# $1^{\text {st }}$ MATHEMATICAL CONTEST <br> of Friendship <br> in Honor and Memory <br> OF GRAND DUCHY OF LITHUANIA 

1. The natural number $N$ is a multiple of 2009 and the sum of its (decimal) digits equals 2009.
(A) Find one such number.
(B) Find the smallest such number.
2. Let

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

be a polynomial with real coefficients. Given that $f(x)$ has three real positive roots and that $f(0)<0$, prove that

$$
2 b^{3}+9 a^{2} d-7 a b c \leq 0 .
$$

3. Solve the equation

$$
x^{2}+2=4 \sqrt{x^{3}+1} .
$$

4. A triangle $A B C$ has an obtuse angle at $B$. The perpendicular at $B$ to $A B$ meets $A C$ at $D$, and $C D=A B$. Prove that

$$
A D^{2}=A B \cdot B C
$$

if and only if

$$
\angle \mathrm{CBD}=30^{\circ} .
$$

5. Consider a table whose entries are integers. Adding a same integer to all entries on a same row, or on a same column, is called an operation. It is given that, for infinitely many positive integers $n$, one can obtain, through a finite number of operations, a table having all entries divisible by $n$. Prove that, through a finite number of operations, one can obtain the table whose all entries are zeroes.
