

## **COURSE UNIT DESCRIPTION**

| Course unit title       | Course unit code |
|-------------------------|------------------|
| Software Engineering II |                  |
|                         |                  |

| Lecturer(s)                       | Department where the course unit is delivered |  |
|-----------------------------------|-----------------------------------------------|--|
| Coordinator: Karolis Petrauskas   | Department of Software Engineering            |  |
| Other lecturers: Saulius Ragaišis | Faculty of Mathematics and Informatics        |  |
|                                   | Vilnius University                            |  |

| Cycle                | Type of the course unit |
|----------------------|-------------------------|
| 1 <sup>st</sup> (BA) | Compulsory              |

| Mode of delivery | Semester or period when the course unit is delivered | Language of instruction |
|------------------|------------------------------------------------------|-------------------------|
| Face-to-face     | 4 <sup>th</sup> semester                             | Lithuanian              |

Prerequisites

Prerequisites: Software Engineering I

| Number of credits<br>allocated | Student's workload | Contact hours | Individual work |
|--------------------------------|--------------------|---------------|-----------------|
| 10                             | 270                | 84            | 186             |

## Purpose of the course unit: programme competences to be developed

Purpose of the course unit – to introduce students with software engineering and its application in software maintenance, apply defined methods in practice, develop skills in testing and maintaining software. Also to introduce students with basics of project management, quality assurance, software engineering process, and enterprise architecture.

## Generic competences:

• Communication and collaboration (GK1).

Specific competences:

- Knowledge and skills of underlying conceptual basis (SK4).
- Software development knowledge and skills (SK5).
- Technological and methodological knowledge and skills, professional competence (SK6).

| Learning outcomes of the course unit:<br>students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Teaching and learning methods                                                      | Assessment methods                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <ul> <li>Will be able to chose and apply different software design methods.</li> <li>Apply knowledge on software engineering to maintain software, to present and defend proposed solutions.</li> <li>Select life-cycle model for software and to design systems with respect to maintenance requirements.</li> <li>Define software maintenance plans and plans for software development projects, identify risks.</li> <li>Work according to defined methods for software development and maintenance.</li> <li>Define enterprise architecture and develop roadmaps based on it.</li> </ul> | Problem oriented teaching, case analysis,<br>group discussion, individual reading. | Laboratory<br>assignments,<br>examination in written<br>form. |

|                                                                                                                                                                                                                                                               | Contact hours |           |          |          |                      |          | Individual work: time and<br>assignments |                 |                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------|----------|----------------------|----------|------------------------------------------|-----------------|------------------------------------------------------------------------------------|
| Course content: breakdown of the topics                                                                                                                                                                                                                       |               | Tutorials | Seminars | Practice | Laboratory work (LW) | Practice | Contact hours                            | Individual work | Assignments                                                                        |
| Overview of the Iconix process: core principles,<br>initial requirements, requirements definition, analy-<br>sis, conceptual modelling, design, coding, trace-<br>ability and testing. Structure of the course, require-<br>ments for the student evaluation. | 9             |           |          |          | 12                   |          | 21                                       | 42              | Individual reading,<br>preparation of 1st<br>laboratory assignment.                |
| Software construction: main objectives and issues,<br>management, techniques used, technologies and<br>tools.                                                                                                                                                 | 3             |           |          |          | 10                   |          | 13                                       | 32              | Individual reading,<br>preparation of 2nd<br>laboratory assignment.                |
| Software testing: terminology, main issues, test<br>levels, objectives, techniques, measurements and<br>tools. Testing process and related activities.                                                                                                        | 6             |           |          |          | 3                    |          | 9                                        | 14              | Individual reading,<br>preparation of 3rd<br>laboratory assignment.                |
| Software maintenance: strategies for software<br>maintenance, main issues, change management,<br>impact analysis and scope estimation. Software re-<br>lease management and architecture management.                                                          | 9             |           |          |          | 7                    |          | 16                                       | 24              |                                                                                    |
| Configuration management: main concepts, roles<br>and activities, relation to the software development<br>and maintenance.                                                                                                                                    | 3             |           |          |          |                      |          | 3                                        | 6               | Individual reading.                                                                |
| Introduction to project management: main concepts<br>and roles, its role in the context of software<br>engineering. Project management process groups:<br>initiation, planning, executing, monitoring and<br>control, closing.                                | 6             |           |          |          |                      |          | 6                                        | 12              | Individual reading.                                                                |
| Software engineering process: definition of the software engineering process, assessment and improvement models, software life-cycle and its models.                                                                                                          | 4             |           |          |          |                      |          | 4                                        | 12              | Individual reading.                                                                |
| Software quality assurance: main concepts, quality characteristics. Software quality management process.                                                                                                                                                      | 2             |           |          |          |                      |          | 2                                        | 8               | Individual reading.                                                                |
| Enterprise architecture: main concepts, context and domain. Overview of enterprise architecture frameworks: Zachman framework, TOGAF.                                                                                                                         | 6             |           |          |          |                      |          | 6                                        | 12              | Individual reading.                                                                |
| Exam in written form                                                                                                                                                                                                                                          |               | 2         |          |          |                      |          | 4                                        | 24              | 2 hours for tutorial, 24<br>hours for preparation,<br>and 2 hours for the<br>exam. |
| Total                                                                                                                                                                                                                                                         | 48            | 2         |          |          | 32                   |          | 84                                       | 186             |                                                                                    |

| Assessment strategy                   | Weig<br>ht % | Deadline               | Assessment criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------|--------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 <sup>st</sup> laboratory assignment | 15%          | Week 6                 | Students should organize small teams, which will choose one of<br>the projects previously developed by other team in the course of<br>Software engineering I or other course. Define new requirements<br>for the selected system. Results of the assignment should be<br>provided in the written form and defended during laboratory<br>assignments class. The work is evaluated in the ten points system.<br>A penalty for each delayed week is 1 point. A progress of the<br>assignment must be discussed with the laboratory assignments<br>class teacher on each lecture.   |
| 2 <sup>nd</sup> laboratory assignment | 10%          | Week 10                | Students should perform analysis of requirements, described in<br>the first laboratory assignment, and define architecture for the<br>solution. The work should be done in the same teams. Results of<br>the assignment should be provided in the written form and<br>defended during laboratory assignments class. The work is<br>evaluated in the ten points system. A penalty for each delayed<br>week is 1 point. A progress of the assignment must be discussed<br>with the laboratory assignments class teacher on each lecture.                                          |
| 3 <sup>rd</sup> laboratory assignment | 10%          | End of the<br>semester | Students should specify in more details system design that was<br>presented in the second laboratory assignment, implement system<br>prototype, prepare test plan and test scenarios. The work should be<br>done in the same teams. Results of the assignment should be<br>provided in the written form and defended during laboratory<br>assignments class. The work is evaluated in the ten points system.<br>A penalty for each delayed week is 1 point. A progress of the<br>assignment must be discussed with the laboratory assignments<br>class teacher on each lecture. |
| Practical assignments                 | 10%          | During the semester    | Each student should solve 4 small practical problems during the semester. The problems are formulated to check skills on a particular topic. Each assignment is evaluated in the ten points system.                                                                                                                                                                                                                                                                                                                                                                             |
| Exam in written form                  | 55%          | During exam session    | For the right to take the exam a student must submit all the laboratory assignments and each of them must be evaluated not less than 5 in the ten points system.                                                                                                                                                                                                                                                                                                                                                                                                                |

| Author                    | Publis<br>hing<br>year | Title                                                                 | Number or<br>volume | Publisher or URL                                        |
|---------------------------|------------------------|-----------------------------------------------------------------------|---------------------|---------------------------------------------------------|
| Required reading          |                        |                                                                       |                     | •                                                       |
| R.S. Pressman             | 2004                   | Software Engineering: A<br>Practitioner's approach                    |                     | McGraw-Hill                                             |
| P. Bourque, R. E. Fairley | 2014                   | Guide to the Software<br>Engineering Body of<br>Knowledge Version 3.0 |                     | IEEE,<br>http://www.computer.org/porta<br>l/web/swebok. |
| D. Rosenberg, M. Stephens | 2007                   | Use Case Driven Object<br>Modeling with UML: Theory<br>and Practice   |                     | Apress                                                  |
| Recommended reading       |                        |                                                                       |                     |                                                         |
| A. Čaplinskas             | 1996                   | Programų sistemų inžinerijos pagrindai, I dalis                       |                     | MII, Vilnius.                                           |
| A. Čaplinskas             | 1998                   | Programų sistemų inžinerijos pagrindai, II dalis                      |                     | MII, Vilnius.                                           |