

COURSE UNIT DESCRIPTION

Course unit title	Course unit code
Algorithms and Data Structures	

Lecturer(s)	Department where the course unit is delivered
Coordinator: Saulius Ragaišis	Department Software Engineering
	Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the course unit		
First	Compulsory		

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	2 nd semester	Lithuanian

Prerequisites

Prerequisites: Procedural programming.

Number of credits allocated	Student's workload	Contact hours	Individual work
5	132	68	64

Purpose of the course unit: programme competences to be developed
Purpose of the course unit -to provide students with classic data structures and algorithms, to develop skills for the
formalization of algorithms and their complexity assessment and comparison; solidify skills of disciplined programming.

Generic competences:

- Communication and collaboration (*GK1*).
- Life-long learning (*GK2*).

Specific competences:

- Knowledge and skills of underlying conceptual basis (*SK4*).
- Technological and methodological knowledge and skills, professional competence (*SK6*).

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
Use classic data structures and algorithms, knowing their essential features.		
Select data structures and algorithms suitable the problem, evaluate their suitability.	Lectures discussions individual reading	Exam (written), laboratory works
Assess complexity of an algorithm. Get first team programming skills.	laboratory works, additional mini-assignments	additional mini-
Apply key metrics and estimate personal efforts, will deepen the understanding of the need for disciplined programming.		ussignments

			Cont	tact h	ours			Indi	vidual work: time and
Course content: breakdown of the topics	Lectures	Intorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Individual work	Assignments
Course structure and requirements	1						1	1	
Abstract data types (ADT).	1				6		7	7	
Personal software process (PSP): metrics and their application.	1				2		3	3	
Linear data structures: linked lists, stack, queue, deque.	2						2	2	
Trees. Binary search tree. Expected height of binary search tree	2						2	2	
Priority queue							1	1	
Heap							1	1	
Recursion. Arrangements, backtracking					8		9	9	
Complexity of an algorithm	1						1	1	T 1' ' 1 1 1'
Search: sequential and binary search.	1						1	1	Individual reading,
Sorting: internal and external sorting, probabilistic sorting, algorithms (selection sort, insertion sort, bubble sort, Shell sort, quicksort, internal and external merge sort, radix sort, heap sort). Quicksort for selection of an element.	3					8	3	3	additional mini- assignments
Example of modeling program	1				8		9	9	-
PSP estimation model	2				2		4	4	
Hash tables, Collision resolution	2						2	2	-
Graphs	2				6		8	8	-
AVL trees. Maximum height of AVL tree	2						2	2	
Black-red trees	2						2	2	
2-3 trees. B-tress	2						2	2	-
NP-completeness	2						2	2	
Skip lists	2	2						2	2 hours for totarial
		2					4		2 hours for exam
Total	32	2			32	8	68	64	

Assessment strategy	Weig	Deadline	Assessment criteria
	ht %		
4 laboratory works	25-40	$4^{\text{th}}, 8^{\text{th}}, 11^{\text{th}}$	Types of laboratory works:
		and 14 th week	1. Abstract data types.
		of semester	2. Arrangements.
			3. Modeling.
			4. Graphs.
			In the 3 rd laboratory work, students should use at least 2 ADTs
			created by colleagues in the 1 st laboratory work.
			Students should record time allocated when performing
			laboratory works, review code starting from 2 nd laboratory
			work and us this data for efforts and time estimation for the 3 rd
			and 4 th laboratory works.
			Students should be able to explain and modify the programs.
			The penalty for exceeding the deadline is 20% for the each
			week. Laboratory works should be performed in defined order.

Additional mini- assignments	0-15	During laboratory work	Students, willing to collect additional points, may take optional mini-assignments (one mini-assignment per one laboratory work). There will be 10 mini-assignments in total, 0.15 points each.
Exam (written)	60	During exam session	A student can take part in the examination only if he/she has performed at least 3 laboratory works. The exam consists of theory questions and problem solving (of diverse difficulty).

Author	Publis hing	Title	Number or volume	Publisher or URL
	year			
Required reading				
Saulius Ragaišis	2007	Algorithms and data		http://www.mif.vu.lt/~ragaisis/
		structures. Lectures material		ADS2013/
		(in Lithuanian)		
Saulius Ragaišis	2007	Personal Software Process (in		http://www.mif.vu.lt/~ragaisis/
		Lithuanian)		PSP2007/Asmeninis.programu.
				kurimo.procesas.pdf
Recommended reading				
Michael T. Goodrich,	2002	Algorithm Design:		John Wiley & Sons
Roberto Tamassia		Foundations, Analysis, and		
		Internet Examples		
Michael Main, Walter	2001	Data Structures and Other		Addison Wesley
Savitch		Objects Using C++		
Mark Allen Weiss	1997	Data Structures and	Second edition	Addison-Wesley
		Algorithm Analysis in C		
Michael Main, Walter	1995	Data Structures and Other		The Benjamin/Cummings
Savitch		Objects, A Second Course in		Publishing Company
		Computer Science (Turbo		
		Pascal Edition)		
Paul Helman, Robert	1991	Intermediate Problem Solving		The Benjamin/Cummings
Veroff, Frank R. Carrano		and Data Structures, Walls		Publishing Company
		and Mirrors		
Daniel D. McCracken	1987	A second course in Computer		John Wesley & Sons
		Science With Pascal		
Algimantas Juozapavičius	1997	Data structures and		Vilnius University Publisher
		algorithms (in Lithuanian)		