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1 Illustrations, tables and pseudocode

1.1 Requirements for illustrations and tables

1.1.1 Requirements for description of illustrations

All illustrations used in the work must be numbered and must have a caption (short text at the
bottom of the illustration), that mentions what the illustration (or each of its constituent parts, if the
illustration consists, for example, of a number of different graphs) shows. If it makes sense, include
additional information in the description of the illustration, such as:

• model name or number (if more than one model is analysed in the work);
• the name or number of the algorithm whose performance is reflected in the illustration (if

you are analysing more than one algorithm for a particular model);
• the name or number of the data to be processed (if you are analysing a large number of

different data);
• list the specific numerical values of all parameters (both model and algorithm) with which the

result shown in the illustration was obtained. If a particular parameter is not dimensionless, do
not forget to include its dimension (e. g. seconds, years, metres, centimetres, grams, gigaflops,
etc., using commonly accepted abbreviations). If you are analysing only one set of parameters
in your work, please refer to it in the main body of the paper rather than in the description of
the illustration;

• other relevant information related to the illustration.

All illustrations must be cited in the work. In the body of the paper, give a brief interpretation of the
result obtained in the illustration – what conclusions can be drawn from the illustration, perhaps
comparing it with other illustrations, giving the numbers of the illustrations being compared.

1.1.2 Requirements for the design of illustrations

Please pay attention to the proper layout of the illustrations:

• the illustration must not be unduly reduced or enlarged. If possible, construct the illustration
in two parts (left illustration and right illustration) using the full width of the page. The
following examples demonstrate how large illustrations should be;

• the curves of the graphs should be sufficiently thick, and the illustration should not be
overloaded with too many curves (if necessary, two or more illustrations can be provided
instead of one);

• axis variables, gradations and other information in the illustration (text, arrows, etc.) must be
clear and not small. Please note that the graphic file of an illustration is often significantly
reduced during layout (when it is inserted into the text of the work). When the illustration is
viewed in the body of the thesis, all textual information in the illustration should be displayed
in a font size no smaller than that used in the body of the thesis, curves and other graphical
information must be of optimal thickness, easily visible and distinguishable.

• the names of the axis variables and, if the variable is not dimensionless, the dimensions must
be mentioned (e. g. seconds, years, etc., using commonly accepted abbreviations).
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1.1.3 Other information on illustrations and tables

For the best possible graphic quality of illustrations, always create them only in vektoriniame format
(not raster, so never use JPG format – it is prone to pixelation and other artifacts). A common
question is which of the vector graphics formats to choose (for illustration graphics files): PostScript
(PS), Encapsulated PostScript (EPS) or Portable Document Format (PDF)? We recommend PDF,
the reasons for which are given, for example, here: http://tex.stackexchange.com/questions/2092/
which-figure-type-to-use-pdf-or-eps.

If you plan to print the work (before binding) on a monochrome printer, do not use colour
illustrations. After printing the job, check that all illustrations look as good on paper as they do on
the monitor screen.

A common mistake is when showing the dependence of a curve on a variable (e.g. the depen-
dence of exchange rates on time), not the values of the variable (e.g. time values: months of the
current year) but the indices of an array of discrete values of the curve are placed on the abscissae
axis of the illustration (usually not conveying any relevant information).

Note also that in modelling physical, chemical and similar phenomena, the dimensions must be
consistent – the numerical values of all parameters and quantities of interest must be defined in a
unified system during calculations (e. g. in the SI system – then 2 µm is entered as 2 × 10−6 m in
the calculations, since the SI system unit is the metre and not the micrometer).

If necessary, you can also present the results of the tests as tables of figures. Tables should
also be numbered, have their own descriptions and be cited in the paper. According to the rules
established in the scientific literature, the description of the table should be placed at the top
of the table (as opposed to the description of the illustration, which should be placed below the
illustration).

Examples of properly captioned illustrations and tables (and their description in the body of the
paper) are given below. See 1.5 section for an example of pseudocode.

1.2 Examples of illustrations

1.2.1 First illustration example

We will model an electrochemical biosensor (see Fig. 1) consisting of an electrode, a membrane
(with a thickness of dm1 ⩾ 0) surrounding the electrode, an enzyme layer (thickness de > 0) and
an outer membrane (thickness dm2 > 0). In a particular case, the electrode envelope membrane
(also sometimes referred to as the discriminating membrane) may not be present (if dm1 = 0). The
biosensor is immersed in a solution in which a constant concentration of the substrate (a specific
chemical, such as glucose, whose concentration is measured by the biosensor) is maintained. When
the substrate (which is not electrochemically active) reacts with the enzyme (in the enzyme layer),
the substrate is transformed into a product (another chemical such as hydrogen peroxide). The
reaction can also be influenced by, involve or involve the formation of other chemical compounds.
The product is an electrochemically active substance and therefore generates an electric current (on
the electrode), which we measure to assess the concentration of the substrate in solution.

The thicknesses of the layers (membranes, enzyme layer) that make up the biosensor (and hence
the dimensions of the biosensor itself) are measured in microns (synonymous with micrometers,
notation µm). These thicknesses can range from a few to several microns. By comparison, objects
such as the thickness of a sheet of paper or the diameter of a human hair can range from 50 to 100

microns. Thus, the biosensor is a truly ‘‘small’’ device.
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The mathematical variable x denotes the coordinate in the biosensor (distance to the electrode)
and t ⩾ 0 is the time.

0

dm1

dm1+de

dm1+de+dm2

x
SOLUTION

OUTER MEMBRANE

ENZYME

MEMBRANE

ELECTRODE

Figure 1. Schematic diagram of an electrochemical biosensor. The arrow marks the axis of the
variable x.

The outer membrane is usually made of a polymer fibre. Very often it is cellophane films.
Sometimes dense polymer films are used in which holes are artificially created. For example, Teflon
films shot through with argon nuclei – under an electron microscope, such films look like a sheet of
plywood shot with a hunting rifle.

1.2.2 Second illustration example

The boundary conditions for the substrate concentration S at the edges of the simulation domain
0 ⩽ x ⩽ dm1 + de + dm2 are formulated considering that the substrate cannot penetrate the
electrode and that the solution (in which the biosensor is immersed) is kept at a constant substrate
concentration S0:

∂S

∂x

∣∣∣∣
x=0

= 0, S(x = dm1 + de + dm2, t) = S0, t > 0. (1.1)

In addition, we assume that the product reacts very quickly on the electrode. Therefore, the
concentration of the product P (x = 0, t) (on the edge with the electrode) will be zero at all times.

We will consider two different cases in the simulation.

The case of a product diffusing into a solution. Suppose that the wall of the outer membrane
allows the product to diffuse into the solution. Then the concentration of the product P at the edges
of the interval 0 ⩽ x ⩽ dm1 + de + dm2 satisfies the conditions

P (x = 0, t) = 0, P (x = dm1 + de + dm2, t) = 0, t > 0. (1.2)

The case where the product cannot enter the solution. If the outer membrane wall is
impermeable to the product, the second condition in the boundary conditions (1.2) must be replaced
by the requirement, that the derivative of the function at the edge of the region must be zero (no
product leakage). Thus, in this case, we formulate the following boundary conditions for the product
concentration P :

P (x = 0, t) = 0,
∂P

∂x

∣∣∣∣
x=dm1+de+dm2

= 0, t > 0. (1.3)
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If C1 > 0 and / or C2 > 0, then the response of the biosensor (the steady-state current density)
I decreases due to degradation (compared to the case without degradation C1 = 0 s−1, C2 = 0 s−1).
We will investigate the dependence of this decrease on the parameters C1 and C2.

Illustration Fig. 2 graphically highlights the parts of the parameter space (C1, C2) in which the
biosensor response decreases from 0% to 1% (white shaded area), from 1% to 2% (white shaded
area), from 2% to 3% (light grey area), from 3% to 4% (light grey hatched area), and so on, as the
background of the area becomes darker.
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Figure 2. Degradation (decrease) of the biosensor response I in the coordinate plane (C1, C2).
Illustration on the left: boundary conditions (1.2) (the case of a product diffusing into a solution).
Illustration on the right: boundary conditions (1.3) (the case where the product cannot enter the
solution). Model and algorithm parameters: N = 100, τ = 0.01 s, dm1 = 2 µm, de = 9 µm,
dm2 = 10 µm, DSm1 = 6 µm2 s−1, DPm1 = 5 µm2 s−1, DSe = 22 µm2 s−1, DPe = 20 µm2 s−1,
DSm2 = 7 µm2 s−1, DPm2 = 6 µm2 s−1, Vmax = 0.3 mmol m−3 s−1, KM = 0.23 mol m−3, S0 =

0.07 mol m−3.

We can see that, with the parameters given in Fig. 2, the results quite significantly depend on
the boundary conditions with which the mathematical model is defined: boundary conditions (1.2)
or (1.3).

Note also (see Fig. 2) that when interpreting what (different) values of the parameters C1 > 0

and C2 > 0 can lead to some one and the same (fixed) decrease in I , the almost linear relationship
between parameters C1 and C2 is obtained. However, the isolines for the (uniform) reduction I

seen in the illustration are not absolutely ideal lines.
It is also worth noting that the impact of C1 on degradation is several times higher than that

of C2. Exactly how many times depends on the choice of boundary conditions. Calculating
with the boundary conditions (1.2), it can be seen (see Fig. 2, illustration on the left) that the
parameter choices C1 = 4 m(s−1), C2 = 0 m(s−1) and C1 = 0 m(s−1), C2 = 40 m(s−1) causes an
approximately equal decrease in the steady-state current density I , so that the influence of the
parameter C1 is about 10 times greater than that of the parameter C2. However, the choice of the
boundary conditions (1.3) shows (see Fig. 2, illustration on the right) that the influence of C1 is only
about 5 times larger than that of C2.
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1.2.3 Third illustration example
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Figure 3. Illustration on the left: the dependence of the current density i(t) on the time t (dashed
lines indicate the time instant t = tslopeMAX and the biosensor response I). Illustration on the right:
the ependence of the enzyme concentration E(x, t) on the biosensor coordinate x, at time t = 1 s
(dashed curve), at time t = tslopeMAX (dotted curve), and at time t = tI (solid curve).
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Figure 4. Illustration on the left: the dependence of the substrate concentration S(x, t) on the
biosensor coordinate x, at time t = 1 s (dashed curve) and at time t = tslopeMAX (dotted curve).
Illustration in the centre: the dependence of the product concentration P (x, t) on the biosensor
coordinate x, at time t = 1 s (dashed curve). Illustration on the right: the dependence of the product
concentration P (x, t) on the biosensor coordinate x, at time t = tslopeMAX (dotted curve) and at
time t = tI (solid curve).

Calculations run with the parameters of the mathematical model and the algorithm: boundary
conditions (1.2) (the case of a product diffusing into a solution), N = 1000, h = 0.021 µm,
τmax = 0.01 s, dm1 = 2 µm, de = 9 µm, dm2 = 10 µm, C1 = 0 s−1, C2 = 0 s−1, S0 = 1 mol m−3,
E0 = 0.19 mol m−3, k+1 = 0.015 m3 mol−1 s−1, k−1 = 0.0015 s−1, k+3 = 0.002 s−1, k−3 =

0.002 m3 mol−1 s−1, ne = 1.
Figures 3 and 4 show the results when the diffusion coefficients are equal: DSm1 = 6 µm2 s−1,

DPm1 = 5 µm2 s−1, DSe = 22 µm2 s−1, DPe = 20 µm2 s−1, DSm2 = 7 µm2 s−1, DPm2 = 6 µm2 s−1.
The biosensor response value I = 201.1 µA m−2 is evaluated after reaching the time point

tI = 434.6 s. The current density increased most intensively at time point tslopeMAX = 40.3 s.
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1.2.4 Fourth illustration example

Let’s examine the isoline of the five per cent degradation of the biosensor’s response I (curve of
equal relative decrease of I) in the coordinate plane (C1, C2). The points on the isoline represent
the values of the parameters C1 and C2 with which the steady-state current density I decreases by
exactly 5% (compared to the value of I obtained in the non-degraded case C1 = 0 s−1, C2 = 0 s−1).
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Figure 5. The dependence (surface) of the five per cent degradation isoline (defined in the coordinate
plane (C1, C2)) on the response I of the biosensor on the membrane thickness dm. Model and
algorithm parameters: N = 100, τ = 0.01 s, de = 9 µm, DSe = 22 µm2 s−1, DPe = 20 µm2 s−1,
DSm = 7 µm2 s−1, DPm = 6 µm2 s−1, Vmax = 0.3 mmol m−3 s−1, KM = 0.23 mol m−3, S0 =

0.07 mol m−3.

This isoline (and others) can be seen in Fig. 2. In this section, we will additionally examine the
above isolines (defined in the coordinate plane (C1, C2)) dependence on the membrane thickness
dm in the interval dm ∈ [6, 14] µm.

The result of the calculations is shown in Fig. 5. It can be seen that the area under the isoline
(highlighted with a grey background) decreases with increasing dm. With parameters C1 ⩾ 0,
C2 ⩾ 0, the degradation of this region (below the isoline) I does not exceed 5%. Note that for all
dm ∈ [6, 14] µm, the isoline roughly keeps a straight line shape, However, a parabolic curve should
be used to approximate it more accurately.

We will write down the analytical dependencies of the isoline approximation on the parameter
dm, valid over the interval dm ∈ [6, 14] µm, with the parameters of the mathematical model given
in Fig. 5. On the basis of the results of the calculations, presented in Fig. 5, we derive (by the least
squares method) the following analytical expressions:

C2 = K(dm)C1 +M(dm) , C1 ⩾ 0, C2 ⩾ 0, (1.4)

K(dm) = −0.791771 dm/µm− 2.48837, (1.5)

M(dm) =

(
−0.583423 dm/µm+ 28.3346 +

110.039

dm/µm

)/
1000. (1.6)
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For each dm, the isoline in the coordinate plane (C1, C2) passes through the points

(C1 = 0, C2 = M(dm)) s
−1,

(
C1 = −

M(dm)

K(dm)
, C2 = 0

)
s−1.

1.3 Example of an illustration and a table

In order to further optimise the Cooley-Tukey Fast Fourier Transform algorithm, recursion can be
dropped from the programming, and the data (signal values fj) can be arranged immediately in the
order in which they would be summed at the last (deepest) level of recursion.

It is also worthwhile to pre-calculate and store in arrays the complex constants fj , which are
independent of the signal values W k

m, only for those integers m and k for which these constants
will actually be needed in the calculation.

We will explain in what order the Cooley-Tukey algorithm processes the signal values fj and
which coefficients W k

m are needed.
The working principle of the algorithm can be understood by considering the case of data with

few values. Suppose N = 8 = 23. Then the data (the values of the digital signal) are numbers

f = (f0, f1, f2, f3, f4, f5, f6, f7) .

Our aim is to calculate the values of

Ck = f0 + f1W
k
8 + f2W

2k
8 + f3W

3k
8 + f4W

4k
8 + f5W

5k
8 + f6W

6k
8 + f7W

7k
8 ,

k = 0, 1, 2, 3, 4, 5, 6, 7.

At the first level of recursion of the Cooley-Tukey algorithm, for each fixed k = 0, 1, 2, 3, we
obtain two sums Ak and Bk of the four spots:

Ck = Ak +W k
8 Bk, Ck+4 = Ak −W k

8 Bk, k = 0, 1, 2, 3,

Ak =

[
f0 + f2W

k
4 + f4W

2k
4 + f6W

3k
4

]
, Bk =

[
f1 + f3W

k
4 + f5W

2k
4 + f7W

3k
4

]
,

or

Ck =

[
f0 + f2W

k
4 + f4W

2k
4 + f6W

3k
4

]
+W k

8

[
f1 + f3W

k
4 + f5W

2k
4 + f7W

3k
4

]
.

At the second level of recursion, for each fixed k = 0, 1, we will have four sums AAk, ABk,
BAk, BBk, each of the two components:

Ak = AAk +W k
4 ABk, Ak+2 = AAk −W k

4 ABk,

Bk = BAk +W k
4 BBk, Bk+2 = BAk −W k

4 BBk, k = 0, 1,

AAk =
(
f0 + f4W

k
2

)
, ABk =

(
f2 + f6W

k
2

)
,

BAk =
(
f1 + f5W

k
2

)
, BBk =

(
f3 + f7W

k
2

)
,

or

Ck =

[(
f0 + f4W

k
2

)
+W k

4

(
f2 + f6W

k
2

)]
+W k

8

[(
f1 + f5W

k
2

)
+W k

4

(
f3 + f7W

k
2

)]
.
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The third level of recursion would formally define eight ‘‘sums’’, each consisting of a single
component -- the signal value. The order in which these values are arranged, and the coefficients
by which they are to be multiplied in the summation, is already apparent from the formulae of
the second recursion level. We can therefore proceed immediately to the 1-stage of the algorithm,
where the real calculations begin.

f7
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f1

f6

f2

f4

f0

Phase 1

AA0

AA1

AB0

AB1

BA0

BA1

BB0

BB1

Phase 2

A0

A1

A2

A3

B0

B1

B2

B3

Phase 3

C0

C1

C2

C3

C4

C5

C6

C7

Figure 6. Schematic of the arithmetic operations in the Cooley-Tukey Fast Fourier Transform
algorithm for 8 points (N = 8). Arrows indicate which values from the previous phase of the
algorithm are involved in the calculation of the next phase.

Phase 1. Using the signal values fj and the coefficients W k
2 , k = 0, 1, we calculate the

intermediate values AAk, ABk, BAk, BBk and k = 0, 1. The calculation scheme is given in Fig. 6.
In this scheme, the arrows indicate which quantities are involved in the arithmetic operations. For
example,

AA0 = f0 + f4W
0
2 ,

so there is an arrow from f0 and an arrow from f4 to AA0. The arrow also represents a single
arithmetic operation: f4 is multiplied by the constant W 0

2 ; the result is added with f0.
Incidentally, only one constant W 0

2 = 1 is needed in step 1 (since W 1
2 = −W 0

2 = −1). Since
all multipliers are equal to one, the calculation of products can be avoided at this stage.

Also, we can see in which order the data should be arranged for fastest access:

f0, f4, f2, f6, f1, f5, f3, f7.

Looking at this order of arrangement, it is difficult to see how it could be generalised when
N = 16, N = 32 and so on. Everything becomes clear when the data indices are expressed in
binary rather than decimal not decimal notation, see Table 1. The binary bits of the indices of the
values fj need only be written in reverse (mirror) order.

Phase 2. Now we use the quantities AAk, ABk, BAk, BBk, k = 0, 1 and k = 0, 1 (calculated
in the previous Phase 1) to calculate the intermediate values Ak, Bk, k = 0, 1, 2, 3. The calculation
scheme can be seen in Fig. 6.
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Table 1. Optimal ordering of processed data in the Cooley-Tukey Fast Fourier Transform algorithm
for 8 points (N = 8).

Indices j in
traditional order

Binary bits of the
index j

Bits of the index j in
reverse

Indices j in
bit-reversed order

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Phase 2 requires two constants W k
4 , k = 0, 1.

Phase 3. Given the quantities Ak, Bk, k = 0, 1, 2, 3 calculated in the previous Phase 2, find the
coefficients Ck, k = 0, 1, 2, 3, 4, 5, 6, 7. The calculation scheme is presented in Fig. 6.

In Phase 3 we use the constants W k
8 , k = 0, 1, 2, 3.

Phase 3 is the last phase, as we had to process a data sequence of length N = 23.
In all products in the algorithm, one of the multipliers is the complex constant W k

m. Only
constants (for these indices m and k) are employed: Naudojamos tik konstantos (šiems indeksams
m ir k):

W k
m = e

−i2π
m

k
= cos

2πk

m
− i sin

2πk

m
, m = 2, 4, 8, 16, . . . , N, k = 0, 1, . . . ,

m

2
− 1.

By the way, if k = 0, then W 0
m = 1.

Complexity of the Cooley-Tukey Fast Fourier Transform algorithm

Let’s estimate how many arithmetic operations are carried out in the Cooley-Tukey Fast Fourier
Transform algorithm. We will consider subtraction and addition as equivalent operations in terms
of CPU time, and count multiplications separately.

As we can see from the example above, n = log2N phases (steps) are required. In each phase,
N additions and N/2 multiplications are calculated. There are twice as many multiplications as
additions because, in each phase, the second half of the quantities is calculated in the same way as
the first half, but with addition replaced by subtraction. Pavyzdžiui, mūsų nagrinėtame pavyzdyje su
N = 8, 2-ajame etape skaičiavome dydžius Ak pagal formules For example, in the case of N = 8,
we calculated the quantities Ak (in the Phase 2) using the formulae

Ak = AAk +W k
4 ABk, Ak+2 = AAk −W k

4 ABk, k = 0, 1,

so there is no need to calculate the product W k
4 ABk when calculating Ak+2 (it has already been

calculated when finding Ak).
This means that there are (N/2) log2N complex multiplications and N log2N complex addi-

tions in the algorithm. The number of multiplications can be further reduced slightly by taking
advantage of the fact that W 0

m = 1 and other special cases of the constants W k
m. For example, as we

have seen, it is possible to avoid calculation of products in the phase 1 of the algorithm.
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Thus, the complexity of the Cooley-Tukey Fast Fourier Transform algorithm is O(N log2N).

1.4 Example of a table

Table 2 examines the relative accuracy of the defect density Ndef estimate.

Table 2. Relative errors of defect density Ndef estimates.

Defect Frecuency Exact Evaluated Relative
radius fmin, Hz Ndef , Ndef , error
r0, nm µm−2 µm−2

1 516 2.89 · 101 3.02 · 101 4.5%
10 1090 2.89 · 101 3.81 · 101 32.1%

1 3.3 2.89 · 10−1 2.72 · 10−1 5.7%
10 5.02 2.89 · 10−1 2.57 · 10−1 11.0%
100 9.78 2.89 · 10−1 3.01 · 10−1 4.3%

1 0.0242 2.89 · 10−3 2.83 · 10−3 2.0%
10 0.0328 2.89 · 10−3 2.39 · 10−3 17.2%
100 0.0502 2.89 · 10−3 2.26 · 10−3 21.7%
1000 0.0976 2.89 · 10−3 2.62 · 10−3 9.3%

1.5 Example of a pseudocode

Sometimes there is a need to generate a signal with certain statistical properties by computer. Such
signals are called synthetic signals or simulated signals, since they are not experimental data of any
real-life process, but only a mathematical simulation of it.

Signals of synthetic origin can be easily and quickly generated, whereas the collection of
real experimental data is incomparably more time-consuming and requires other resources. Such
synthetic signals can be and are used for academic purposes, to compare mathematical models
with experimental results, for testing implementations of computer algorithms. For example, it is
convenient to model various noises with the required properties by computer simulation.

Synthetic signals are obtained from a mathematical formula or by solving a given mathematical
model (e. g. recurrent relations, differential equation, etc.). The mathematical formula or model
may be deterministic (without random variables). In this case, we simply program the formula or
algorithm for a given model.

However, it is often necessary to program signal simulations that contain one or more random
variables. For example, when simulating noise, the movement of a randomly wandering particle,
the arrival times of urban transport, etc.

We assume that we know how to generate a pseudo-random number with uniform probability
at any point on the interval [0, 1), called a random variable uniformly distributed over the interval
[0, 1). We denote such numbers by u1, u2, and so on. All programming languages and environments
have tools for obtaining such numbers.

It should be said that most programming languages and environments generate these pseudo-
random numbers in a rather primitive way, so their randomness is superficial. Serious applications
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would require the use of special libraries of programs using specialised methods (e. g. the Mersenne
Twister algorithm) for obtaining high-quality pseudorandom numbers u1, u2, etc.

A Poisson random variable X ∼ P (λ) or a random variable from a Poisson distribution with
parameter λ > 0 is used in Queueing Theory models, for example, to randomly generate the time a
customer will have to wait at a hairdresser’s, a clinic, a bus stop, etc., when the statistically average
waiting time is equal to λ > 0. Thus, the parameter λ > 0 describes the mean as well as the variance
of the Poisson random variable (in this distribution, the mean and the variance coincide). It should
be noted that the Poisson random variable takes only non-negative integer values.

A method for generating Poisson random variable.
Suppose that u1, u2, . . . ∈ [0, 1) are mutually independent, pseudo-random numbers, uniformly

distributed over the interval [0, 1). We calculate the products u1, u1u2, u1u2u3, and so on, until
the product is less than e−λ. Then subtracting one from the number of factors n in the last product
(where e−λ is still exceeded: u1u2 · · ·un ⩾ e−λ) gives n− 1, which is the pseudo-random number
from the Poisson distribution with parameter λ > 0. The pseudocode for this algorithm:

a = e−λ;
r = 1;
n = −1;
while r > a do

generate a pseudorandom u ∈ [0, 1);
r = r ∗ u;
n = n+ 1;

end while
return n;

Computer generation of random variables from various distributions is also possible using
dedicated computer tools.
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2 Template

The use of the LATEX template, provided by the Department, is recommended for thesis writing.

2.1 Types of papers

Students are required to write different types of written work during their studies. Type of written
work is indicated on the cover page of the essay report. Types of work with translations into English
are given in Table 3.

Table 3. Types of written work

Type in Lithuanian English translation Level
Kursinis darbas Semester Project BSc

Problemų sprendimu grįstas projektas Problem-Based Project BSc
Problemų sprendimu grįstas projektas II d. Problem-Based Project. Part II BSc

Bakalauro baigiamasis darbas Final Bachelor Thesis BSc
Mokslo tiriamasis darbas I/II Scientific Research I/II MSc

Mokslo tiriamojo darbo projektas Scientific Research Project MSc
Magistro baigiamasis darbas Final Master Thesis MSc

Dalyko ataskaita Subject Related Report BSc
Objektinis programavimas. Mini-projektas Object-Oriented Programming. Mini-Project

Objektinis-programavimas. Recenzija Object-Oriented Programming. Peer-Review

Different subjects have different types of essays, for example, mini-project, review, project
documentation, statement of requirements etc. Thus, the types of written work in the subjects may
be different.

The papers can be written in English or in English. The template includes a special flag to
indicate the language. The template assumes that one paper can be completed by up to five students.

2.2 Document structure

Summary, Introduction, Conclusions, References, Glossary of Contractual Terms are unnum-
bered but still must be included in the body of the paper. The template provides a command
sectionWithoutNumber to create unnumbered chapters in combination with a standard tag such as
sec:intro.

In some works, such as project reports, a preface is necessary explaining the semester in which
the work was completed, thanking for the data or assistance (time) provided. Acknowledgements to
external people from other departments of Vilnius University or companies. The prologue may also
explain which parts of the work are from a previous stage of the work, if the work is continuous.
When the work is carried out by a group of students, the students’ signatures can be in the preface
page. A special tag is set in the template signaturesOnTitlePage, which generates the signature
locations either on the cover page or on the preface page.

The abstract is usually 100–200 words. To count words, the Unix command wc -w fileName
[6] can be used. Template summary, English summary, preface, introduction, conclusions are in
separate LATEX files.
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2.3 References

All items in the list of references must be cited in the text. Using LATEX, bibliographic sources can be
managed by the tool BIBTEX. Sources come in different types. For example, [1] and [7] sources are
books, [8] is a journal article, and [9] is a conference paper. By the way, scientific articles, books
etc. BIBTEX source preformats in bib format can be found in the Computer Science Bibliography
dblp [3].

Only reliable sources of information should be used and referenced. References may also
include the source of the data. For example, statistical data may be taken from the European
Commission database [4]. Translations of Computer Science terms into Lithuanian can be consulted
in the Computing Terms Dictionary [2].

2.4 Pseudo-code and parts of software code

It is recommended to represent algorithms in pseudo-code. In the template under the packages
algorithm and algorithmic, it is possible in the pseudo-code to have tags for lines of code. For
example, in Algorithm 1, the line 1 marks the pseudo-code condition. By default input and output
parameters are denoted by the Lithuanian terms Įvestis and Išvestis, but these can be changed.
Algorithms can also be described using another package algorithm2e.

Algorithm 1. Example of an algorithm
Require: a, b, c ∈ N
Ensure: x : {true, false} × N

1: if a < b and b < c then
2: a← c

3: return (false, a)

4: end if
5: return (true, a)

If it is necessary to specify parts of the source code of programs, one may use the listings
package, an example of which is given in Listing 1. In this document, the Java programming
language is enabled as a parameter, although the package supports a number of different paradigms
languages.

Listing 1. Example of Java method representation

1 boolean method ( S t r i n g a , S t r i n g b ) {
2 i f ( a . c o n t a i n s ( b ) ) re turn true ;
3 re turn f a l s e ;
4 }

2.5 Preparing images

Prepare your data properly as images (graphs). This can be done with the cross-platform tool
Gnuplot [5]. For example, the block of statistical data shown in Table 4 is displayed in Fig. 7 and
the image was generated by the Gnuplot tool, employing the code from Listing 2.

Example 1 shows a block of data and its graphical representation generated by the Gnuplot tool.
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Listing 2. Gnuplot code example

1 # s t o r e as e . g . s c r i p t . g p i
2 # e x e c u t e g n u p l o t s c r i p t . g p i
3
4 s e t t e r m i n a l pdf monochrome
5 s e t output ’ EUdataLT . pdf ’
6 s e t s t y l e data h i s t o g r a m
7 s e t samples 11
8 s e t boxwidth 0 . 5
9 s e t s t y l e f i l l p a t t e r n border

10 s e t s t y l e h i s t o g r a m c l u s t e r gap 1
11 s e t yrange [ 0 : 4 0 0 0 ]
12
13 p l o t ’ dataLT . d a t ’ us ing 2 : x t i c ( 1 ) t i t l e co lumnheader ( 2 ) ,
14 f o r [ i = 3 : 4 ] ’ ’ us ing i t i t l e co lumnheader ( i )

Example 1. The example starts here. The end of the example is indicated by a square. Although
the figures and table belong to the example, they may ‘‘float’’ in the text.

Table 4. Agile students by origin [4]

2010 2011 2012
Lithuania 3103 3129 3379

Latvia 1760 1979 2716
Estonia 2556 2686 2819

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Lietuva Latvija Estija

2010
2011
2012

Figure 7. Agile student numbers. The y-axis of the graph shows the number of students.

□

A definition can also be prepared in the template. For example, Definition 1 defines a path.

Definition 1. The path k is the sequence of points < t1, ..., tn > where ti ∈ R× R.
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2.6 More complex tables

Additional packages may be needed to describe more complex tables: for long tables longtable, for
merging columns/rows multirow, for text rotation rotating. An example of a more complex table is
given in Table 5.

Table 5. Example of a more complex table

Module

E
C

T
S

St
ud

en
t

w
or

kl
oa

d

C
on

ta
ct

H
ou

rs

Pr
iv

at
e

W
or

k
H

ou
rs

Key Programme Competences
Generic Competences Specific Competences

GC1 GC2 GC3 SC1 SC2 SC3
Learning Outcomes

G
C

1-
1

G
C

2-
1

G
C

2-
2

G
C

3-
1

G
C

3-
2

SC
1-

1

SC
1-

2

SC
2-

1

SC
2-

2

SC
3-

1

I YEAR 60 1600 358 1242
1 SEMESTER 30 800 221 579
Management 5 125 50 75 X X X X
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