VILNIUS UNIVERSITY

2008

1. Let n be a positive integer. Find

$$\prod_{\substack{1 \le x \le n \\ (x,n)=1}} x \pmod{n}.$$

(10 points)

2. Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ be positive real numbers such that $a_1 < a_2 < \ldots < a_n$, $b_1 < b_2 < \ldots < b_n$ and

$$a_{1} + a_{2} + \dots + a_{n} = b_{1} + b_{2} + \dots + b_{n},$$

$$a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2} = b_{1}^{2} + b_{2}^{2} + \dots + b_{n}^{2},$$

$$\dots \dots \dots$$

$$a_{1}^{n} + a_{2}^{n} + \dots + a_{n}^{n} = b_{1}^{n} + b_{2}^{n} + \dots + b_{n}^{n}.$$

Show that $a_k = b_k$ for every $k = 1, 2, \ldots, n$.

(10 points)

3. Find all positive integers n such that there exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ which is exactly *n*-to-one (i. e. for every $y \in \mathbb{R}$ the set $f^{-1}(y)$ has exactly *n* elements).

(10 points)

4. For a positive real number α , define

$$S(\alpha) = \{ [n\alpha] : n = 1, 2, 3 \dots \}.$$

Prove that $\{1, 2, 3, \ldots\}$ cannot be expressed by the disjoint union of three sets $S(\alpha)$, $S(\beta)$ and $S(\gamma)$.

(10 points)