

COURSE UNIT DESCRIPTION

Course unit title	Course unit code
Software Engineering I	

Lecturer(s)	Department where the course unit is delivered
Coordinator: Karolis Petrauskas	Department of Software Engineering
Other lecturers: Saulius Ragaišis	Faculty of Mathematics and Informatics
	Vilnius University

Cycle	Type of the course unit
1 st (BA)	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	3 rd semester	Lithuanian

Prerequisites
Prerequisites: Procedural programming, Object-oriented programming, Discrete mathematics.

Number of credits allocated	Student's workload	Contact hours	Individual work
10	270	84	186

Purpose of the course unit: programme competences to be developed							
Purpose of the course unit – to introduce students with the software engineering, its application in development of software							
systems, including domain modelling, requirements analyst	sis and software design.						
Generic competences:							
• Communication and collaboration (GK1).							
• Social responsibility (GK3).							
Specific competences:							
 Knowledge and skills of underlying conceptual b 	asis <i>(SK4)</i> .						
• Software development knowledge and skills (SK)	5).						
Technological and methodological knowledge an	d skills, professional competence (SK6).						
Learning outcomes of the course unit:	Teaching and learning methods	Assassment methods					
students will be able to	students will be able to						
Know main concepts, application domains and a scope							
of the software engineering.		Laboratory assignments, examination in written form.					
Apply knowledge of software engineering to develop-							
ment of software systems, present and defend proposed							
solutions.							
Make analysis of a business domain; use BPMN for	Drahlam arianted tapahing agas						
modelling business processes.	Problem offented teaching, case						
Assess a solution in technology, economic and social as-	analysis, group discussion, individual						
pects.	Teading.						
Define functional and non-functional requirements for a							
software system and assess quality of the requirements.							
Design software systems according to defined require-							
ments, select appropriate architectural solution, use							
UML for modelling and specifying the system.							

	Contact hours					5	Individual work: time and assignments		
Course content: breakdown of the topics		Tutorials	Seminars	Practice	Laboratory work (LW)	Practice	Contact hours	Individual work	Assignments
Overview of the software engineering, its scope and definition. Structure of the course, require- ments for the student evaluation.	3						3	18	Individual reading.
Domain modelling: information model, agents,	6				4		10	12	
Object-oriented paradigm and UML: definition of the object-oriented paradigm, structure of the UML, UML diagrams and models. Model abstrac- tion levels, UML 4+1 model, UML tools.	9				3		12	18	
Software design: structural and behavioural models of a system, decomposition, views, viewpoints and abstraction levels of a system design. Applying UML for design of software systems.	6				5		11	24	
Software requirements: functional and non-func- tional requirements, types of non-functional re- quirements, methods for requirement gathering, re- quirement quality characteristics and annotations. Requirements management and specification.	6				8		14	38	Individual reading, preparation of 2nd laboratory assignment.
Business analysis: internal and external analysis of a business process, black-box and white-box prin- ciples, measurements, SWOT analysis, five Porter's forces, feasibility analysis.	9				6		15	25	
Main issues in software design: concurrency, event handling, distribution of components, error han- dling, interaction, data persistence, reuse. Typical tactics for solving main issues in software design.	6				3		9	10	Individual reading, preparation of 3rd laboratory assignment.
Software architectural styles: object-oriented architecture, event-driven architecture, service oriented architecture. Layered models, data-flow and control-flow oriented designs. Distributed systems, the CAP theorem.	3				3		6	17	
Exam in written form	40	2			20		4	24	2 hours for tutorial, 24 hours for preparation, 2 hours for the exam.
lotal	48	<u> </u>			32		ð4	180	

Assessment strategy	Weight %	Deadline	Assessment criteria
1 st laboratory assignment	10%	Week 6	Students should organize in small teams, which will choose a
			domain and a problem related to it, design an architecture for a
			system solving the chosen problem and implement its prototype.
			Results of the assignment should be provided in the written form
			and defended during laboratory assignments class. The work is
			evaluated in the ten points system. A penalty for each delayed
			week is 1 point. A progress of the assignment must be discussed
			with the laboratory assignments class teacher on each lecture.

-			
2 nd laboratory assignment	10%	Week 10	Students should specify requirements for the software designed during the first laboratory assignment, update the architecture and the prototype according to the requirements. The work should be done in the same teams. Results of the assignment should be provided in the written form and defended during laboratory assignments class. The work is evaluated in the ten points system. A penalty for each delayed week is 1 point. A progress of the assignment must be discussed with the laboratory assignments class teacher on each lecture.
3 rd laboratory assignment	15%	End of the semester	Students should define business needs and perform an analysis of the business domain, then update the requirements, the architecture and the prototype according to the results of the business analysis. The work should be done in the same teams. Results of the assignment should be provided in the written form and defended during laboratory assignments class. The work is evaluated in the ten points system. A penalty for each delayed week is 1 point. A progress of the assignment must be discussed with the laboratory assignments class teacher on each lecture.
Practical assignments	10%	During the semester	Each student should solve 4 small practical problems during the semester. The problems are formulated to check skills on a particular topic. Each assignment is evaluated in the ten points system.
Exam in written form	55%	During exam session	For the right to take the exam a student must submit all the laboratory assignments and each of them must be evaluated not less than 5 in the ten points system.

Author	Publis	Title	Number or	Publisher or URL
	hing		volume	
	year			
Required reading				
R.S. Pressman	2004	Software Engineering: A		McGraw-Hill
		Practitioner's approach		
P. Bourque, R. E. Fairley	2014	Guide to the Software		IEEE,
		Engineering Body of		http://www.computer.org/porta
		Knowledge, Version 3.0		l/web/swebok.
Object Management Group	2015	OMG Unified Modeling		http://www.omg.org/spec/
		Language, Version 2.5		<u>UML/2.5</u>
Recommended reading			-	
A. Čaplinskas	1996	Programų sistemų inžinerijos		MII, Vilnius.
_		pagrindai, I dalis		
A. Čaplinskas	1998	Programų sistemų inžinerijos		MII, Vilnius.
		pagrindai, II dalis		