

COURSE UNIT DESCRIPTION

Course unit title	Course unit code	
Software Engineering Methods and Tools	PMKM7124	
Lecturer(s)	Departme	nt where the course unit is delivered

 Coordinator: prof. dr. Romas Baronas
 Department where the course unit is delivered

 Other lecturers: Department of Software Engineering

 Faculty of Mathematics and Informatics
 Vilnius University

Cycle	Level of course unit	Type of the course unit
Second	-	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	Spring semester, first year of study	Lithuanian, English

Prerequisites and corequisites					
Prerequisites: Corequisites (if any):					
Requirements Engineering -					

Number of ECTS credits allocated	Student's workload	Contact hours	Self-study hours
7	190	82	108

Purpose of the course unit: programme competences to be developed								
To increase knowledge of methods and tools of software requirements, design, construction, testing, maintenance, configuration and quality assessment, to increase expertise in the area of the conceptual and formal modeling, to develop skills in choosing and applying appropriate software engineering methods and tools in practice, to improve abstract thinking.								
Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods						
 Evaluate software engineering methods and tools and choose the right system for developing a specific application. Formalize a subject area, to formally define the specific requirements and use them in the software development. 	Lectures, problem-oriented teaching, case studies, information retrieval, literary reading, individual work, tutorials, laboratory work	Laboratory works and results presentation, written exam (open, semi-open and close-ended questions and tasks).						
Clearly present the chosen topic, summarize it, argue and defend his/her own opinion.	Information retrieval, literary readings, tutorials, report preparation and presentation at the seminar, group discussion, demonstration	Presentation material, the oral presentation, answers to oral questions						

	Contact hours							Self-study work: time and assignments		
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work	Practical training	Contact hours	Self-study hours	Assignments	
1. The conception, purpose and classification of the software engineering methods and tools.	1						1	1	Self-study of literature.	
2. Formal methods of software engineering, their classification, characteristics, application.	2						2	2	Self-study of literature.	

3. Object constraint language (OCL) as an extension of UML. Kinds of constraints, structural and user-defined types, OCL expressions, OCL messages.	4	1		3	8	12	Self-preparation for 1 st laboratory work: to create UML model of a chosen subject area (task), to define OCL requirements, and to generate program code using an
4. An application of specific OCL constraints. Model-driven application development.	4		2	4	10	12	appropriate tool. Self-study of literature.
5. Formal modeling with Z language. An implementation of models.	4		2	3	10	16	Self-preparation for 2 nd laboratory work:
6. Description of the system behavior by algebraic specifications.	4			2	6	10	to choose a formal software engineering method (Z system, algebraic specifications, program analysis-synthesis,
7. Prototyping the algebraic specifications.	2	1	2	2	6	10	etc.) as well as a tool supporting the method, and to apply them to a self- chosen software development task (problem).
8. Formal program description by symbolic logic.	2				2	5	
9. Formal program analysis and synthesis by mechanical theorem proving.	3		2		5	5	Self-study of literature.
10. Software requirements, design, construction, testing, maintenance, configuration management and quality tools.	3	2	10		15	15	Preparation of a presentation on a modern software engineering method and/or a corresponding tool (tools), which is not
11. Software quality, engineering management and process modeling tools, case-tools, miscellaneous tools.	3	2	10		15	15	used in the study program. Self-study of literature.
12. Preparing for the exam and taking the final exam (written)					 2	5	Self-study of literature. (5 hours - preparation for exam, 2 hours – exam).
Total	32	6	28	14	82	108	

Assessment strategy	Weight, %	Deadline	Assessment criteria
Oral presentation	30	During the semester	 The following aspects of the presentation are assessed: The presentation structure, size and style: the structure is clear and logical, contains all necessary components (introduction, explanation, conclusions), the presentation is of a reasonable duration; the material was delivered for a preview - 1 point. Completeness, recommendations and conclusions: The material presented in detail and in comparison to others methods/tools, recommendations and conclusions are grounded - 2 points; if the material is incomplete or the given conclusions are unreasonable – not more than 1 point.
Two laboratory works	20	During the semester	 The assessment of two laboratory works: An application of OCL language in practice: work is fully (all the basic types of constrains were applied) completed and defended on time (within first 10 weeks) - 1.2 points. Unused kinds of constraints proportionately reduce the assessment. Lateness no more than 2 weeks leads to reducing the assessment in 25%, lateness no more than 4 weeks – 50%, later – 75%. An application of another method and tool of software engineering: work is fully (all key elements of the method and the tool were meaningfully used) completed and defended – 0.8 points.
Exam (written)	50	Exam session	The exam consists of 25 open, semi-open and close-ended questions and tasks each of them is assessed between 0.1 and 0.3 points. The questions are formulated from topics set out in lectures. The exam is allowed only after reading the report of

than 1.5 points.

Author	Year	Title	Number or volume	Publisher or URL
Required reading	•			
J. Warmer, A. Kleppe	2003	The Object Constraint Language: Getting Your Models Ready for MDA	2nd ed.	Addison-Wesley Professional
H. Habrias, M. Frappier	2000	Software Specification Methods: An Overview Using a Case Study (Formal Approach to Computing and Information Technology)		Springer-Verlag
M. Christensen, M. Dorfman, R.H. Thayer (eds.).	2002	Software Engineering	Vol. 1, 2, 3rd ed.	Wiley-IEEE Computer Society Press
Recommended reading				
H. Hußmann	2002	Formal Specification of Software Systems		Technische Universität Dresden, http://www-st.inf.tu- dresden.de/fs/
A. Kleppe, J. Warmer, W. Bast	2003	MDA Explained: The Model Driven Architecture-Practice and Promise		Addison-Wesley Professional
S.L. Pfleeger	2009	Software Engineering: Theory and Practice	4th ed.	Prentice Hall
CL. Chang, R.CT. Lee	1997	Symbolic Logic and Mechanical Theorem Proving		Academic Press
OMG	2012	UML 2.3 OCL Specification		Object Management Group, http://www.omg.org/spec/OCL
J. Bowen	1996	Formal Specification and Documentation using Z: A Case Study Approach		Thomson Publishing http://www.zuser.org/zbook
J.L. Turner, T.L. McCluskey	1992	The Construction of Formal Specifications: An Introduction to the Model-Based and Algebraic Approaches		http://helios.hud.ac.uk/scomtlm /book.pdf