

5th Mathematical Contest of Friendship in Honor and Memory of Grand Duchy of Lithuania

29 September 2013

Welcomed by Nazar AGAKHANOV, Chairman of International Mathematical Olympiad Advisory Board

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be strictly increasing linear functions such that $f(x)$ is an integer if and only if $g(x)$ is an integer. Prove that $f(x)-g(x)$ is an integer for any $x \in \mathbb{R}$.
2. Let $A B C$ be an isosceles triangle with $A B=A C$. The points D, E and F are taken on the sides $B C, C A$ and $A B$, respectively, so that $\angle F D E=\angle A B C$ and $F E$ is not parallel to $B C$. Prove that the line $B C$ is tangent to the circumcircle of $\triangle D E F$ if and only if D is the midpoint of the side $B C$.
3. The number 1234567890 is written on the blackboard. Two players A and B play the following game taking alternate moves. In one move, a player erases the number which is written on the blackboard, say, m, subtracts from m any positive integer not exceeding the sum of the digits of m and writes the obtained result instead of m. The first player who reduces the number written on the blackboard to 0 wins. Determine which of the players has the winning strategy if the player A makes the first move.
4. A positive integer $n \geqslant 2$ is called peculiar if the number

$$
\binom{n}{i}+\binom{n}{j}-i-j
$$

is even for all integers i and j such that $0 \leqslant i \leqslant j \leqslant n$. Determine all peculiar numbers.

