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Introduction

Formal introduction
This dissertation consists of two parts. The object of the first part of the disser-
tation is random intersection graphs and random intersection digraphs. The goal
of the work was to determine certain asymptotic properties of such graphs (or di-
graphs). They include (a) the birth threshold for fixed-size complete subgraphs in
the random intersection digraph; (b) the clique number of sparse random intersec-
tion graphs; (c) the chromatic number of random uniform intersection graphs. An
additional goal was to better understand the connection of random intersection
graphs and large real-world networks.

Random intersection graphs have been actively studied in the last decade. It
has been shown that this model can produce instances with positive clustering
coefficient and other commonly observed properties of real-world networks (such
as the Internet, social and biological networks). The applications of such models
include wireless networking, classification and epidemiology, see [21,22,46,53]. The
work is also relevant from the computer science point of view: we consider classical
NP-hard problems, but we restrict attention to a particular, rather general and
practically important family of distributions of graphs.

The object of the second part of the dissertation is minor-closed classes of
graphs without k + 1 disjoint minors in B, where a set B consists of 2-connected
graphs. The problem of this part is to enumerate such classes asymptotically and
prove properties of typical graphs in them. We study two general types of B. As
part of the work, we aim to answer a question of Bernardi, Noy and Welsh in this
case.

The results in Part II build on the work of McDiarmid on addable minor-closed
classes. The theory of graph minors has many applications in theoretical com-
puter science and “has made a fundamental impact both outside the graph theory
and within” [38]. Asymptotic enumeration of minor-closed classes was originally
motivated by a particular case relevant both theoretically and practically, the
planar graphs. Results of this kind can usually be directly applied to average-case
complexity analysis of graph algorithms where the input is a uniformly random
graph with some natural restrictions [12,40,48]. Another algorithmic application
highlighted in the literature is as follows. The ability to count often gives knowl-
edge how to construct large instances [52,85]. This can be used for system testing.
The proofs in the second part are mostly based on combinatorial and probabilistic
arguments (as opposed to the approach that uses mainly analysis of generating
functions), and the results often hold with rather general conditions.
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Introduction

In the next two sections we specify the models and review the propositions
that we prove in the thesis, this is done for each part separately.

Random intersection graphs
Let S1, S2, . . . , Sn be finite sets. The pairs uv where u ̸= v and Su ∩ Sv ̸= ∅
define edges of a graph on the vertex set [n] = {1, . . . , n}. This graph is called
the intersection graph of S1, . . . , Sn, see Figure 1.

Russian
Chinese

English

German

French

S
1

S
2

S
3

S
4

1 2

4 3

Figure 1: An intersection graph representing all communicating pairs, when, for example, Sv is
the set of languages spoken by person v.

If the sets S1, . . . , Sn are random subsets of some (finite) ground set W of
m attributes (or keys), we obtain a random intersection graph. The first au-
thors to consider such random graphs were Karoński, Scheinerman and Singer-
Cohen (1999, [58]). They studied the binomial random intersection graph model
G(n,m, p), where an attribute w is added to the set Sv independently at random
with probability p, for each pair (w, v), w ∈ W and v ∈ [n].

Godehardt and Jaworski [53] introduced a more general “active” random inter-
section graph G(n,m, P ), where each set Sv is generated independently at random
in two stages: first the size Xv is drawn according to the probability distribution
P , then a uniformly random subset Sv of size Xv is drawn (without replacement)
from W . We give a more detailed description of this and related models in Sec-
tion 1.1.

Studying random intersection graphs is motivated by a belief that they share
some properties with large empirical networks. Large empirical networks are often
observed to be sparse (the average number of neighbours of a vertex is bounded)
and have a non-negligible clustering coefficient (which is the conditional probabil-
ity that three randomly chosen vertices make up a triangle, given that the first two
are neighbours of the third one). Unlike in many other models, the parameters
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Introduction

of random intersection graphs can be chosen in a way that the resulting random
instances have these two properties simultaneously.

For any collection {S1, S2, . . . , Sn} of subsets ofW there is a unique dual collec-
tion {Tw}w∈W of subsets of [n], where Tw = {v : w ∈ Sv}. In terms of intersection
graphs, it can be understood as follows: each attribute w ∈ W corresponds to a
clique on the vertex set Tw; edges of all the cliques Tw define the set of edges of
the intersection graph. We call cliques Tw monochromatic.

In their paper Karoński, Scheinerman and Singer-Cohen determined for which
choices of p, the binomial random intersection graph G(n,m, p) contains a clique
on h vertices with high probability (when n and m are large). They solved the
problem for any fixed h by showing that it is enough to consider a finite number of
configurations of pairwise intersecting sets. Figure 2 shows two such configurations
in the case h = 4.

Formalisms. Statements such as “G(n,m, p) has a clique of size h with high probabil-
ity” should be rigorously interpreted as follows. We consider a sequence of random graphs
{G(n), n = 1, 2, . . . }, where G(n) = G(n,m, p) and m = m(n), p = p(n). For n = 1, 2, . . .

we let A = A(n) be the event that G(n) has a clique of size h. Then a statement like “A
holds with high probability” means that P(A(n)) → 1 as n → ∞. Informal statements
about D(n,m, p−, p+) and G(n,m, P ) should be interpreted similarly. For example, when
we talk about the parameter P , we actually have in mind a sequence of probability measures
{P (n), n = 1, 2, ..}.

For a sequence {Xn, n = 1, 2, . . . } of random variables (for example Xn may be the
size of a maximum clique in G(n,m, p)), we informally write that Xn is “asymptotically”
f(n) if for any ϵ > 0 P(|Xn − f(n)| > ϵf(n)) → 0 as n → ∞. A standard notation
Xn = f(n)(1 + oP (1)) will be used in the subsequent chapters.

Small subgraphs in random intersection digraphs

In Chapter 2 we ask a similar question for a related binomial random inter-
section digraph model D(n,m, p−, p+). In this model, proposed by Bloznelis [16],
each vertex v ∈ [n] is assigned not one, but two random subsets, S−

v and S+
v .

Each attribute w ∈ W is included into S−
v with probability p− and into S+

v with
probability p+ independently. Then the random binomial intersection digraph is
a directed graph on the vertex set [n] with arcs {uv : S−

u ∩ S+
v ̸= ∅}. Such a

digraph makes sense if we interpret S−
v and S+

v as sets of attributes (qualities)
that v “likes” and “possesses” respectively.

We determine ranges of parameters for which D(n,m, p−, p+) contains a copy
of the complete directed graph on h vertices with a high probability. Depend-

13



Introduction

S
1

S
2

S
3

S
4

S
1

S
3

S
4

S
2

Figure 2: Two different configurations of intersecting sets that yield a clique on four vertices.

ing on the relationship between parameters p−, p+ and m (all of them can vary
with n), four different patterns of intersecting sets can be most likely to realise
the complete digraph on h vertices, and two of these patterns do not have an
undirected counterpart.

Largest clique

But what can we say about the size of a maximum clique (the clique number)
of a random intersection graph? In general, the problem is difficult due to two
reasons. Firstly, the local clustering property causes a lot of dependence between
the edges of the random graph. Secondly, the clique number can grow with n,
and so it no longer suffices to consider only a finite number of patterns of sets. In
Chapter 3 a solution for sparse uniform random intersection graphs G(n,m, P ) is
presented. Here “sparse” means that m and P are such that the expected number
of edges is linear in n.

Let D(n) be the degree of a random vertex (or, equivalently, of vertex 1) in
G(n,m, P ). We find that the clique number of G(n,m, P ) depends on the tail of
the distribution of D(n). If D(n) is “asymptotically” power-law distributed with
index α ∈ (1, 2) (for example, a Pareto distributed random variableX with P(X >

t) = t−α is power-law with index α) then the largest clique is “asymptotically”
of polynomial size. The order of the clique number in this case is the same as in
a much simpler model without clustering studied by Janson, Łuczak and Norros
(2010, [55]).

Meanwhile, if the degree variance is bounded (supn V arD(n) < ∞), then the
largest clique is with high probability ”almost“ monochromatic (generated by a
single attribute, as in Figure 2, right) and its size is “asymptotically” logarithmic.
This phenomenon is specific to random intersection graphs, and the clique num-
ber here is closely related to the maximum load problem: if N balls are thrown
randomly to m bins, what is the maximum number of balls a bin receives? Both in
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the “power-law” and the “bounded variance” regimes our results are optimal up to
the first-order asymptotic term. These two regimes cover most of the interesting
choices of the parameters for sparse G(n,m, P ).

Furthermore, for each of the two main regimes there is a simple algorithm for
finding large cliques. We prove that with high probability G(n,m, P ) is such, that
the corresponding algorithm outputs a clique of asymptotically optimal size and
terminates in polynomial time. These algorithms have a potential to be used and
studied with large scale real-world graphs. A reader interested to see the simple
pseudocode is welcome to jump directly to Section 3.4.

Chromatic index of random uniform hypergraphs

A hypergraph H is a pair (V,E), where V is a set and E is a collection of subsets
of V called hyperedges, or simply edges. Intersection graphs are hypergraphs,
where we put emphasis on pairwise intersections of edges. The chromatic number
of a graph is the least number of colours needed to colour its vertices, so that no
two neighbours receive the same colour. The chromatic index of a hypergraph is
the least number of colours needed to colour its edges so that no pair of intersecting
edges receives the same colour.

In Chapter 4 we study the chromatic index of H(k)(m,n), the random hyper-
graph on the vertex set [m] and with n edges drawn independently with replace-
ment from all subsets of [m] of size k. The problem is equivalent to the problem of
determining the chromatic number of G(n,m, k), the uniform random intersection
graph with n vertices, m attributes and all subsets of size k. In the case when
k is constant and n is much larger than m, a result by Pippenger and Spencer
(1989, [82]) implies the answer. That result holds for arbitrary ‘almost regular’
hypergraphs, not just the random ones. For random hypergraphs we extend their
result slightly and allow k to grow slowly with n. To do this, we exhibit a simple
greedy algorithm (different from Pippenger and Spencer’s one) and prove that it
colours the edges with an (asymptotically) optimal number of colours.

Empirical aspects

In Section 1.2 we plot certain statistics for large real-world networks (such
as, for example, the actor affiliation networks, where two actors are declared
adjacent if they had a role in the same movie) and random intersection graphs
with corresponding parameters. The statistics include assortativity and counts of
pairs with given number of common neighbours.

15
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Figure 3: The Lithuanian actor affiliation network (data from IMDB: http://www.imdb.com).
The ‘union of cliques’ structure, where each clique consists of actors participating in the same
film, can clearly be seen here.

Minor-closed classes of graphs
The second part of this thesis is concerned with graphs that do not contain certain
subgraphs.

Connected graphs that do not have any cycle are trees. Acyclic, but not
necessarily connected graphs are called forests. Given a class of labelled graphs A
(for example, the class of trees), we denote by An the restriction of A to graphs
on the vertex set [n] = {1, .., n}. We study

(*) the asymptotic number of graphs in An;

(**) the structure of a typical graphs in A; more precisely, properties of a uni-
formly random graph from An.

For example, the classic result of Cayley (1868) states that there are nn−2 trees
on the vertex set [n]. Rényi (1959) proved that the number of forests on the same
vertex set is

√
enn−2(1 + o(1)) as n tends to infinity.

Part II starts with investigation of the class of graphs that do not have k + 1

vertex-disjoint cycles. Erdős and Pósa (1965, [45]) showed that there is a constant
ck such that each graph that does not contain k+ 1 disjoint cycles has a set of at
most ck vertices, whose removal results in an acyclic graph (a forest). It is known
that the smallest possible ck is of order k ln k [38]. (The important thing here is

16
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that no matter how large a graph is, if it has at most k disjoint cycles then we
can “destroy” all of its cycles by removing just a few vertices.)

In Chapter 6 we present a proof that only k vertices are enough for typical
graphs without k+1 disjoint cycles. A uniformly random such graph on the vertex
set [n] for large n is shown to be very close in distribution to the following simple
construction a) pick a uniformly random set S ⊂ [n] of size k; b) put a uniformly
random forest on the remaining vertices [n] \ S; c) for each pair {x, y} ⊂ [n]

with at least one element in S, add the edge xy independently at random with
probability 1/2.

Given a graph G, the contraction of an edge e = xy ∈ E(G) is the following
operation: merge the endpoints x and y of e into a new vertex vxy, so that vxy

becomes adjacent to all of the former neighbours of x and y. A graph H is called
a minor of G if it can be obtained from G by applying a series of edge deletions,
vertex deletions and edge contractions, see Figure 4.

G H

Figure 4: A sequence of vertex deletions and edge contractions showing that H is a minor of G.

A class of graphs A is minor-closed if for any G ∈ A every minor of G also
belongs to A. Minor-closed classes of graphs is the subject of the theory of graph
minors developed by Robertson and Seymour in a series of more than twenty
papers (1983-2004). One of the results is the following: each minor-closed class
A can be characterised by a finite list B of minimal excluded minors. That is, to
test whether a graph G is not in the class A, it suffices to check whether any of
the finitely many graphs in B is a minor of G. We denote this by A = ExB. For
example, by an earlier work of Kuratowski (1930) and Wagner (1937) the class of
planar graphs (graphs drawable on the plane so that edges can intersect only at
their endpoints) can be characterised by two minimal non-planar excluded minors:
K3,3 and K5 (here Kt,t is the complete bipartite graph with both parts of size t

and Kt is the complete graph on t vertices). Counting and studying properties of
random planar graphs and other minor-closed classes of graphs has received a lot
of attention in the last decade, we review the work most relevant to this thesis in
Chapter 5. Some other examples of minor-closed classes are forests, series-parallel
graphs, outerplanar graphs, graphs embeddable in a fixed surface (for example,
the torus), graphs with a bounded treewidth, graphs knotlessly embeddable in

17
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(a)

(c)

(b)

Ex H

(d)

Figure 5: Illustration of a class of graphs handled in Chapter 7: (a) the graph H; (b) the
forbidden minor: 3 disjoint copies of H; (c) a graph with three disjoint forbidden minors; (d) a
typical graph without three disjoint minors H.

Euclidean 3-space, etc.
The class of graphs containing at most k+1 disjoint cycles is also minor-closed;

the forbidden minor is k+1 disjoint copies of K3. Chapter 7 generalizes results of
Chapter 6 to classes with at most k disjoint excluded minors from a given fixed
set B (with repetitions allowed). For the generalisation to work, the excluded
minors in B have to necessarily satisfy a certain restriction: the class of graphs
ExB must not contain arbitrarily large fans (a fan is a graph consisting of a path
together with a vertex joined to each vertex on the path).

We postpone the formal statements of our theorems until Chapter 7; now
we will just discuss one example, a straightforward application of our results with
k = 2 and a set B0 = {H}, consisting of a particular graphH on six vertices shown
in Figure 5 (a). Our result concerns the class A of graphs with the excluded minor
shown in Figure 5 (b). Graphs that violate the requirement are, for instance, as
in Figure 5 (c) (two of the subgraphs are subdivisions of H, the third can be seen
to have H as a minor by contracting two edges incident to vertices marked with
the smaller circles).

Our result implies that a uniformly random graph in An essentially consists of
a random graph in ExB on n−2 vertices, two “apex vertices”, and edges incident
to each of the apex vertices which appear independently with probability 1/2.

18
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(a)

(b)
{g}

{r, b}

{r, g}

{r, b} {r, g} {g}

{g}
{r}

{b}

{r, g, b}{g, b}

{g, b}

{r}
{r}

{g}

{b}

{b}

{b}

{r, g}

{g, b}

(c)

Figure 6: (a) A forbidden minor: two disjoint K4; (b) a series-parallel network; (c) the “core” of
a typical graph without two disjoint minors K4. To complete the graph, add three new “apex”
vertices x, y, z and join them to each node coloured r[ed], g[reen] and b[lue] respectively; replace
leaf-like shapes by (non-series) series-parallel networks, and attach more series-parallel graphs
at each vertex arbitrarily. Neither of x, y, z is allowed to create a K4 minor alone.

With very high probability these two apex vertices are the only vertices that have
linearly many neighbours, see Figure 5 (d).

The last two chapters are devoted to the next layer of disjoint forbidden minors.
In Chapter 8 we prove results for general classes B, such that ExB contains all fans,
but B is “good enough”. We show that a different general construction dictates
the asymptotic number of graphs without k + 1 disjoint excluded minors in B.
The motivating case behind quite general results of Chapter 8 was a particular set
B = {K4}. The graphs without a minor K4 are known as series-parallel graphs.
This class is important in computer science, and has been used to study algorithms
for problems that are hard for general graphs.

In Chapter 9 we obtain precise first-order asymptotics for the number of graphs
without k+1 disjoint minors K4. We prove that for large n, a typical such graph
G on {1, . . . , n} has a unique set S with the following properties:

(i) S is of size 2k + 1;

(ii) for any x ∈ S, the removal of S \ {x} from G results in a series-parallel
graph;

(iii) each vertex in S has linearly many neighbours.

A rather complete picture of typical graphs from this class is developed. Figure 6
illustrates some of the basic features.
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Overview of the methods
Many different methods are used throughout the dissertation. The most important
of them are discussed in more detail in the background chapters, Chapter 1 and
Chapter 5.

Inequalities from probability theory and probabilistic method. We
use various classic probabilistic methods such as the first and second moment
method, Chebyshev’s inequality quite intensively in Part I of the thesis. In ad-
dition, we use some less standard results from Ramsey theory and the theory of
random graphs.

Concentration inequalities. In both parts an indispensable tool is Cher-
noff bounds for sums of independent random variables. Most of the applications
require only that the bounds are exponential, the constant in the exponent is not
important. In Chapter 4 we use more sophisticated concentration inequalities for
martingales, from McDiarmid (1998) [72].

Differential equations method. This method is based on concentration
inequalities for martingales. It was developed by Wormald [101] in the context of
random graph processes, though Karp and Sipser had applied similar techniques
in their earlier work [59]. The main idea is to show that a trajectory of a parameter
of a random process is highly concentrated around its mean at all time steps. The
curve for the mean is a solution of a system of differential equations. We apply
this method for the random hypergraph edge colouring problem.

Theory of graph minors. Several major results in the theory of graph
minors by Robertson and Seymour, see [89], are the starting point in the proofs
of Part II. One of the key facts is that graphs with a planar excluded minor have
a bounded tree-width.

Singularity analysis. Methods based on generating functions play an im-
portant role in Part II. While in Chapters 6, 7 and 8 we only make use of very
simple results, such as the “exponential formula”, Chapter 9 contains a full appli-
cation of the singularity analysis method: we obtain decompositions of relevant
classes, convert them to exponential generating functions and use either general
theorems or our own observations in complex analysis to extract the asymptotic
coefficients. Most of the tools of this kind can be found in the book “Analytic
Combinatorics” by Flajolet and Sedgewick [48]. For counting tree-like structures
we also find the work of Meir and Moon (1989, [79]) very general and useful.
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Computational tools. We used computer to aid some of our work. Numeri-
cal estimates presented in Part II were carried out with the symbolic computation
system Maple. Empirical analysis of real networks in Section 1.2 required larger
scale computation, this was implemented using Python with its packages numpy
and matplotlib and executed in the cluster of the Digital Science and Computing
Centre of the Faculty of Mathematics and Informatics, Vilnius University. Some
programming with C++ and Python was used to explicitly construct all possible
graphs related to classes with few disjoint minors K4. Most of the illustrations
in this thesis were created using Xfig and Inkscape. The dissertation itself was
prepared and compiled with XeLaTeX.

The methods and proofs presented in this thesis are mathematically rigorous.
The empirical parameters of large real networks were only evaluated for partic-
ular graphs and served mainly for illustratory purposes. Statistical inference or
hypothesis testing using random intersection graph models can be seen as a po-
tential future work in the area.

Content, originality and novelty
The content presented in this thesis has been created and prepared by the author
of the thesis together with his co-authors.

The results obtained in the dissertation are original and all of them can be
considered as new. Most of the problems of Part I had been considered by other
authors with related but different models. In our work we propose several meth-
ods not used in this context before (applications of the balls and bins problem,
extremal combinatorics and differential equations). The important phenomenon
of largest clique being generated by a single attribute has been earlier also dis-
covered by two other groups of researchers in related but more restricted models.
Part II explores an entirely new type of minor-closed classes and similar results
were unknown before. Some of the intermediate lemmas extend previously known
ones.

Each of the results chapters is based on an article that has either been pub-
lished or submitted for publication.

Section 1.2 – on paper [20] with M. Bloznelis and J. Jaworski and paper [24]
with M. Bloznelis1.

Chapter 2 – on paper [62];
1In these two works I essentially carried out only the empirical analysis.
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Chapter 3 – on paper [25] with M. Bloznelis;
Chapter 4 – on paper [66] with K. Rybarczyk.
Chapter 6 – on paper [64] with C. McDiarmid;
Chapter 7 – on paper [65] with C. McDiarmid,
Chapter 8 and Chapter 9 – on paper [63].

The papers [24,62,64,65] have been published, the remaining papers have been
submitted for publication.
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Results of Part I
1. In Chapter 2 we considered sequences of random intersection graphs {D(n)}

where D(n) = D(n,m, p−, p+) and m = m(n), p− = p−(n) and p+ = p+(n).
We defined the birth threshold function τ such that τ(n,m, p−, p+) → ∞
(respectively, 0) implies that D(n) contains (respectively, does not contain)
a copy of the complete directed graph −→

Kh whp. Next, we introduced the
notion of a diclique cover of a digraph. We showed that there are several
possible cases of the relationship of the parameters m, p− and p+, and to
each case corresponds one or more simple diclique covers. The “in-star” and
the “out-star” covers that realise the birth threshold when p− is much larger
than p+ (respectively, p+ much larger than p−), were not possible in the
undirected case.

2. In Chapter 3 we considered sequences {G(n)} of sparse ‘active’ random in-
tersection graphs G(n) = G(n,m, P ), where m = m(n), P = P (n). We
introduced a power-law tail condition (??) for the normalized random sub-
set size Y (n) =

√
n
m
X(n), where X(n) is distributed according to P (n). We

determined the asymptotic clique number in G(n) (it is polynomial in n)
when Y (n) satisfies this condition with index α ∈ (1, 2) for a wide range
of sequences m = m(n), including the case m = Θ(n) that yields a non-
vanishing clustering coefficient. Secondly, we considered the case where
G(n) is sparse and EY = Θ(1) and V arY = Θ(1). In this case we showed
that the largest clique in G(n) is monochromatic (plus possibly a stochasti-
cally bounded number extra vertices) and we proved that the total variation
distance of ω′(G(n)) and the size of the maximum bin when (mn)1/2EY (n)

balls are thrown into m bins tends to zero. Thirdly, we described algorithms
to find a clique of asymptotically optimal size in each of the above cases,
and showed their correctness and efficiency. Finally, we proved a technical
result on the relation of Y (n) and the degree of a random vertex of G(n).

3. In Chapter 4 we introduced a randomized greedy algorithm for colouring
edges of the random uniform hypergraph H(k)(n,m) and proved that there
is a constant cϵ such that if k ≥ 2, k ≤ cϵ ln

(
n

ln d̄

)
and k ≤ cϵ ln

(
d̄

lnn

)
then

the algorithm properly colours the edges of H(k)(n,m) with ⌈d̄(1+ϵ)⌉ colours
and probability at least 1− 2

n
− 2

d̄
. For a sequence {H(n), n = n0, n0+1, . . . }

where k = k(n), m = m(n) and H(n) = H(k)(n,m) satisfies the above
condition this yields χ′(H(n)) = d̄(1 + oP (1)).
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4. In Section 1.2 we presented plots illustrating that parameters in real-world
networks can, with interesting exceptions, be matched closely with those in
random intersection graphs. This direction requires further research.

To sum up, we determined the behaviour of several important parameters in
random intersection graphs. Notably, we made progress in the most practically
relevant regime of sparse graphs with positive clustering.

Results of Part II
1. In Chapter 6 we proved that |(Ex (k + 1)K3)n| = (1 − e−Ω(n))|(apex k F)n|.

Using this, we obtained precise asymptotic counting formula for graphs with-
out k + 1 disjoint cycles. We showed that with probability 1 − e−Ω(n) a
uniformly random graph Rn from (Ex (k + 1)K3)n contains a unique vertex
feedback set (blocker) of size k, we determined the asymptotic probability
that Rn is connected and investigated the asymptotic distribution of the
number of components, chromatic and clique numbers of Rn.

2. In Chapter 7 we generalized results of Chapter 6 and proved that |(Ex (k +
1)B)n| = (1− e−Θ(n))|(apex k A)n|, as long as the class A = ExB is addable
and does not contain all fans. We showed that this implies that such a class
Ex (k+1)B has a growth constant 2kγ(A), i.e., the answer to the question of
Bernardi, Noy and Welsh in this case is positive. We expressed asymptotics
of |(Ex (k + 1)B)n| in terms of |An|. Next, we showed that with probability
1−e−Ω(n) a random graph Rn ∈u Ex (k+1)B contains a unique B-blocker S
of size k, such that each vertex in the blocker has a linear degree. We also
generalized proofs of other asymptotic properties (connectivity, components,
clique and chromatic number, etc.).

3. In Chapter 8 we considered addable classes A = ExB such that A contains
all fans, but not all 2-fans, nor all bipartite graphs K3,t. We showed that
there is a constant k0, such that for k ≥ k0, γ(Ex (k + 1)B) = γ(rd 2k+1 B)
and for a subsequence nl realising this upper limit, a random graph Rnl

∈u

Ex (k + 1)B has no B-blocker of size smaller than 2k with probability 1 −
e−Ω(nl) as l → ∞. We also proved that if we add a further condition that
the minimal excluded minors are 3-connected and A does not contain all
wheels, then Ex (k+ 1)B has a growth constant. To obtain these results we
proved two non-trivial graph-theoretical lemmas.
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4. In Chapter 9 we proved that for k = 1, 2, . . . there are constants ck, γk

such that |(Ex (k + 1)K4)n| = (1 − e−Ω(n))|(rd 2k+1K4)n| ∼ ckn
−3/2γn

kn!.
We proved that Rn ∈u Ex (k + 1)K4 whp has a unique redundant blocker
of size 2k + 1, and each vertex in this blocker has a linear degree. Along
the way we obtained decompositions for classes related to rd 2k+1K4 and
proved a lemma for enumerating trees where leaves, internal vertices and
edges are replaced with objects of different type. Lastly, we considered class
Ex (k + 1){K2,3, K4} and showed that it behaves very differently.

The work explores a new subarea of asymptotic enumeration, i.e., counting
graphs with few disjoint excluded minors. We saw that such classes are combi-
natorially tractable and have an interesting structure. We made progress on two
rather general families of disjoint excluded minors, though an infinite number of
unresolved important cases (i.e., no two disjoint minors K5) remain.
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