in sequent calculus for everyH(@) formula
will be finite if we use(♦) rule as late as possible. The proof refers to the paper [1],
which provides a similar tableau method. The main difference is that if we use(Sub)

rule in [1] we might need to delete some formulae from sequent and later to create
them again. Our proposed method does not have this restriction. This is because if we
use(♦) rule as late as possible we will not create new unnecessary nominals that(Sub)

rule would need to remove.

2. Sequent calculus

DEFINITION 1. Let S be the initial sequent of derivation tree. LetCT be a set of
nominals in the initial sequent. LetNOM� be a set of nominals in sequent�. Let S∗

T
be a set of all formulae which we can get from subformulae of the initial sequent if
we substitute nominals with different nominals from setCT (we might leave the same
nominals as well).

Notice thatS∗
T is a finite set, sinceS andCT are finite sets.

LEMMA 1. Let sequent� be stable if it contains only formulae of form@s♦t or
@sF , wheres, t are nominals (not necessary belonging toCT ) andF ∈ S∗

T . If we use
any rule on stable sequent we will also get a stable sequent(s).

Proof. This can be easily proven by analysing all rules.



LMR lmr v.2004/01/22 Prn:14/11/2008; 10:12 F:ALE_NOR.tex; (RRR) p. 2

2 D. Aleknavičiutė, S. Norg˙ela

COROLLARY. Since the initial sequent of a derivation tree contains only formulae
of form@sF , whereF ∈ S∗

T , we get that all sequents in the derivation tree are stable.

Let us choose a tactic that(♦) rule must be used only if no other rule can be used.
Further we will analyse some particular branch in the derivation tree. A part of the
branch from the initial sequent to the first usage of(♦) rule will be calledphase 1, a
part between the first and the second usage of(♦) – phase 2, etc. At the end of each
phase we will only have formulae that belong to one of the following sets:

S♦ = {@s♦t : s, t ∈ Nom}, S� = {@s�F : s ∈ Nom,F ∈ S∗
T },

S¬ = {@s¬t : s ∈ Nom, t ∈ CT }, S♦F = {@s♦F : s ∈ Nom,F ∈ S∗
T }.

We will not get any formulae of other forms, because if the top operator (excluding
the first @s ) in the formula is either &,∨,@t or the formula has a form @s t , we could
apply a rule other than(♦). This would contradict our chosen tactic.

LEMMA 2. If we use@s♦t formula in(♦) rule when we move to the next phase, at
the end of the next phase we will have the same sequent as we had before.

Proof. For a proof see “Some Decidable Classes of Formulas of Pure Hybrid
Logic” [4] Lemma 3.

COROLLARY. When making a transition to a new phase we need to use a formula
fromS♦F .

If we use(�) rule twice on the same pair of formulae we will not get any new
formulae. To avoid such repetition we can annotateeach� operator with a set of
nominalsN , which where used in(�) rule for that operator. To add this annotation we
need to adjust(�) and(Sub) rules:

�,@t F,@s�N∪{t}F,@s♦t

�,@s�NF,@s♦t
(�),

wheret �∈ N ,

�[t/s]
�,@s t

(Sub).

�[t/s] also replacess to t inside annotation setsN . In the initial sequent we annotate
all � operators with an empty set –�∅.

It is also useless to start two phases by using(♦) for the same formula, since same
formulae will hold for a new nominal as for an old nominal. Consequently for each
branch in the derivation tree we remember formulae used to move from one phase to
another.

LEMMA 3. We can use only a finite number of rules inside each phase.



LMR lmr v.2004/01/22 Prn:14/11/2008; 10:12 F:ALE_NOR.tex; (RRR) p. 3

Proof-search in hybrid logic 3

Proof. Since we do not create new nominals inside a phasei then NOM� is a
finite set andNOM� ⊆ NOM�0 for all sequents� in the phasei, where�0 is the first
sequent of the phasei. Let W = {@t�F : t ∈ CT ∪NOM�0,F ∈ S∗

T }. From Lemma 1
we get thatSi� ⊆ W , whereSi� is the set of formulae belonging toS� in the phase
i. SinceCT ,NOM�0 andS∗

T are finite sets thenSi� is also finite. SimilarlySi♦ is
finite because a set of formulae belonging toS♦ at the beginning of the phasei is
finite and we can only add new formulae toSi♦ of form @s♦t , wheres, t ∈ NOM�0.
Consequently sinceSi� andSi♦ are finite sets then we can use(�) rule only finitely
many times inside the phasei.

Notice that all rules except(♦) and(�) reduce the total number of operators inside
a sequent at least by one. Since we can use(�) and(♦) rules finitely many times and
we can not use other rules successively infinitely many times, we get that the total
number of rules used in the phasei is finite. This holds for alli in all branches of a
derivation tree.

DEFINITION 2. A degree of modalityof a formulaF (denoted bymod(F )) will be
the number of modal operators inF .

DEFINITION 3. In a particular branch of a derivation tree we denotemaxmod(s) to
be themaximal degree of modalityof formulae which have a form @sF , but not @s♦t ,
whereF ∈ S∗

T , t ∈ Nom. If no such formula exists in the branch thenmaxmod(s) = 0.

DEFINITION 4. As in [1] we will give definitions forchild andparentnominals. If
we get a formula @s♦t using(♦) rule (t is a new nominal), we will calls – “a parent
of t” and t – “a child of s”. Let this relation be denoted bys � t .

LEMMA 4. A set of childrenVs = {t : s � t} for a particular nominals is finite.

Proof. When entering a new phase we might use a formula of form @s♦F , where
F ∈ S∗

T . Each such formula can be used only once. SinceS∗
T is a finite set,Vs is also

finite.

LEMMA 5. Each branch of a derivation tree contains a finite number of phases.

Proof. We will prove this by showing that for alls � t in the branch we have
maxmod(t) < maxmod(s).

If s � t then some phase begins by using(♦) rule for a formula @s♦F and gives
formulae @s♦t,@t F . Obviously,

mod(@t F ) < mod(@s♦F),

and the first sequent of this phase does not contain a formula @tG such that

mod(@tG) � maxmod(s).

(&), (∨), (Simp), (Sub), (♦) rules preserve this property in further sequents. If we use
(�) rule we get a new formula of form @tG. But we also must have a formula @s�G



LMR lmr v.2004/01/22 Prn:14/11/2008; 10:12 F:ALE_NOR.tex; (RRR) p. 4

4 D. Aleknavičiutė, S. Norg˙ela

for (�) rule. Consequently(�) rule also preserves thatmod(@tG) < maxmod(s). By
definition ofmaxmod(t) we getmaxmod(t) < maxmod(s).

If maxmod(s) = 0 thens can not have any children, since we would need a formula
of form @s♦F , which givesmaxmod(s) > 0. Consider a sequences0 � s1 � s2 �
· · ·. Sincemaxmod(si) > maxmod(si+1) andmaxmod(sk) = 0 meanssk does not
have any children, we get that the sequence is finite. Using Lemma 4 we get that a set
of all new nominals

{s1, s2, . . . : s0 � s1 � s2 � · · · , s0 ∈ CT }
is finite. Since every phase creates a new nominal, the total number of phases in a
branch is finite.

THEOREM 1. Annotation of�, remembering of used@s♦F formulae and using
(♦) rule as late as possible gives us a finite derivation tree.

Proof. From Lemma 3 and Lemma 5 we get that every branch in the derivation tree
uses a finite number of rules. Consequently the whole derivation tree is finite.

References

1. S. Cerrito and M. Cialdea Mayer, Terminating tableaux forHL(@) without loop-checking.Technical
Report IBISC-RR2007-07, Université d’Évry Val d’Essonne (2007).

2. P. Blackburn, M. Marx, Tableaux for quantified hybrid logic,LNAI, 2381, 38–52 (2002).
3. T. Bolander and T. Braüner, Tableau-based decision procedures for hybrid logic,Journal of Logic and

Computation, 16(6), 737–763 (2006).
4. S. Norgėla, A. Šalaviejien˙e, Some decidable classes of formulas of pure hybrid logic,Lith. Math. J.,

44(4), 462–469 (2007).

REZIUMĖ

D. Aleknavičiūtė, S. Norgėla. Išvedimo paieška Hibridin˙eje logikoje

Aprašoma sekvencinio skaiˇciavimo taktika hibridinei logikaiH(@), visada užbaigianti darb↪a hibridinės
logikosH(@) formulėms.

Raktiniai žodžiai: ???


