$3^{\text {rd }}$ MATHEMATICAL CONTEST of Friendship
in Honor and Memory
OF GRAND DUCHY OF LITHUANIA

1. Integers a, b and c satisfy the condition $a b+b c+c a=1$. Is it true that the number $\left(1+a^{2}\right)\left(1+b^{2}\right)\left(1+c^{2}\right)$ is a perfect square? Why?
2. Let $n \geq 2$ be a natural number and suppose that positive numbers $a_{0}, a_{1}, \ldots, a_{n}$ satisfy the equality

$$
\left(a_{k-1}+a_{k}\right)\left(a_{k}+a_{k+1}\right)=a_{k-1}-a_{k+1} \text { for each } k=1,2, \ldots, n-1
$$

Prove that $a_{n}<\frac{1}{n-1}$.
3. Find all primes p, q such that $p^{3}-q^{7}=p-q$.
4. In the cyclic quadrilateral $A B C D$ with $A B=A D$ points M and N lie on the sides $C D$ and $B C$ respectively so that $M N=B N+D M$. Lines $A M$ and $A N$ meet the circumcircle of $A B C D$ again at points P and Q respectively. Prove that the orthocenter of the triangle $A P Q$ lies on the segment $M N$.
5. Positive integers $1,2,3, \ldots, n$ are written on a blackboard ($n>2$). Every minute two numbers are erased and the least prime divisor of their sum is written. In the end only the number 97 remains. Find the least n for which it is possible.

